- How should we proxy for race/ethnicity? Comparing Bayesian improved surname geocoding to machine learning methods Bayesian Improved Surname Geocoding (BISG) is the most popular method for proxying race/ethnicity in voter registration files that do not contain it. This paper benchmarks BISG against a range of previously untested machine learning alternatives, using voter files with self-reported race/ethnicity from California, Florida, North Carolina, and Georgia. This analysis yields three key findings. First, machine learning consistently outperforms BISG at individual classification of race/ethnicity. Second, BISG and machine learning methods exhibit divergent biases for estimating regional racial composition. Third, the performance of all methods varies substantially across states. These results suggest that pre-trained machine learning models are preferable to BISG for individual classification. Furthermore, mixed results across states underscore the need for researchers to empirically validate their chosen race/ethnicity proxy in their populations of interest. 1 authors · Jun 26, 2022
- Recognizing Extended Spatiotemporal Expressions by Actively Trained Average Perceptron Ensembles Precise geocoding and time normalization for text requires that location and time phrases be identified. Many state-of-the-art geoparsers and temporal parsers suffer from low recall. Categories commonly missed by parsers are: nouns used in a non- spatiotemporal sense, adjectival and adverbial phrases, prepositional phrases, and numerical phrases. We collected and annotated data set by querying commercial web searches API with such spatiotemporal expressions as were missed by state-of-the- art parsers. Due to the high cost of sentence annotation, active learning was used to label training data, and a new strategy was designed to better select training examples to reduce labeling cost. For the learning algorithm, we applied an average perceptron trained Featurized Hidden Markov Model (FHMM). Five FHMM instances were used to create an ensemble, with the output phrase selected by voting. Our ensemble model was tested on a range of sequential labeling tasks, and has shown competitive performance. Our contributions include (1) an new dataset annotated with named entities and expanded spatiotemporal expressions; (2) a comparison of inference algorithms for ensemble models showing the superior accuracy of Belief Propagation over Viterbi Decoding; (3) a new example re-weighting method for active ensemble learning that 'memorizes' the latest examples trained; (4) a spatiotemporal parser that jointly recognizes expanded spatiotemporal expressions as well as named entities. 4 authors · Aug 19, 2015
- A Pragmatic Guide to Geoparsing Evaluation Empirical methods in geoparsing have thus far lacked a standard evaluation framework describing the task, metrics and data used to compare state-of-the-art systems. Evaluation is further made inconsistent, even unrepresentative of real-world usage by the lack of distinction between the different types of toponyms, which necessitates new guidelines, a consolidation of metrics and a detailed toponym taxonomy with implications for Named Entity Recognition (NER) and beyond. To address these deficiencies, our manuscript introduces a new framework in three parts. Part 1) Task Definition: clarified via corpus linguistic analysis proposing a fine-grained Pragmatic Taxonomy of Toponyms. Part 2) Metrics: discussed and reviewed for a rigorous evaluation including recommendations for NER/Geoparsing practitioners. Part 3) Evaluation Data: shared via a new dataset called GeoWebNews to provide test/train examples and enable immediate use of our contributions. In addition to fine-grained Geotagging and Toponym Resolution (Geocoding), this dataset is also suitable for prototyping and evaluating machine learning NLP models. 3 authors · Oct 29, 2018
- Race and ethnicity data for first, middle, and last names We provide the largest compiled publicly available dictionaries of first, middle, and last names for the purpose of imputing race and ethnicity using, for example, Bayesian Improved Surname Geocoding (BISG). The dictionaries are based on the voter files of six Southern states that collect self-reported racial data upon voter registration. Our data cover a much larger scope of names than any comparable dataset, containing roughly one million first names, 1.1 million middle names, and 1.4 million surnames. Individuals are categorized into five mutually exclusive racial and ethnic groups -- White, Black, Hispanic, Asian, and Other -- and racial/ethnic counts by name are provided for every name in each dictionary. Counts can then be normalized row-wise or column-wise to obtain conditional probabilities of race given name or name given race. These conditional probabilities can then be deployed for imputation in a data analytic task for which ground truth racial and ethnic data is not available. 3 authors · Aug 26, 2022