new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Aug 12

A Benchmark for Multi-modal Foundation Models on Low-level Vision: from Single Images to Pairs

The rapid development of Multi-modality Large Language Models (MLLMs) has navigated a paradigm shift in computer vision, moving towards versatile foundational models. However, evaluating MLLMs in low-level visual perception and understanding remains a yet-to-explore domain. To this end, we design benchmark settings to emulate human language responses related to low-level vision: the low-level visual perception (A1) via visual question answering related to low-level attributes (e.g. clarity, lighting); and the low-level visual description (A2), on evaluating MLLMs for low-level text descriptions. Furthermore, given that pairwise comparison can better avoid ambiguity of responses and has been adopted by many human experiments, we further extend the low-level perception-related question-answering and description evaluations of MLLMs from single images to image pairs. Specifically, for perception (A1), we carry out the LLVisionQA+ dataset, comprising 2,990 single images and 1,999 image pairs each accompanied by an open-ended question about its low-level features; for description (A2), we propose the LLDescribe+ dataset, evaluating MLLMs for low-level descriptions on 499 single images and 450 pairs. Additionally, we evaluate MLLMs on assessment (A3) ability, i.e. predicting score, by employing a softmax-based approach to enable all MLLMs to generate quantifiable quality ratings, tested against human opinions in 7 image quality assessment (IQA) datasets. With 24 MLLMs under evaluation, we demonstrate that several MLLMs have decent low-level visual competencies on single images, but only GPT-4V exhibits higher accuracy on pairwise comparisons than single image evaluations (like humans). We hope that our benchmark will motivate further research into uncovering and enhancing these nascent capabilities of MLLMs. Datasets will be available at https://github.com/Q-Future/Q-Bench.

Q-Bench: A Benchmark for General-Purpose Foundation Models on Low-level Vision

The rapid evolution of Multi-modality Large Language Models (MLLMs) has catalyzed a shift in computer vision from specialized models to general-purpose foundation models. Nevertheless, there is still an inadequacy in assessing the abilities of MLLMs on low-level visual perception and understanding. To address this gap, we present Q-Bench, a holistic benchmark crafted to systematically evaluate potential abilities of MLLMs on three realms: low-level visual perception, low-level visual description, and overall visual quality assessment. a) To evaluate the low-level perception ability, we construct the LLVisionQA dataset, consisting of 2,990 diverse-sourced images, each equipped with a human-asked question focusing on its low-level attributes. We then measure the correctness of MLLMs on answering these questions. b) To examine the description ability of MLLMs on low-level information, we propose the LLDescribe dataset consisting of long expert-labelled golden low-level text descriptions on 499 images, and a GPT-involved comparison pipeline between outputs of MLLMs and the golden descriptions. c) Besides these two tasks, we further measure their visual quality assessment ability to align with human opinion scores. Specifically, we design a softmax-based strategy that enables MLLMs to predict quantifiable quality scores, and evaluate them on various existing image quality assessment (IQA) datasets. Our evaluation across the three abilities confirms that MLLMs possess preliminary low-level visual skills. However, these skills are still unstable and relatively imprecise, indicating the need for specific enhancements on MLLMs towards these abilities. We hope that our benchmark can encourage the research community to delve deeper to discover and enhance these untapped potentials of MLLMs. Project Page: https://vqassessment.github.io/Q-Bench.

M3GIA: A Cognition Inspired Multilingual and Multimodal General Intelligence Ability Benchmark

As recent multi-modality large language models (MLLMs) have shown formidable proficiency on various complex tasks, there has been increasing attention on debating whether these models could eventually mirror human intelligence. However, existing benchmarks mainly focus on evaluating solely on task performance, such as the accuracy of identifying the attribute of an object. Combining well-developed cognitive science to understand the intelligence of MLLMs beyond superficial achievements remains largely unexplored. To this end, we introduce the first cognitive-driven multi-lingual and multi-modal benchmark to evaluate the general intelligence ability of MLLMs, dubbed M3GIA. Specifically, we identify five key cognitive factors based on the well-recognized Cattell-Horn-Carrol (CHC) model of intelligence and propose a novel evaluation metric. In addition, since most MLLMs are trained to perform in different languages, a natural question arises: is language a key factor influencing the cognitive ability of MLLMs? As such, we go beyond English to encompass other languages based on their popularity, including Chinese, French, Spanish, Portuguese and Korean, to construct our M3GIA. We make sure all the data relevant to the cultural backgrounds are collected from their native context to avoid English-centric bias. We collected a significant corpus of data from human participants, revealing that the most advanced MLLM reaches the lower boundary of human intelligence in English. Yet, there remains a pronounced disparity in the other five languages assessed. We also reveals an interesting winner takes all phenomenon that are aligned with the discovery in cognitive studies. Our benchmark will be open-sourced, with the aspiration of facilitating the enhancement of cognitive capabilities in MLLMs.

Instruct2Act: Mapping Multi-modality Instructions to Robotic Actions with Large Language Model

Foundation models have made significant strides in various applications, including text-to-image generation, panoptic segmentation, and natural language processing. This paper presents Instruct2Act, a framework that utilizes Large Language Models to map multi-modal instructions to sequential actions for robotic manipulation tasks. Specifically, Instruct2Act employs the LLM model to generate Python programs that constitute a comprehensive perception, planning, and action loop for robotic tasks. In the perception section, pre-defined APIs are used to access multiple foundation models where the Segment Anything Model (SAM) accurately locates candidate objects, and CLIP classifies them. In this way, the framework leverages the expertise of foundation models and robotic abilities to convert complex high-level instructions into precise policy codes. Our approach is adjustable and flexible in accommodating various instruction modalities and input types and catering to specific task demands. We validated the practicality and efficiency of our approach by assessing it on robotic tasks in different scenarios within tabletop manipulation domains. Furthermore, our zero-shot method outperformed many state-of-the-art learning-based policies in several tasks. The code for our proposed approach is available at https://github.com/OpenGVLab/Instruct2Act, serving as a robust benchmark for high-level robotic instruction tasks with assorted modality inputs.

DocGenome: An Open Large-scale Scientific Document Benchmark for Training and Testing Multi-modal Large Language Models

Scientific documents record research findings and valuable human knowledge, comprising a vast corpus of high-quality data. Leveraging multi-modality data extracted from these documents and assessing large models' abilities to handle scientific document-oriented tasks is therefore meaningful. Despite promising advancements, large models still perform poorly on multi-page scientific document extraction and understanding tasks, and their capacity to process within-document data formats such as charts and equations remains under-explored. To address these issues, we present DocGenome, a structured document benchmark constructed by annotating 500K scientific documents from 153 disciplines in the arXiv open-access community, using our custom auto-labeling pipeline. DocGenome features four key characteristics: 1) Completeness: It is the first dataset to structure data from all modalities including 13 layout attributes along with their LaTeX source codes. 2) Logicality: It provides 6 logical relationships between different entities within each scientific document. 3) Diversity: It covers various document-oriented tasks, including document classification, visual grounding, document layout detection, document transformation, open-ended single-page QA and multi-page QA. 4) Correctness: It undergoes rigorous quality control checks conducted by a specialized team. We conduct extensive experiments to demonstrate the advantages of DocGenome and objectively evaluate the performance of large models on our benchmark.

PPTC Benchmark: Evaluating Large Language Models for PowerPoint Task Completion

Recent evaluations of Large Language Models (LLMs) have centered around testing their zero-shot/few-shot capabilities for basic natural language tasks and their ability to translate instructions into tool APIs. However, the evaluation of LLMs utilizing complex tools to finish multi-turn, multi-modal instructions in a complex multi-modal environment has not been investigated. To address this gap, we introduce the PowerPoint Task Completion (PPTC) benchmark to assess LLMs' ability to create and edit PPT files based on user instructions. It contains 279 multi-turn sessions covering diverse topics and hundreds of instructions involving multi-modal operations. We also propose the PPTX-Match Evaluation System that evaluates if LLMs finish the instruction based on the prediction file rather than the label API sequence, thus it supports various LLM-generated API sequences. We measure 3 closed LLMs and 6 open-source LLMs. The results show that GPT-4 outperforms other LLMs with 75.1\% accuracy in single-turn dialogue testing but faces challenges in completing entire sessions, achieving just 6\% session accuracy. We find three main error causes in our benchmark: error accumulation in the multi-turn session, long PPT template processing, and multi-modality perception. These pose great challenges for future LLM and agent systems. We release the data, code, and evaluation system of PPTC at https://github.com/gydpku/PPTC.

Large Language Models for Robotics: A Survey

The human ability to learn, generalize, and control complex manipulation tasks through multi-modality feedback suggests a unique capability, which we refer to as dexterity intelligence. Understanding and assessing this intelligence is a complex task. Amidst the swift progress and extensive proliferation of large language models (LLMs), their applications in the field of robotics have garnered increasing attention. LLMs possess the ability to process and generate natural language, facilitating efficient interaction and collaboration with robots. Researchers and engineers in the field of robotics have recognized the immense potential of LLMs in enhancing robot intelligence, human-robot interaction, and autonomy. Therefore, this comprehensive review aims to summarize the applications of LLMs in robotics, delving into their impact and contributions to key areas such as robot control, perception, decision-making, and path planning. We first provide an overview of the background and development of LLMs for robotics, followed by a description of the benefits of LLMs for robotics and recent advancements in robotics models based on LLMs. We then delve into the various techniques used in the model, including those employed in perception, decision-making, control, and interaction. Finally, we explore the applications of LLMs in robotics and some potential challenges they may face in the near future. Embodied intelligence is the future of intelligent science, and LLMs-based robotics is one of the promising but challenging paths to achieve this.

NavGPT: Explicit Reasoning in Vision-and-Language Navigation with Large Language Models

Trained with an unprecedented scale of data, large language models (LLMs) like ChatGPT and GPT-4 exhibit the emergence of significant reasoning abilities from model scaling. Such a trend underscored the potential of training LLMs with unlimited language data, advancing the development of a universal embodied agent. In this work, we introduce the NavGPT, a purely LLM-based instruction-following navigation agent, to reveal the reasoning capability of GPT models in complex embodied scenes by performing zero-shot sequential action prediction for vision-and-language navigation (VLN). At each step, NavGPT takes the textual descriptions of visual observations, navigation history, and future explorable directions as inputs to reason the agent's current status, and makes the decision to approach the target. Through comprehensive experiments, we demonstrate NavGPT can explicitly perform high-level planning for navigation, including decomposing instruction into sub-goal, integrating commonsense knowledge relevant to navigation task resolution, identifying landmarks from observed scenes, tracking navigation progress, and adapting to exceptions with plan adjustment. Furthermore, we show that LLMs is capable of generating high-quality navigational instructions from observations and actions along a path, as well as drawing accurate top-down metric trajectory given the agent's navigation history. Despite the performance of using NavGPT to zero-shot R2R tasks still falling short of trained models, we suggest adapting multi-modality inputs for LLMs to use as visual navigation agents and applying the explicit reasoning of LLMs to benefit learning-based models.

ImageBind-LLM: Multi-modality Instruction Tuning

We present ImageBind-LLM, a multi-modality instruction tuning method of large language models (LLMs) via ImageBind. Existing works mainly focus on language and image instruction tuning, different from which, our ImageBind-LLM can respond to multi-modality conditions, including audio, 3D point clouds, video, and their embedding-space arithmetic by only image-text alignment training. During training, we adopt a learnable bind network to align the embedding space between LLaMA and ImageBind's image encoder. Then, the image features transformed by the bind network are added to word tokens of all layers in LLaMA, which progressively injects visual instructions via an attention-free and zero-initialized gating mechanism. Aided by the joint embedding of ImageBind, the simple image-text training enables our model to exhibit superior multi-modality instruction-following capabilities. During inference, the multi-modality inputs are fed into the corresponding ImageBind encoders, and processed by a proposed visual cache model for further cross-modal embedding enhancement. The training-free cache model retrieves from three million image features extracted by ImageBind, which effectively mitigates the training-inference modality discrepancy. Notably, with our approach, ImageBind-LLM can respond to instructions of diverse modalities and demonstrate significant language generation quality. Code is released at https://github.com/OpenGVLab/LLaMA-Adapter.

VisRAG: Vision-based Retrieval-augmented Generation on Multi-modality Documents

Retrieval-augmented generation (RAG) is an effective technique that enables large language models (LLMs) to utilize external knowledge sources for generation. However, current RAG systems are solely based on text, rendering it impossible to utilize vision information like layout and images that play crucial roles in real-world multi-modality documents. In this paper, we introduce VisRAG, which tackles this issue by establishing a vision-language model (VLM)-based RAG pipeline. In this pipeline, instead of first parsing the document to obtain text, the document is directly embedded using a VLM as an image and then retrieved to enhance the generation of a VLM. Compared to traditional text-based RAG, VisRAG maximizes the retention and utilization of the data information in the original documents, eliminating the information loss introduced during the parsing process. We collect both open-source and synthetic data to train the retriever in VisRAG and explore a variety of generation methods. Experiments demonstrate that VisRAG outperforms traditional RAG in both the retrieval and generation stages, achieving a 25--39\% end-to-end performance gain over traditional text-based RAG pipeline. Further analysis reveals that VisRAG is effective in utilizing training data and demonstrates strong generalization capability, positioning it as a promising solution for RAG on multi-modality documents. Our code and data are available at https://github.com/openbmb/visrag .

GraphextQA: A Benchmark for Evaluating Graph-Enhanced Large Language Models

While multi-modal models have successfully integrated information from image, video, and audio modalities, integrating graph modality into large language models (LLMs) remains unexplored. This discrepancy largely stems from the inherent divergence between structured graph data and unstructured text data. Incorporating graph knowledge provides a reliable source of information, enabling potential solutions to address issues in text generation, e.g., hallucination, and lack of domain knowledge. To evaluate the integration of graph knowledge into language models, a dedicated dataset is needed. However, there is currently no benchmark dataset specifically designed for multimodal graph-language models. To address this gap, we propose GraphextQA, a question answering dataset with paired subgraphs, retrieved from Wikidata, to facilitate the evaluation and future development of graph-language models. Additionally, we introduce a baseline model called CrossGNN, which conditions answer generation on the paired graphs by cross-attending question-aware graph features at decoding. The proposed dataset is designed to evaluate graph-language models' ability to understand graphs and make use of it for answer generation. We perform experiments with language-only models and the proposed graph-language model to validate the usefulness of the paired graphs and to demonstrate the difficulty of the task.

LVLM-eHub: A Comprehensive Evaluation Benchmark for Large Vision-Language Models

Large Vision-Language Models (LVLMs) have recently played a dominant role in multimodal vision-language learning. Despite the great success, it lacks a holistic evaluation of their efficacy. This paper presents a comprehensive evaluation of publicly available large multimodal models by building a LVLM evaluation Hub (LVLM-eHub). Our LVLM-eHub consists of 8 representative LVLMs such as InstructBLIP and MiniGPT-4, which are thoroughly evaluated by a quantitative capability evaluation and an online arena platform. The former evaluates 6 categories of multimodal capabilities of LVLMs such as visual question answering and embodied artificial intelligence on 47 standard text-related visual benchmarks, while the latter provides the user-level evaluation of LVLMs in an open-world question-answering scenario. The study reveals several innovative findings. First, instruction-tuned LVLM with massive in-domain data such as InstructBLIP heavily overfits many existing tasks, generalizing poorly in the open-world scenario. Second, instruction-tuned LVLM with moderate instruction-following data may result in object hallucination issues (i.e., generate objects that are inconsistent with target images in the descriptions). It either makes the current evaluation metric such as CIDEr for image captioning ineffective or generates wrong answers. Third, employing a multi-turn reasoning evaluation framework can mitigate the issue of object hallucination, shedding light on developing an effective pipeline for LVLM evaluation. The findings provide a foundational framework for the conception and assessment of innovative strategies aimed at enhancing zero-shot multimodal techniques. Our LVLM-eHub will be available at https://github.com/OpenGVLab/Multi-Modality-Arena

MMTrail: A Multimodal Trailer Video Dataset with Language and Music Descriptions

Massive multi-modality datasets play a significant role in facilitating the success of large video-language models. However, current video-language datasets primarily provide text descriptions for visual frames, considering audio to be weakly related information. They usually overlook exploring the potential of inherent audio-visual correlation, leading to monotonous annotation within each modality instead of comprehensive and precise descriptions. Such ignorance results in the difficulty of multiple cross-modality studies. To fulfill this gap, we present MMTrail, a large-scale multi-modality video-language dataset incorporating more than 20M trailer clips with visual captions, and 2M high-quality clips with multimodal captions. Trailers preview full-length video works and integrate context, visual frames, and background music. In particular, the trailer has two main advantages: (1) the topics are diverse, and the content characters are of various types, e.g., film, news, and gaming. (2) the corresponding background music is custom-designed, making it more coherent with the visual context. Upon these insights, we propose a systemic captioning framework, achieving various modality annotations with more than 27.1k hours of trailer videos. Here, to ensure the caption retains music perspective while preserving the authority of visual context, we leverage the advanced LLM to merge all annotations adaptively. In this fashion, our MMtrail dataset potentially paves the path for fine-grained large multimodal-language model training. In experiments, we provide evaluation metrics and benchmark results on our dataset, demonstrating the high quality of our annotation and its effectiveness for model training.

AIM: Let Any Multi-modal Large Language Models Embrace Efficient In-Context Learning

In-context learning (ICL) facilitates Large Language Models (LLMs) exhibiting emergent ability on downstream tasks without updating billions of parameters. However, in the area of multi-modal Large Language Models (MLLMs), two problems hinder the application of multi-modal ICL: (1) Most primary MLLMs are only trained on single-image datasets, making them unable to read multi-modal demonstrations. (2) With the demonstrations increasing, thousands of visual tokens highly challenge hardware and degrade ICL performance. During preliminary explorations, we discovered that the inner LLM tends to focus more on the linguistic modality within multi-modal demonstrations to generate responses. Therefore, we propose a general and light-weighted framework AIM to tackle the mentioned problems through Aggregating Image information of Multimodal demonstrations to the dense latent space of the corresponding linguistic part. Specifically, AIM first uses the frozen backbone MLLM to read each image-text demonstration and extracts the vector representations on top of the text. These vectors naturally fuse the information of the image-text pair, and AIM transforms them into fused virtual tokens acceptable for the inner LLM via a trainable projection layer. Ultimately, these fused tokens function as variants of multi-modal demonstrations, fed into the MLLM to direct its response to the current query as usual. Because these fused tokens stem from the textual component of the image-text pair, a multi-modal demonstration is nearly reduced to a pure textual demonstration, thus seamlessly applying to any MLLMs. With its de facto MLLM frozen, AIM is parameter-efficient and we train it on public multi-modal web corpora which have nothing to do with downstream test tasks.

OpenMEDLab: An Open-source Platform for Multi-modality Foundation Models in Medicine

The emerging trend of advancing generalist artificial intelligence, such as GPTv4 and Gemini, has reshaped the landscape of research (academia and industry) in machine learning and many other research areas. However, domain-specific applications of such foundation models (e.g., in medicine) remain untouched or often at their very early stages. It will require an individual set of transfer learning and model adaptation techniques by further expanding and injecting these models with domain knowledge and data. The development of such technologies could be largely accelerated if the bundle of data, algorithms, and pre-trained foundation models were gathered together and open-sourced in an organized manner. In this work, we present OpenMEDLab, an open-source platform for multi-modality foundation models. It encapsulates not only solutions of pioneering attempts in prompting and fine-tuning large language and vision models for frontline clinical and bioinformatic applications but also building domain-specific foundation models with large-scale multi-modal medical data. Importantly, it opens access to a group of pre-trained foundation models for various medical image modalities, clinical text, protein engineering, etc. Inspiring and competitive results are also demonstrated for each collected approach and model in a variety of benchmarks for downstream tasks. We welcome researchers in the field of medical artificial intelligence to continuously contribute cutting-edge methods and models to OpenMEDLab, which can be accessed via https://github.com/openmedlab.

The Synergy between Data and Multi-Modal Large Language Models: A Survey from Co-Development Perspective

The rapid development of large language models (LLMs) has been witnessed in recent years. Based on the powerful LLMs, multi-modal LLMs (MLLMs) extend the modality from text to a broader spectrum of domains, attracting widespread attention due to the broader range of application scenarios. As LLMs and MLLMs rely on vast amounts of model parameters and data to achieve emergent capabilities, the importance of data is receiving increasingly widespread attention and recognition. Tracing and analyzing recent data-oriented works for MLLMs, we find that the development of models and data is not two separate paths but rather interconnected. On the one hand, vaster and higher-quality data contribute to better performance of MLLMs, on the other hand, MLLMs can facilitate the development of data. The co-development of multi-modal data and MLLMs requires a clear view of 1) at which development stage of MLLMs can specific data-centric approaches be employed to enhance which capabilities, and 2) by utilizing which capabilities and acting as which roles can models contribute to multi-modal data. To promote the data-model co-development for MLLM community, we systematically review existing works related to MLLMs from the data-model co-development perspective. A regularly maintained project associated with this survey is accessible at https://github.com/modelscope/data-juicer/blob/main/docs/awesome_llm_data.md.

SwitchGPT: Adapting Large Language Models for Non-Text Outputs

Large Language Models (LLMs), primarily trained on text-based datasets, exhibit exceptional proficiencies in understanding and executing complex linguistic instructions via text outputs. However, they falter when requests to generate non-text ones. Concurrently, modality conversion models, such as text-to-image, despite generating high-quality images, suffer from a lack of extensive textual pretraining. As a result, these models are only capable of accommodating specific image descriptions rather than comprehending more complex instructions. To bridge this gap, we propose a novel approach, \methodname, from a modality conversion perspective that evolves a text-based LLM into a multi-modal one. We specifically employ a minimal dataset to instruct LLMs to recognize the intended output modality as directed by the instructions. Consequently, the adapted LLM can effectively summon various off-the-shelf modality conversion models from the model zoos to generate non-text responses. This circumvents the necessity for complicated pretraining that typically requires immense quantities of paired multi-modal data, while simultaneously inheriting the extensive knowledge of LLMs and the ability of high-quality generative models. To evaluate and compare the adapted multi-modal LLM with its traditional counterparts, we have constructed a multi-modal instruction benchmark that solicits diverse modality outputs. The experiment results reveal that, with minimal training, LLMs can be conveniently adapted to comprehend requests for non-text responses, thus achieving higher flexibility in multi-modal scenarios. Code and data will be made available at https://github.com/xinke-wang/SwitchGPT.

Large Language Models Are Strong Audio-Visual Speech Recognition Learners

Multimodal large language models (MLLMs) have recently become a focal point of research due to their formidable multimodal understanding capabilities. For example, in the audio and speech domains, an LLM can be equipped with (automatic) speech recognition (ASR) abilities by just concatenating the audio tokens, computed with an audio encoder, and the text tokens to achieve state-of-the-art results. On the contrary, tasks like visual and audio-visual speech recognition (VSR/AVSR), which also exploit noise-invariant lip movement information, have received little or no attention. To bridge this gap, we propose Llama-AVSR, a new MLLM with strong audio-visual speech recognition capabilities. It leverages pre-trained audio and video encoders to produce modality-specific tokens which, together with the text tokens, are processed by a pre-trained LLM (e.g., Llama3.1-8B) to yield the resulting response in an auto-regressive fashion. Llama-AVSR requires a small number of trainable parameters as only modality-specific projectors and LoRA modules are trained whereas the multi-modal encoders and LLM are kept frozen. We evaluate our proposed approach on LRS3, the largest public AVSR benchmark, and we achieve new state-of-the-art results for the tasks of ASR and AVSR with a WER of 0.81% and 0.77%, respectively. To bolster our results, we investigate the key factors that underpin the effectiveness of Llama-AVSR: the choice of the pre-trained encoders and LLM, the efficient integration of LoRA modules, and the optimal performance-efficiency trade-off obtained via modality-aware compression rates.

Mixture-of-Transformers: A Sparse and Scalable Architecture for Multi-Modal Foundation Models

The development of large language models (LLMs) has expanded to multi-modal systems capable of processing text, images, and speech within a unified framework. Training these models demands significantly larger datasets and computational resources compared to text-only LLMs. To address the scaling challenges, we introduce Mixture-of-Transformers (MoT), a sparse multi-modal transformer architecture that significantly reduces pretraining computational costs. MoT decouples non-embedding parameters of the model by modality -- including feed-forward networks, attention matrices, and layer normalization -- enabling modality-specific processing with global self-attention over the full input sequence. We evaluate MoT across multiple settings and model scales. In the Chameleon 7B setting (autoregressive text-and-image generation), MoT matches the dense baseline's performance using only 55.8\% of the FLOPs. When extended to include speech, MoT reaches speech performance comparable to the dense baseline with only 37.2\% of the FLOPs. In the Transfusion setting, where text and image are trained with different objectives, a 7B MoT model matches the image modality performance of the dense baseline with one third of the FLOPs, and a 760M MoT model outperforms a 1.4B dense baseline across key image generation metrics. System profiling further highlights MoT's practical benefits, achieving dense baseline image quality in 47.2\% of the wall-clock time and text quality in 75.6\% of the wall-clock time (measured on AWS p4de.24xlarge instances with NVIDIA A100 GPUs).

DDCoT: Duty-Distinct Chain-of-Thought Prompting for Multimodal Reasoning in Language Models

A long-standing goal of AI systems is to perform complex multimodal reasoning like humans. Recently, large language models (LLMs) have made remarkable strides in such multi-step reasoning on the language modality solely by leveraging the chain of thought (CoT) to mimic human thinking. However, the transfer of these advancements to multimodal contexts introduces heightened challenges, including but not limited to the impractical need for labor-intensive annotation and the limitations in terms of flexibility, generalizability, and explainability. To evoke CoT reasoning in multimodality, this work first conducts an in-depth analysis of these challenges posed by multimodality and presents two key insights: "keeping critical thinking" and "letting everyone do their jobs" in multimodal CoT reasoning. Furthermore, this study proposes a novel DDCoT prompting that maintains a critical attitude through negative-space prompting and incorporates multimodality into reasoning by first dividing the reasoning responsibility of LLMs into reasoning and recognition and then integrating the visual recognition capability of visual models into the joint reasoning process. The rationales generated by DDCoT not only improve the reasoning abilities of both large and small language models in zero-shot prompting and fine-tuning learning, significantly outperforming state-of-the-art methods but also exhibit impressive generalizability and explainability.

Marten: Visual Question Answering with Mask Generation for Multi-modal Document Understanding

Multi-modal Large Language Models (MLLMs) have introduced a novel dimension to document understanding, i.e., they endow large language models with visual comprehension capabilities; however, how to design a suitable image-text pre-training task for bridging the visual and language modality in document-level MLLMs remains underexplored. In this study, we introduce a novel visual-language alignment method that casts the key issue as a Visual Question Answering with Mask generation (VQAMask) task, optimizing two tasks simultaneously: VQA-based text parsing and mask generation. The former allows the model to implicitly align images and text at the semantic level. The latter introduces an additional mask generator (discarded during inference) to explicitly ensure alignment between visual texts within images and their corresponding image regions at a spatially-aware level. Together, they can prevent model hallucinations when parsing visual text and effectively promote spatially-aware feature representation learning. To support the proposed VQAMask task, we construct a comprehensive image-mask generation pipeline and provide a large-scale dataset with 6M data (MTMask6M). Subsequently, we demonstrate that introducing the proposed mask generation task yields competitive document-level understanding performance. Leveraging the proposed VQAMask, we introduce Marten, a training-efficient MLLM tailored for document-level understanding. Extensive experiments show that our Marten consistently achieves significant improvements among 8B-MLLMs in document-centric tasks. Code and datasets are available at https://github.com/PriNing/Marten.

Exploiting Mixture-of-Experts Redundancy Unlocks Multimodal Generative Abilities

In this work, we undertake the challenge of augmenting the existing generative capabilities of pre-trained text-only large language models (LLMs) with multi-modal generation capability while satisfying two core constraints: C1 preserving the preservation of original language generative capabilities with negligible performance degradation, and C2 adhering to a small parameter budget to learn the new modality, ensuring scalability and efficiency. In contrast to current approaches that add dedicated modules, thereby significantly increasing the parameter count, we propose a method that leverages the underutilized capacity inherent in deep models. Specifically, we exploit the parameter redundancy within Mixture-of-Experts (MoEs) as a source of additional capacity for learning a new modality, enabling better parameter efficiency (C1). Moreover, we preserve the original language generation capabilities by applying low-rank adaptation exclusively to the tokens of the new modality (C2). Furthermore, we introduce a novel parameter initialization scheme based on the Gromov-Wasserstein distance to improve convergence and training stability. Through an extensive analysis of the routing mechanism, we uncover the emergence of modality-specific pathways and decreased redundancy within the experts that can efficiently unlock multi-modal generative capabilities. Overall, our method can be seamlessly applied to a wide range of contemporary LLMs, providing a new pathway for transitioning from uni-modal to multi-modal architectures.

Deciphering Cross-Modal Alignment in Large Vision-Language Models with Modality Integration Rate

We present the Modality Integration Rate (MIR), an effective, robust, and generalized metric to indicate the multi-modal pre-training quality of Large Vision Language Models (LVLMs). Large-scale pre-training plays a critical role in building capable LVLMs, while evaluating its training quality without the costly supervised fine-tuning stage is under-explored. Loss, perplexity, and in-context evaluation results are commonly used pre-training metrics for Large Language Models (LLMs), while we observed that these metrics are less indicative when aligning a well-trained LLM with a new modality. Due to the lack of proper metrics, the research of LVLMs in the critical pre-training stage is hindered greatly, including the training data choice, efficient module design, etc. In this paper, we propose evaluating the pre-training quality from the inter-modal distribution distance perspective and present MIR, the Modality Integration Rate, which is 1) Effective to represent the pre-training quality and show a positive relation with the benchmark performance after supervised fine-tuning. 2) Robust toward different training/evaluation data. 3) Generalize across training configurations and architecture choices. We conduct a series of pre-training experiments to explore the effectiveness of MIR and observe satisfactory results that MIR is indicative about training data selection, training strategy schedule, and model architecture design to get better pre-training results. We hope MIR could be a helpful metric for building capable LVLMs and inspire the following research about modality alignment in different areas. Our code is at: https://github.com/shikiw/Modality-Integration-Rate.

Towards Unified Multi-Modal Personalization: Large Vision-Language Models for Generative Recommendation and Beyond

Developing a universal model that can effectively harness heterogeneous resources and respond to a wide range of personalized needs has been a longstanding community aspiration. Our daily choices, especially in domains like fashion and retail, are substantially shaped by multi-modal data, such as pictures and textual descriptions. These modalities not only offer intuitive guidance but also cater to personalized user preferences. However, the predominant personalization approaches mainly focus on the ID or text-based recommendation problem, failing to comprehend the information spanning various tasks or modalities. In this paper, our goal is to establish a Unified paradigm for Multi-modal Personalization systems (UniMP), which effectively leverages multi-modal data while eliminating the complexities associated with task- and modality-specific customization. We argue that the advancements in foundational generative modeling have provided the flexibility and effectiveness necessary to achieve the objective. In light of this, we develop a generic and extensible personalization generative framework, that can handle a wide range of personalized needs including item recommendation, product search, preference prediction, explanation generation, and further user-guided image generation. Our methodology enhances the capabilities of foundational language models for personalized tasks by seamlessly ingesting interleaved cross-modal user history information, ensuring a more precise and customized experience for users. To train and evaluate the proposed multi-modal personalized tasks, we also introduce a novel and comprehensive benchmark covering a variety of user requirements. Our experiments on the real-world benchmark showcase the model's potential, outperforming competitive methods specialized for each task.

SPARK: Multi-Vision Sensor Perception and Reasoning Benchmark for Large-scale Vision-Language Models

Large-scale Vision-Language Models (LVLMs) have significantly advanced with text-aligned vision inputs. They have made remarkable progress in computer vision tasks by aligning text modality with vision inputs. There are also endeavors to incorporate multi-vision sensors beyond RGB, including thermal, depth, and medical X-ray images. However, we observe that current LVLMs view images taken from multi-vision sensors as if they were in the same RGB domain without considering the physical characteristics of multi-vision sensors. They fail to convey the fundamental multi-vision sensor information from the dataset and the corresponding contextual knowledge properly. Consequently, alignment between the information from the actual physical environment and the text is not achieved correctly, making it difficult to answer complex sensor-related questions that consider the physical environment. In this paper, we aim to establish a multi-vision Sensor Perception And Reasoning benchmarK called SPARK that can reduce the fundamental multi-vision sensor information gap between images and multi-vision sensors. We generated 6,248 vision-language test samples automatically to investigate multi-vision sensory perception and multi-vision sensory reasoning on physical sensor knowledge proficiency across different formats, covering different types of sensor-related questions. We utilized these samples to assess ten leading LVLMs. The results showed that most models displayed deficiencies in multi-vision sensory reasoning to varying extents. Codes and data are available at https://github.com/top-yun/SPARK

CoTMR: Chain-of-Thought Multi-Scale Reasoning for Training-Free Zero-Shot Composed Image Retrieval

Zero-Shot Composed Image Retrieval (ZS-CIR) aims to retrieve target images by integrating information from a composed query (reference image and modification text) without training samples. Existing methods primarily combine caption models and large language models (LLMs) to generate target captions based on composed queries but face various issues such as incompatibility, visual information loss, and insufficient reasoning. In this work, we propose CoTMR, a training-free framework crafted for ZS-CIR with novel Chain-of-thought (CoT) and Multi-scale Reasoning. Instead of relying on caption models for modality transformation, CoTMR employs the Large Vision-Language Model (LVLM) to achieve unified understanding and reasoning for composed queries. To enhance the reasoning reliability, we devise CIRCoT, which guides the LVLM through a step-by-step inference process using predefined subtasks. Considering that existing approaches focus solely on global-level reasoning, our CoTMR incorporates multi-scale reasoning to achieve more comprehensive inference via fine-grained predictions about the presence or absence of key elements at the object scale. Further, we design a Multi-Grained Scoring (MGS) mechanism, which integrates CLIP similarity scores of the above reasoning outputs with candidate images to realize precise retrieval. Extensive experiments demonstrate that our CoTMR not only drastically outperforms previous methods across four prominent benchmarks but also offers appealing interpretability.

DreamLIP: Language-Image Pre-training with Long Captions

Language-image pre-training largely relies on how precisely and thoroughly a text describes its paired image. In practice, however, the contents of an image can be so rich that well describing them requires lengthy captions (e.g., with 10 sentences), which are usually missing in existing datasets. Consequently, there are currently no clear evidences on whether and how language-image pre-training could benefit from long captions. To figure this out, we first re-caption 30M images with detailed descriptions using a pre-trained Multi-modality Large Language Model (MLLM), and then study the usage of the resulting captions under a contrastive learning framework. We observe that, each sentence within a long caption is very likely to describe the image partially (e.g., an object). Motivated by this, we propose to dynamically sample sub-captions from the text label to construct multiple positive pairs, and introduce a grouping loss to match the embeddings of each sub-caption with its corresponding local image patches in a self-supervised manner. Experimental results on a wide rage of downstream tasks demonstrate the consistent superiority of our method, termed DreamLIP, over previous alternatives, highlighting its fine-grained representational capacity. It is noteworthy that, on the tasks of image-text retrieval and semantic segmentation, our model trained with 30M image-text pairs achieves on par or even better performance than CLIP trained with 400M pairs. Project page is available at https://zyf0619sjtu.github.io/dream-lip.

IPO: Iterative Preference Optimization for Text-to-Video Generation

Video foundation models have achieved significant advancement with the help of network upgrade as well as model scale-up. However, they are still hard to meet requirements of applications due to unsatisfied generation quality. To solve this problem, we propose to align video foundation models with human preferences from the perspective of post-training in this paper. Consequently, we introduce an Iterative Preference Optimization strategy to enhance generated video quality by incorporating human feedback. Specifically, IPO exploits a critic model to justify video generations for pairwise ranking as in Direct Preference Optimization or point-wise scoring as in Kahneman-Tversky Optimization. Given this, IPO optimizes video foundation models with guidance of signals from preference feedback, which helps improve generated video quality in subject consistency, motion smoothness and aesthetic quality, etc. In addition, IPO incorporates the critic model with the multi-modality large language model, which enables it to automatically assign preference labels without need of retraining or relabeling. In this way, IPO can efficiently perform multi-round preference optimization in an iterative manner, without the need of tediously manual labeling. Comprehensive experiments demonstrate that the proposed IPO can effectively improve the video generation quality of a pretrained model and help a model with only 2B parameters surpass the one with 5B parameters. Besides, IPO achieves new state-of-the-art performance on VBench benchmark.

Improving Multi-modal Large Language Model through Boosting Vision Capabilities

We focus on improving the visual understanding capability for boosting the vision-language models. We propose Arcana, a multiModal language model, which introduces two crucial techniques. First, we present Multimodal LoRA (MM-LoRA), a module designed to enhance the decoder. Unlike traditional language-driven decoders, MM-LoRA consists of two parallel LoRAs -- one for vision and one for language -- each with its own parameters. This disentangled parameters design allows for more specialized learning in each modality and better integration of multimodal information. Second, we introduce the Query Ladder adapter (QLadder) to improve the visual encoder. QLadder employs a learnable ``ladder'' structure to deeply aggregates the intermediate representations from the frozen pretrained visual encoder (e.g., CLIP image encoder). This enables the model to learn new and informative visual features, as well as remaining the powerful capabilities of the pretrained visual encoder. These techniques collectively enhance Arcana's visual perception power, enabling it to leverage improved visual information for more accurate and contextually relevant outputs across various multimodal scenarios. Extensive experiments and ablation studies demonstrate the effectiveness and generalization capability of our Arcana. The code and re-annotated data are available at https://arcana-project-page.github.io.

Continuous Speech Tokens Makes LLMs Robust Multi-Modality Learners

Recent advances in GPT-4o like multi-modality models have demonstrated remarkable progress for direct speech-to-speech conversation, with real-time speech interaction experience and strong speech understanding ability. However, current research focuses on discrete speech tokens to align with discrete text tokens for language modelling, which depends on an audio codec with residual connections or independent group tokens, such a codec usually leverages large scale and diverse datasets training to ensure that the discrete speech codes have good representation for varied domain, noise, style data reconstruction as well as a well-designed codec quantizer and encoder-decoder architecture for discrete token language modelling. This paper introduces Flow-Omni, a continuous speech token based GPT-4o like model, capable of real-time speech interaction and low streaming latency. Specifically, first, instead of cross-entropy loss only, we combine flow matching loss with a pretrained autoregressive LLM and a small MLP network to predict the probability distribution of the continuous-valued speech tokens from speech prompt. second, we incorporated the continuous speech tokens to Flow-Omni multi-modality training, thereby achieving robust speech-to-speech performance with discrete text tokens and continuous speech tokens together. Experiments demonstrate that, compared to discrete text and speech multi-modality training and its variants, the continuous speech tokens mitigate robustness issues by avoiding the inherent flaws of discrete speech code's representation loss for LLM.

Embodied Multi-Modal Agent trained by an LLM from a Parallel TextWorld

While large language models (LLMs) excel in a simulated world of texts, they struggle to interact with the more realistic world without perceptions of other modalities such as visual or audio signals. Although vision-language models (VLMs) integrate LLM modules (1) aligned with static image features, and (2) may possess prior knowledge of world dynamics (as demonstrated in the text world), they have not been trained in an embodied visual world and thus cannot align with its dynamics. On the other hand, training an embodied agent in a noisy visual world without expert guidance is often challenging and inefficient. In this paper, we train a VLM agent living in a visual world using an LLM agent excelling in a parallel text world (but inapplicable to the visual world). Specifically, we distill LLM's reflection outcomes (improved actions by analyzing mistakes) in a text world's tasks to finetune the VLM on the same tasks of the visual world, resulting in an Embodied Multi-Modal Agent (EMMA) quickly adapting to the visual world dynamics. Such cross-modality imitation learning between the two parallel worlds enables EMMA to generalize to a broad scope of new tasks without any further guidance from the LLM expert. Extensive evaluations on the ALFWorld benchmark highlight EMMA's superior performance to SOTA VLM-based agents across diverse tasks, e.g., 20%-70% improvement in the success rate.

Point-PEFT: Parameter-Efficient Fine-Tuning for 3D Pre-trained Models

The popularity of pre-trained large models has revolutionized downstream tasks across diverse fields, such as language, vision, and multi-modality. To minimize the adaption cost for downstream tasks, many Parameter-Efficient Fine-Tuning (PEFT) techniques are proposed for language and 2D image pre-trained models. However, the specialized PEFT method for 3D pre-trained models is still under-explored. To this end, we introduce Point-PEFT, a novel framework for adapting point cloud pre-trained models with minimal learnable parameters. Specifically, for a pre-trained 3D model, we freeze most of its parameters, and only tune the newly added PEFT modules on downstream tasks, which consist of a Point-prior Prompt and a Geometry-aware Adapter. The Point-prior Prompt adopts a set of learnable prompt tokens, for which we propose to construct a memory bank with domain-specific knowledge, and utilize a parameter-free attention to enhance the prompt tokens. The Geometry-aware Adapter aims to aggregate point cloud features within spatial neighborhoods to capture fine-grained geometric information through local interactions. Extensive experiments indicate that our Point-PEFT can achieve better performance than the full fine-tuning on various downstream tasks, while using only 5% of the trainable parameters, demonstrating the efficiency and effectiveness of our approach. Code is released at https://github.com/Ivan-Tang-3D/Point-PEFT.

Making Large Language Models Better Planners with Reasoning-Decision Alignment

Data-driven approaches for autonomous driving (AD) have been widely adopted in the past decade but are confronted with dataset bias and uninterpretability. Inspired by the knowledge-driven nature of human driving, recent approaches explore the potential of large language models (LLMs) to improve understanding and decision-making in traffic scenarios. They find that the pretrain-finetune paradigm of LLMs on downstream data with the Chain-of-Thought (CoT) reasoning process can enhance explainability and scene understanding. However, such a popular strategy proves to suffer from the notorious problems of misalignment between the crafted CoTs against the consequent decision-making, which remains untouched by previous LLM-based AD methods. To address this problem, we motivate an end-to-end decision-making model based on multimodality-augmented LLM, which simultaneously executes CoT reasoning and carries out planning results. Furthermore, we propose a reasoning-decision alignment constraint between the paired CoTs and planning results, imposing the correspondence between reasoning and decision-making. Moreover, we redesign the CoTs to enable the model to comprehend complex scenarios and enhance decision-making performance. We dub our proposed large language planners with reasoning-decision alignment as RDA-Driver. Experimental evaluations on the nuScenes and DriveLM-nuScenes benchmarks demonstrate the effectiveness of our RDA-Driver in enhancing the performance of end-to-end AD systems. Specifically, our RDA-Driver achieves state-of-the-art planning performance on the nuScenes dataset with 0.80 L2 error and 0.32 collision rate, and also achieves leading results on challenging DriveLM-nuScenes benchmarks with 0.82 L2 error and 0.38 collision rate.

Progress and Prospects in 3D Generative AI: A Technical Overview including 3D human

While AI-generated text and 2D images continue to expand its territory, 3D generation has gradually emerged as a trend that cannot be ignored. Since the year 2023 an abundant amount of research papers has emerged in the domain of 3D generation. This growth encompasses not just the creation of 3D objects, but also the rapid development of 3D character and motion generation. Several key factors contribute to this progress. The enhanced fidelity in stable diffusion, coupled with control methods that ensure multi-view consistency, and realistic human models like SMPL-X, contribute synergistically to the production of 3D models with remarkable consistency and near-realistic appearances. The advancements in neural network-based 3D storing and rendering models, such as Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS), have accelerated the efficiency and realism of neural rendered models. Furthermore, the multimodality capabilities of large language models have enabled language inputs to transcend into human motion outputs. This paper aims to provide a comprehensive overview and summary of the relevant papers published mostly during the latter half year of 2023. It will begin by discussing the AI generated object models in 3D, followed by the generated 3D human models, and finally, the generated 3D human motions, culminating in a conclusive summary and a vision for the future.

mPLUG-Owl: Modularization Empowers Large Language Models with Multimodality

Large language models (LLMs) have demonstrated impressive zero-shot abilities on a variety of open-ended tasks, while recent research has also explored the use of LLMs for multi-modal generation. In this study, we introduce mPLUG-Owl, a novel training paradigm that equips LLMs with multi-modal abilities through modularized learning of foundation LLM, a visual knowledge module, and a visual abstractor module. This approach can support multiple modalities and facilitate diverse unimodal and multimodal abilities through modality collaboration. The training paradigm of mPLUG-Owl involves a two-stage method for aligning image and text, which learns visual knowledge with the assistance of LLM while maintaining and even improving the generation abilities of LLM. In the first stage, the visual knowledge module and abstractor module are trained with a frozen LLM module to align the image and text. In the second stage, language-only and multi-modal supervised datasets are used to jointly fine-tune a low-rank adaption (LoRA) module on LLM and the abstractor module by freezing the visual knowledge module. We carefully build a visually-related instruction evaluation set OwlEval. Experimental results show that our model outperforms existing multi-modal models, demonstrating mPLUG-Owl's impressive instruction and visual understanding ability, multi-turn conversation ability, and knowledge reasoning ability. Besides, we observe some unexpected and exciting abilities such as multi-image correlation and scene text understanding, which makes it possible to leverage it for harder real scenarios, such as vision-only document comprehension. Our code, pre-trained model, instruction-tuned models, and evaluation set are available at https://github.com/X-PLUG/mPLUG-Owl. The online demo is available at https://www.modelscope.cn/studios/damo/mPLUG-Owl.

Large Language Models Illuminate a Progressive Pathway to Artificial Healthcare Assistant: A Review

With the rapid development of artificial intelligence, large language models (LLMs) have shown promising capabilities in mimicking human-level language comprehension and reasoning. This has sparked significant interest in applying LLMs to enhance various aspects of healthcare, ranging from medical education to clinical decision support. However, medicine involves multifaceted data modalities and nuanced reasoning skills, presenting challenges for integrating LLMs. This paper provides a comprehensive review on the applications and implications of LLMs in medicine. It begins by examining the fundamental applications of general-purpose and specialized LLMs, demonstrating their utilities in knowledge retrieval, research support, clinical workflow automation, and diagnostic assistance. Recognizing the inherent multimodality of medicine, the review then focuses on multimodal LLMs, investigating their ability to process diverse data types like medical imaging and EHRs to augment diagnostic accuracy. To address LLMs' limitations regarding personalization and complex clinical reasoning, the paper explores the emerging development of LLM-powered autonomous agents for healthcare. Furthermore, it summarizes the evaluation methodologies for assessing LLMs' reliability and safety in medical contexts. Overall, this review offers an extensive analysis on the transformative potential of LLMs in modern medicine. It also highlights the pivotal need for continuous optimizations and ethical oversight before these models can be effectively integrated into clinical practice. Visit https://github.com/mingze-yuan/Awesome-LLM-Healthcare for an accompanying GitHub repository containing latest papers.

Multimodal Large Language Models for Image, Text, and Speech Data Augmentation: A Survey

In the past five years, research has shifted from traditional Machine Learning (ML) and Deep Learning (DL) approaches to leveraging Large Language Models (LLMs) , including multimodality, for data augmentation to enhance generalization, and combat overfitting in training deep convolutional neural networks. However, while existing surveys predominantly focus on ML and DL techniques or limited modalities (text or images), a gap remains in addressing the latest advancements and multi-modal applications of LLM-based methods. This survey fills that gap by exploring recent literature utilizing multimodal LLMs to augment image, text, and audio data, offering a comprehensive understanding of these processes. We outlined various methods employed in the LLM-based image, text and speech augmentation, and discussed the limitations identified in current approaches. Additionally, we identified potential solutions to these limitations from the literature to enhance the efficacy of data augmentation practices using multimodal LLMs. This survey serves as a foundation for future research, aiming to refine and expand the use of multimodal LLMs in enhancing dataset quality and diversity for deep learning applications. (Surveyed Paper GitHub Repo: https://github.com/WSUAgRobotics/data-aug-multi-modal-llm. Keywords: LLM data augmentation, Grok text data augmentation, DeepSeek image data augmentation, Grok speech data augmentation, GPT audio augmentation, voice augmentation, DeepSeek for data augmentation, DeepSeek R1 text data augmentation, DeepSeek R1 image augmentation, Image Augmentation using LLM, Text Augmentation using LLM, LLM data augmentation for deep learning applications)

Benchmarking Trustworthiness of Multimodal Large Language Models: A Comprehensive Study

Despite the superior capabilities of Multimodal Large Language Models (MLLMs) across diverse tasks, they still face significant trustworthiness challenges. Yet, current literature on the assessment of trustworthy MLLMs remains limited, lacking a holistic evaluation to offer thorough insights into future improvements. In this work, we establish MultiTrust, the first comprehensive and unified benchmark on the trustworthiness of MLLMs across five primary aspects: truthfulness, safety, robustness, fairness, and privacy. Our benchmark employs a rigorous evaluation strategy that addresses both multimodal risks and cross-modal impacts, encompassing 32 diverse tasks with self-curated datasets. Extensive experiments with 21 modern MLLMs reveal some previously unexplored trustworthiness issues and risks, highlighting the complexities introduced by the multimodality and underscoring the necessity for advanced methodologies to enhance their reliability. For instance, typical proprietary models still struggle with the perception of visually confusing images and are vulnerable to multimodal jailbreaking and adversarial attacks; MLLMs are more inclined to disclose privacy in text and reveal ideological and cultural biases even when paired with irrelevant images in inference, indicating that the multimodality amplifies the internal risks from base LLMs. Additionally, we release a scalable toolbox for standardized trustworthiness research, aiming to facilitate future advancements in this important field. Code and resources are publicly available at: https://multi-trust.github.io/.

When Video Coding Meets Multimodal Large Language Models: A Unified Paradigm for Video Coding

Existing codecs are designed to eliminate intrinsic redundancies to create a compact representation for compression. However, strong external priors from Multimodal Large Language Models (MLLMs) have not been explicitly explored in video compression. Herein, we introduce a unified paradigm for Cross-Modality Video Coding (CMVC), which is a pioneering approach to explore multimodality representation and video generative models in video coding. Specifically, on the encoder side, we disentangle a video into spatial content and motion components, which are subsequently transformed into distinct modalities to achieve very compact representation by leveraging MLLMs. During decoding, previously encoded components and video generation models are leveraged to create multiple encoding-decoding modes that optimize video reconstruction quality for specific decoding requirements, including Text-Text-to-Video (TT2V) mode to ensure high-quality semantic information and Image-Text-to-Video (IT2V) mode to achieve superb perceptual consistency. In addition, we propose an efficient frame interpolation model for IT2V mode via Low-Rank Adaption (LoRA) tuning to guarantee perceptual quality, which allows the generated motion cues to behave smoothly. Experiments on benchmarks indicate that TT2V achieves effective semantic reconstruction, while IT2V exhibits competitive perceptual consistency. These results highlight potential directions for future research in video coding.

M3Exam: A Multilingual, Multimodal, Multilevel Benchmark for Examining Large Language Models

Despite the existence of various benchmarks for evaluating natural language processing models, we argue that human exams are a more suitable means of evaluating general intelligence for large language models (LLMs), as they inherently demand a much wider range of abilities such as language understanding, domain knowledge, and problem-solving skills. To this end, we introduce M3Exam, a novel benchmark sourced from real and official human exam questions for evaluating LLMs in a multilingual, multimodal, and multilevel context. M3Exam exhibits three unique characteristics: (1) multilingualism, encompassing questions from multiple countries that require strong multilingual proficiency and cultural knowledge; (2) multimodality, accounting for the multimodal nature of many exam questions to test the model's multimodal understanding capability; and (3) multilevel structure, featuring exams from three critical educational periods to comprehensively assess a model's proficiency at different levels. In total, M3Exam contains 12,317 questions in 9 diverse languages with three educational levels, where about 23\% of the questions require processing images for successful solving. We assess the performance of top-performing LLMs on M3Exam and find that current models, including GPT-4, still struggle with multilingual text, particularly in low-resource and non-Latin script languages. Multimodal LLMs also perform poorly with complex multimodal questions. We believe that M3Exam can be a valuable resource for comprehensively evaluating LLMs by examining their multilingual and multimodal abilities and tracking their development. Data and evaluation code is available at https://github.com/DAMO-NLP-SG/M3Exam.

CAD-MLLM: Unifying Multimodality-Conditioned CAD Generation With MLLM

This paper aims to design a unified Computer-Aided Design (CAD) generation system that can easily generate CAD models based on the user's inputs in the form of textual description, images, point clouds, or even a combination of them. Towards this goal, we introduce the CAD-MLLM, the first system capable of generating parametric CAD models conditioned on the multimodal input. Specifically, within the CAD-MLLM framework, we leverage the command sequences of CAD models and then employ advanced large language models (LLMs) to align the feature space across these diverse multi-modalities data and CAD models' vectorized representations. To facilitate the model training, we design a comprehensive data construction and annotation pipeline that equips each CAD model with corresponding multimodal data. Our resulting dataset, named Omni-CAD, is the first multimodal CAD dataset that contains textual description, multi-view images, points, and command sequence for each CAD model. It contains approximately 450K instances and their CAD construction sequences. To thoroughly evaluate the quality of our generated CAD models, we go beyond current evaluation metrics that focus on reconstruction quality by introducing additional metrics that assess topology quality and surface enclosure extent. Extensive experimental results demonstrate that CAD-MLLM significantly outperforms existing conditional generative methods and remains highly robust to noises and missing points. The project page and more visualizations can be found at: https://cad-mllm.github.io/

Making LLaMA SEE and Draw with SEED Tokenizer

The great success of Large Language Models (LLMs) has expanded the potential of multimodality, contributing to the gradual evolution of General Artificial Intelligence (AGI). A true AGI agent should not only possess the capability to perform predefined multi-tasks but also exhibit emergent abilities in an open-world context. However, despite the considerable advancements made by recent multimodal LLMs, they still fall short in effectively unifying comprehension and generation tasks, let alone open-world emergent abilities. We contend that the key to overcoming the present impasse lies in enabling text and images to be represented and processed interchangeably within a unified autoregressive Transformer. To this end, we introduce SEED, an elaborate image tokenizer that empowers LLMs with the ability to SEE and Draw at the same time. We identify two crucial design principles: (1) Image tokens should be independent of 2D physical patch positions and instead be produced with a 1D causal dependency, exhibiting intrinsic interdependence that aligns with the left-to-right autoregressive prediction mechanism in LLMs. (2) Image tokens should capture high-level semantics consistent with the degree of semantic abstraction in words, and be optimized for both discriminativeness and reconstruction during the tokenizer training phase. With SEED tokens, LLM is able to perform scalable multimodal autoregression under its original training recipe, i.e., next-word prediction. SEED-LLaMA is therefore produced by large-scale pretraining and instruction tuning on the interleaved textual and visual data, demonstrating impressive performance on a broad range of multimodal comprehension and generation tasks. More importantly, SEED-LLaMA has exhibited compositional emergent abilities such as multi-turn in-context multimodal generation, acting like your AI assistant.

HaloQuest: A Visual Hallucination Dataset for Advancing Multimodal Reasoning

Hallucination has been a major problem for large language models and remains a critical challenge when it comes to multimodality in which vision-language models (VLMs) have to deal with not just textual but also visual inputs. Despite rapid progress in VLMs, resources for evaluating and addressing multimodal hallucination are limited and mostly focused on evaluation. This work introduces HaloQuest, a novel visual question answering dataset that captures various aspects of multimodal hallucination such as false premises, insufficient contexts, and visual challenges. A novel idea from HaloQuest is to leverage synthetic images, apart from real ones, to enable dataset creation at scale. With over 7.7K examples spanning across a wide variety of categories, HaloQuest was designed to be both a challenging benchmark for VLMs and a fine-tuning dataset for advancing multimodal reasoning. Our experiments reveal that current models struggle with HaloQuest, with all open-source VLMs achieving below 36% accuracy. On the other hand, fine-tuning on HaloQuest significantly reduces hallucination rates while preserving performance on standard reasoning tasks. Our results discover that benchmarking with generated images is highly correlated (r=0.97) with real images. Last but not least, we propose a novel Auto-Eval mechanism that is highly correlated with human raters (r=0.99) for evaluating VLMs. In sum, this work makes concrete strides towards understanding, evaluating, and mitigating hallucination in VLMs, serving as an important step towards more reliable multimodal AI systems in the future.

Salamandra Technical Report

This work introduces Salamandra, a suite of open-source decoder-only large language models available in three different sizes: 2, 7, and 40 billion parameters. The models were trained from scratch on highly multilingual data that comprises text in 35 European languages and code. Our carefully curated corpus is made exclusively from open-access data compiled from a wide variety of sources. Along with the base models, supplementary checkpoints that were fine-tuned on public-domain instruction data are also released for chat applications. Additionally, we also share our preliminary experiments on multimodality, which serve as proof-of-concept to showcase potential applications for the Salamandra family. Our extensive evaluations on multilingual benchmarks reveal that Salamandra has strong capabilities, achieving competitive performance when compared to similarly sized open-source models. We provide comprehensive evaluation results both on standard downstream tasks as well as key aspects related to bias and safety.With this technical report, we intend to promote open science by sharing all the details behind our design choices, data curation strategy and evaluation methodology. In addition to that, we deviate from the usual practice by making our training and evaluation scripts publicly accessible. We release all models under a permissive Apache 2.0 license in order to foster future research and facilitate commercial use, thereby contributing to the open-source ecosystem of large language models.

Token Reduction Should Go Beyond Efficiency in Generative Models -- From Vision, Language to Multimodality

In Transformer architectures, tokens\textemdash discrete units derived from raw data\textemdash are formed by segmenting inputs into fixed-length chunks. Each token is then mapped to an embedding, enabling parallel attention computations while preserving the input's essential information. Due to the quadratic computational complexity of transformer self-attention mechanisms, token reduction has primarily been used as an efficiency strategy. This is especially true in single vision and language domains, where it helps balance computational costs, memory usage, and inference latency. Despite these advances, this paper argues that token reduction should transcend its traditional efficiency-oriented role in the era of large generative models. Instead, we position it as a fundamental principle in generative modeling, critically influencing both model architecture and broader applications. Specifically, we contend that across vision, language, and multimodal systems, token reduction can: (i) facilitate deeper multimodal integration and alignment, (ii) mitigate "overthinking" and hallucinations, (iii) maintain coherence over long inputs, and (iv) enhance training stability, etc. We reframe token reduction as more than an efficiency measure. By doing so, we outline promising future directions, including algorithm design, reinforcement learning-guided token reduction, token optimization for in-context learning, and broader ML and scientific domains. We highlight its potential to drive new model architectures and learning strategies that improve robustness, increase interpretability, and better align with the objectives of generative modeling.

A Review of Multi-Modal Large Language and Vision Models

Large Language Models (LLMs) have recently emerged as a focal point of research and application, driven by their unprecedented ability to understand and generate text with human-like quality. Even more recently, LLMs have been extended into multi-modal large language models (MM-LLMs) which extends their capabilities to deal with image, video and audio information, in addition to text. This opens up applications like text-to-video generation, image captioning, text-to-speech, and more and is achieved either by retro-fitting an LLM with multi-modal capabilities, or building a MM-LLM from scratch. This paper provides an extensive review of the current state of those LLMs with multi-modal capabilities as well as the very recent MM-LLMs. It covers the historical development of LLMs especially the advances enabled by transformer-based architectures like OpenAI's GPT series and Google's BERT, as well as the role of attention mechanisms in enhancing model performance. The paper includes coverage of the major and most important of the LLMs and MM-LLMs and also covers the techniques of model tuning, including fine-tuning and prompt engineering, which tailor pre-trained models to specific tasks or domains. Ethical considerations and challenges, such as data bias and model misuse, are also analysed to underscore the importance of responsible AI development and deployment. Finally, we discuss the implications of open-source versus proprietary models in AI research. Through this review, we provide insights into the transformative potential of MM-LLMs in various applications.

AIM: Adaptive Inference of Multi-Modal LLMs via Token Merging and Pruning

Large language models (LLMs) have enabled the creation of multi-modal LLMs that exhibit strong comprehension of visual data such as images and videos. However, these models usually rely on extensive visual tokens from visual encoders, leading to high computational demands, which limits their applicability in resource-constrained environments and for long-context tasks. In this work, we propose a training-free adaptive inference method for multi-modal LLMs that can accommodate a broad range of efficiency requirements with a minimum performance drop. Our method consists of a) iterative token merging based on embedding similarity before LLMs, and b) progressive token pruning within LLM layers based on multi-modal importance. With a minimalist design, our method can be applied to both video and image LLMs. Extensive experiments on diverse video and image benchmarks demonstrate that, our method substantially reduces computation load (e.g., a 7-fold reduction in FLOPs) while preserving the performance of video and image LLMs. Further, under a similar computational cost, our method outperforms the state-of-the-art methods in long video understanding (e.g., +4.6 on MLVU). Additionally, our in-depth analysis provides insights into token redundancy and LLM layer behaviors, offering guidance for future research in designing efficient multi-modal LLMs. Our code will be available at https://github.com/LaVi-Lab/AIM.

LLMs are Also Effective Embedding Models: An In-depth Overview

Large language models (LLMs) have revolutionized natural language processing by achieving state-of-the-art performance across various tasks. Recently, their effectiveness as embedding models has gained attention, marking a paradigm shift from traditional encoder-only models like ELMo and BERT to decoder-only, large-scale LLMs such as GPT, LLaMA, and Mistral. This survey provides an in-depth overview of this transition, beginning with foundational techniques before the LLM era, followed by LLM-based embedding models through two main strategies to derive embeddings from LLMs. 1) Direct prompting: We mainly discuss the prompt designs and the underlying rationale for deriving competitive embeddings. 2) Data-centric tuning: We cover extensive aspects that affect tuning an embedding model, including model architecture, training objectives, data constructions, etc. Upon the above, we also cover advanced methods, such as handling longer texts, and multilingual and cross-modal data. Furthermore, we discuss factors affecting choices of embedding models, such as performance/efficiency comparisons, dense vs sparse embeddings, pooling strategies, and scaling law. Lastly, the survey highlights the limitations and challenges in adapting LLMs for embeddings, including cross-task embedding quality, trade-offs between efficiency and accuracy, low-resource, long-context, data bias, robustness, etc. This survey serves as a valuable resource for researchers and practitioners by synthesizing current advancements, highlighting key challenges, and offering a comprehensive framework for future work aimed at enhancing the effectiveness and efficiency of LLMs as embedding models.

Generating Images with Multimodal Language Models

We propose a method to fuse frozen text-only large language models (LLMs) with pre-trained image encoder and decoder models, by mapping between their embedding spaces. Our model demonstrates a wide suite of multimodal capabilities: image retrieval, novel image generation, and multimodal dialogue. Ours is the first approach capable of conditioning on arbitrarily interleaved image and text inputs to generate coherent image (and text) outputs. To achieve strong performance on image generation, we propose an efficient mapping network to ground the LLM to an off-the-shelf text-to-image generation model. This mapping network translates hidden representations of text into the embedding space of the visual models, enabling us to leverage the strong text representations of the LLM for visual outputs. Our approach outperforms baseline generation models on tasks with longer and more complex language. In addition to novel image generation, our model is also capable of image retrieval from a prespecified dataset, and decides whether to retrieve or generate at inference time. This is done with a learnt decision module which conditions on the hidden representations of the LLM. Our model exhibits a wider range of capabilities compared to prior multimodal language models. It can process image-and-text inputs, and produce retrieved images, generated images, and generated text -- outperforming non-LLM based generation models across several text-to-image tasks that measure context dependence.

A Survey on Mixture of Experts

Large language models (LLMs) have garnered unprecedented advancements across diverse fields, ranging from natural language processing to computer vision and beyond. The prowess of LLMs is underpinned by their substantial model size, extensive and diverse datasets, and the vast computational power harnessed during training, all of which contribute to the emergent abilities of LLMs (e.g., in-context learning) that are not present in small models. Within this context, the mixture of experts (MoE) has emerged as an effective method for substantially scaling up model capacity with minimal computation overhead, gaining significant attention from academia and industry. Despite its growing prevalence, there lacks a systematic and comprehensive review of the literature on MoE. This survey seeks to bridge that gap, serving as an essential resource for researchers delving into the intricacies of MoE. We first briefly introduce the structure of the MoE layer, followed by proposing a new taxonomy of MoE. Next, we overview the core designs for various MoE models including both algorithmic and systemic aspects, alongside collections of available open-source implementations, hyperparameter configurations and empirical evaluations. Furthermore, we delineate the multifaceted applications of MoE in practice, and outline some potential directions for future research. To facilitate ongoing updates and the sharing of cutting-edge developments in MoE research, we have established a resource repository accessible at https://github.com/withinmiaov/A-Survey-on-Mixture-of-Experts.

Yi: Open Foundation Models by 01.AI

We introduce the Yi model family, a series of language and multimodal models that demonstrate strong multi-dimensional capabilities. The Yi model family is based on 6B and 34B pretrained language models, then we extend them to chat models, 200K long context models, depth-upscaled models, and vision-language models. Our base models achieve strong performance on a wide range of benchmarks like MMLU, and our finetuned chat models deliver strong human preference rate on major evaluation platforms like AlpacaEval and Chatbot Arena. Building upon our scalable super-computing infrastructure and the classical transformer architecture, we attribute the performance of Yi models primarily to its data quality resulting from our data-engineering efforts. For pretraining, we construct 3.1 trillion tokens of English and Chinese corpora using a cascaded data deduplication and quality filtering pipeline. For finetuning, we polish a small scale (less than 10K) instruction dataset over multiple iterations such that every single instance has been verified directly by our machine learning engineers. For vision-language, we combine the chat language model with a vision transformer encoder and train the model to align visual representations to the semantic space of the language model. We further extend the context length to 200K through lightweight continual pretraining and demonstrate strong needle-in-a-haystack retrieval performance. We show that extending the depth of the pretrained checkpoint through continual pretraining further improves performance. We believe that given our current results, continuing to scale up model parameters using thoroughly optimized data will lead to even stronger frontier models.

MM-Embed: Universal Multimodal Retrieval with Multimodal LLMs

State-of-the-art retrieval models typically address a straightforward search scenario, where retrieval tasks are fixed (e.g., finding a passage to answer a specific question) and only a single modality is supported for both queries and retrieved results. This paper introduces techniques for advancing information retrieval with multimodal large language models (MLLMs), enabling a broader search scenario, termed universal multimodal retrieval, where multiple modalities and diverse retrieval tasks are accommodated. To this end, we first study fine-tuning an MLLM as a bi-encoder retriever on 10 datasets with 16 retrieval tasks. Our empirical results show that the fine-tuned MLLM retriever is capable of understanding challenging queries, composed of both text and image, but underperforms a smaller CLIP retriever in cross-modal retrieval tasks due to modality bias from MLLMs. To address the issue, we propose modality-aware hard negative mining to mitigate the modality bias exhibited by MLLM retrievers. Second, we propose to continually fine-tune the universal multimodal retriever to enhance its text retrieval capability while maintaining multimodal retrieval capability. As a result, our model, MM-Embed, achieves state-of-the-art performance on the multimodal retrieval benchmark M-BEIR, which spans multiple domains and tasks, while also surpassing the state-of-the-art text retrieval model, NV-Embed-v1, on MTEB retrieval benchmark. Finally, we explore to prompt the off-the-shelf MLLMs as the zero-shot rerankers to refine the ranking of the candidates from the multimodal retriever. We find that through prompt-and-reranking, MLLMs can further improve multimodal retrieval when the user queries (e.g., text-image composed queries) are more complex and challenging to understand. These findings also pave the way to advance universal multimodal retrieval in the future.

MMTEB: Massive Multilingual Text Embedding Benchmark

Text embeddings are typically evaluated on a limited set of tasks, which are constrained by language, domain, and task diversity. To address these limitations and provide a more comprehensive evaluation, we introduce the Massive Multilingual Text Embedding Benchmark (MMTEB) - a large-scale, community-driven expansion of MTEB, covering over 500 quality-controlled evaluation tasks across 250+ languages. MMTEB includes a diverse set of challenging, novel tasks such as instruction following, long-document retrieval, and code retrieval, representing the largest multilingual collection of evaluation tasks for embedding models to date. Using this collection, we develop several highly multilingual benchmarks, which we use to evaluate a representative set of models. We find that while large language models (LLMs) with billions of parameters can achieve state-of-the-art performance on certain language subsets and task categories, the best-performing publicly available model is multilingual-e5-large-instruct with only 560 million parameters. To facilitate accessibility and reduce computational cost, we introduce a novel downsampling method based on inter-task correlation, ensuring a diverse selection while preserving relative model rankings. Furthermore, we optimize tasks such as retrieval by sampling hard negatives, creating smaller but effective splits. These optimizations allow us to introduce benchmarks that drastically reduce computational demands. For instance, our newly introduced zero-shot English benchmark maintains a ranking order similar to the full-scale version but at a fraction of the computational cost.

SPHINX: The Joint Mixing of Weights, Tasks, and Visual Embeddings for Multi-modal Large Language Models

We present SPHINX, a versatile multi-modal large language model (MLLM) with a joint mixing of model weights, tuning tasks, and visual embeddings. First, for stronger vision-language alignment, we unfreeze the large language model (LLM) during pre-training, and introduce a weight mix strategy between LLMs trained by real-world and synthetic data. By directly integrating the weights from two domains, the mixed LLM can efficiently incorporate diverse semantics with favorable robustness. Then, to enable multi-purpose capabilities, we mix a variety of tasks for joint visual instruction tuning, and design task-specific instructions to avoid inter-task conflict. In addition to the basic visual question answering, we include more challenging tasks such as region-level understanding, caption grounding, document layout detection, and human pose estimation, contributing to mutual enhancement over different scenarios. Additionally, we propose to extract comprehensive visual embeddings from various network architectures, pre-training paradigms, and information granularity, providing language models with more robust image representations. Based on our proposed joint mixing, SPHINX exhibits superior multi-modal understanding capabilities on a wide range of applications. On top of this, we further propose an efficient strategy aiming to better capture fine-grained appearances of high-resolution images. With a mixing of different scales and high-resolution sub-images, SPHINX attains exceptional visual parsing and reasoning performance on existing evaluation benchmarks. We hope our work may cast a light on the exploration of joint mixing in future MLLM research. Code is released at https://github.com/Alpha-VLLM/LLaMA2-Accessory.

Aligning Multimodal LLM with Human Preference: A Survey

Large language models (LLMs) can handle a wide variety of general tasks with simple prompts, without the need for task-specific training. Multimodal Large Language Models (MLLMs), built upon LLMs, have demonstrated impressive potential in tackling complex tasks involving visual, auditory, and textual data. However, critical issues related to truthfulness, safety, o1-like reasoning, and alignment with human preference remain insufficiently addressed. This gap has spurred the emergence of various alignment algorithms, each targeting different application scenarios and optimization goals. Recent studies have shown that alignment algorithms are a powerful approach to resolving the aforementioned challenges. In this paper, we aim to provide a comprehensive and systematic review of alignment algorithms for MLLMs. Specifically, we explore four key aspects: (1) the application scenarios covered by alignment algorithms, including general image understanding, multi-image, video, and audio, and extended multimodal applications; (2) the core factors in constructing alignment datasets, including data sources, model responses, and preference annotations; (3) the benchmarks used to evaluate alignment algorithms; and (4) a discussion of potential future directions for the development of alignment algorithms. This work seeks to help researchers organize current advancements in the field and inspire better alignment methods. The project page of this paper is available at https://github.com/BradyFU/Awesome-Multimodal-Large-Language-Models/tree/Alignment.

ULLME: A Unified Framework for Large Language Model Embeddings with Generation-Augmented Learning

Large Language Models (LLMs) excel in various natural language processing tasks, but leveraging them for dense passage embedding remains challenging. This is due to their causal attention mechanism and the misalignment between their pre-training objectives and the text ranking tasks. Despite some recent efforts to address these issues, existing frameworks for LLM-based text embeddings have been limited by their support for only a limited range of LLM architectures and fine-tuning strategies, limiting their practical application and versatility. In this work, we introduce the Unified framework for Large Language Model Embedding (ULLME), a flexible, plug-and-play implementation that enables bidirectional attention across various LLMs and supports a range of fine-tuning strategies. We also propose Generation-augmented Representation Learning (GRL), a novel fine-tuning method to boost LLMs for text embedding tasks. GRL enforces consistency between representation-based and generation-based relevance scores, leveraging LLMs' powerful generative abilities for learning passage embeddings. To showcase our framework's flexibility and effectiveness, we release three pre-trained models from ULLME with different backbone architectures, ranging from 1.5B to 8B parameters, all of which demonstrate strong performance on the Massive Text Embedding Benchmark. Our framework is publicly available at: https://github.com/nlp-uoregon/ullme. A demo video for ULLME can also be found at https://rb.gy/ws1ile.

From Generator to Embedder: Harnessing Innate Abilities of Multimodal LLMs via Building Zero-Shot Discriminative Embedding Model

Multimodal Large Language Models (MLLMs) have emerged as a promising solution for universal embedding tasks, yet adapting their generative nature for discriminative representation learning remains a significant challenge. The dominant paradigm of large-scale contrastive pre-training suffers from critical inefficiencies, including prohibitive computational costs and a failure to leverage the intrinsic, instruction-following capabilities of MLLMs. To overcome these limitations, we propose an efficient framework for universal multimodal embeddings, which bridges this gap by centering on two synergistic components. First, our hierarchical embedding prompt template employs a two-level instruction architecture that forces the model to produce discriminative representations. Building on this strong foundation, our second component, self-aware hard negative sampling, redefines the fine-tuning process by leveraging the model's own understanding to efficiently mine challenging negatives while actively filtering out potential false negatives. Our comprehensive experiments show that our hierarchical prompt achieves zero-shot performance competitive with contrastively trained baselines and enhances the fine-tuning process by lifting a simple in-batch negative baseline by 4.8 points on the MMEB benchmark. We further boost the performance via our self-aware hard negative sampling, achieving the state-of-the-art performance without the contrative pre-training. Our work presents an effective and efficient pathway to adapt MLLMs for universal embedding tasks, significantly reducing training time.

LEOPARD : A Vision Language Model For Text-Rich Multi-Image Tasks

Text-rich images, where text serves as the central visual element guiding the overall understanding, are prevalent in real-world applications, such as presentation slides, scanned documents, and webpage snapshots. Tasks involving multiple text-rich images are especially challenging, as they require not only understanding the content of individual images but reasoning about inter-relationships and logical flows across multiple visual inputs. Despite the importance of these scenarios, current multimodal large language models (MLLMs) struggle to handle such tasks due to two key challenges: (1) the scarcity of high-quality instruction tuning datasets for text-rich multi-image scenarios, and (2) the difficulty in balancing image resolution with visual feature sequence length. To address these challenges, we propose \OurMethod, a MLLM designed specifically for handling vision-language tasks involving multiple text-rich images. First, we curated about one million high-quality multimodal instruction-tuning data, tailored to text-rich, multi-image scenarios. Second, we developed an adaptive high-resolution multi-image encoding module to dynamically optimize the allocation of visual sequence length based on the original aspect ratios and resolutions of the input images. Experiments across a wide range of benchmarks demonstrate our model's superior capabilities in text-rich, multi-image evaluations and competitive performance in general domain evaluations.

Long-VITA: Scaling Large Multi-modal Models to 1 Million Tokens with Leading Short-Context Accuracy

We introduce Long-VITA, a simple yet effective large multi-modal model for long-context visual-language understanding tasks. It is adept at concurrently processing and analyzing modalities of image, video, and text over 4K frames or 1M tokens while delivering advanced performances on short-context multi-modal tasks. We propose an effective multi-modal training schema that starts with large language models and proceeds through vision-language alignment, general knowledge learning, and two sequential stages of long-sequence fine-tuning. We further implement context-parallelism distributed inference and logits-masked language modeling head to scale Long-VITA to infinitely long inputs of images and texts during model inference. Regarding training data, Long-VITA is built on a mix of 17M samples from public datasets only and demonstrates the state-of-the-art performance on various multi-modal benchmarks, compared against recent cutting-edge models with internal data. Long-VITA is fully reproducible and supports both NPU and GPU platforms for training and testing. By leveraging our inference designs, Long-VITA models achieve a remarkable 2x prefill speedup and 4x context length extension in single node with 8 GPUs. We hope Long-VITA can serve as a competitive baseline and offer valuable insights for the open-source community in advancing long-context multi-modal understanding.

NoteLLM-2: Multimodal Large Representation Models for Recommendation

Large Language Models (LLMs) have demonstrated exceptional text understanding. Existing works explore their application in text embedding tasks. However, there are few works utilizing LLMs to assist multimodal representation tasks. In this work, we investigate the potential of LLMs to enhance multimodal representation in multimodal item-to-item (I2I) recommendations. One feasible method is the transfer of Multimodal Large Language Models (MLLMs) for representation tasks. However, pre-training MLLMs usually requires collecting high-quality, web-scale multimodal data, resulting in complex training procedures and high costs. This leads the community to rely heavily on open-source MLLMs, hindering customized training for representation scenarios. Therefore, we aim to design an end-to-end training method that customizes the integration of any existing LLMs and vision encoders to construct efficient multimodal representation models. Preliminary experiments show that fine-tuned LLMs in this end-to-end method tend to overlook image content. To overcome this challenge, we propose a novel training framework, NoteLLM-2, specifically designed for multimodal representation. We propose two ways to enhance the focus on visual information. The first method is based on the prompt viewpoint, which separates multimodal content into visual content and textual content. NoteLLM-2 adopts the multimodal In-Content Learning method to teach LLMs to focus on both modalities and aggregate key information. The second method is from the model architecture, utilizing a late fusion mechanism to directly fuse visual information into textual information. Extensive experiments have been conducted to validate the effectiveness of our method.

From Word Vectors to Multimodal Embeddings: Techniques, Applications, and Future Directions For Large Language Models

Word embeddings and language models have transformed natural language processing (NLP) by facilitating the representation of linguistic elements in continuous vector spaces. This review visits foundational concepts such as the distributional hypothesis and contextual similarity, tracing the evolution from sparse representations like one-hot encoding to dense embeddings including Word2Vec, GloVe, and fastText. We examine both static and contextualized embeddings, underscoring advancements in models such as ELMo, BERT, and GPT and their adaptations for cross-lingual and personalized applications. The discussion extends to sentence and document embeddings, covering aggregation methods and generative topic models, along with the application of embeddings in multimodal domains, including vision, robotics, and cognitive science. Advanced topics such as model compression, interpretability, numerical encoding, and bias mitigation are analyzed, addressing both technical challenges and ethical implications. Additionally, we identify future research directions, emphasizing the need for scalable training techniques, enhanced interpretability, and robust grounding in non-textual modalities. By synthesizing current methodologies and emerging trends, this survey offers researchers and practitioners an in-depth resource to push the boundaries of embedding-based language models.

4M-21: An Any-to-Any Vision Model for Tens of Tasks and Modalities

Current multimodal and multitask foundation models like 4M or UnifiedIO show promising results, but in practice their out-of-the-box abilities to accept diverse inputs and perform diverse tasks are limited by the (usually rather small) number of modalities and tasks they are trained on. In this paper, we expand upon the capabilities of them by training a single model on tens of highly diverse modalities and by performing co-training on large-scale multimodal datasets and text corpora. This includes training on several semantic and geometric modalities, feature maps from recent state of the art models like DINOv2 and ImageBind, pseudo labels of specialist models like SAM and 4DHumans, and a range of new modalities that allow for novel ways to interact with the model and steer the generation, for example image metadata or color palettes. A crucial step in this process is performing discrete tokenization on various modalities, whether they are image-like, neural network feature maps, vectors, structured data like instance segmentation or human poses, or data that can be represented as text. Through this, we expand on the out-of-the-box capabilities of multimodal models and specifically show the possibility of training one model to solve at least 3x more tasks/modalities than existing ones and doing so without a loss in performance. This enables more fine-grained and controllable multimodal generation capabilities and allows us to study the distillation of models trained on diverse data and objectives into a unified model. We successfully scale the training to a three billion parameter model using tens of modalities and different datasets. The resulting models and training code are open sourced at 4m.epfl.ch.

UnifiedMLLM: Enabling Unified Representation for Multi-modal Multi-tasks With Large Language Model

Significant advancements has recently been achieved in the field of multi-modal large language models (MLLMs), demonstrating their remarkable capabilities in understanding and reasoning across diverse tasks. However, these models are often trained for specific tasks and rely on task-specific input-output formats, limiting their applicability to a broader range of tasks. This raises a fundamental question: Can we develop a unified approach to represent and handle different multi-modal tasks to maximize the generalizability of MLLMs? In this paper, we propose UnifiedMLLM, a comprehensive model designed to represent various tasks using a unified representation. Our model exhibits strong capabilities in comprehending the implicit intent of user instructions and preforming reasoning. In addition to generating textual responses, our model also outputs task tokens and grounding tokens, serving as indicators of task types and task granularity. These outputs are subsequently routed through the task router and directed to specific expert models for task completion. To train our model, we construct a task-specific dataset and an 100k multi-task dataset encompassing complex scenarios. Employing a three-stage training strategy, we equip our model with robust reasoning and task processing capabilities while preserving its generalization capacity and knowledge reservoir. Extensive experiments showcase the impressive performance of our unified representation approach across various tasks, surpassing existing methodologies. Furthermore, our approach exhibits exceptional scalability and generality. Our code, model, and dataset will be available at https://github.com/lzw-lzw/UnifiedMLLM.

Cream of the Crop: Harvesting Rich, Scalable and Transferable Multi-Modal Data for Instruction Fine-Tuning

The hypothesis that pretrained large language models (LLMs) necessitate only minimal supervision during the fine-tuning (SFT) stage (Zhou et al., 2024) has been substantiated by recent advancements in data curation and selection research. However, their stability and generalizability are compromised due to the vulnerability to experimental setups and validation protocols, falling short of surpassing random sampling (Diddee & Ippolito, 2024; Xia et al., 2024b). Built upon LLMs, multi-modal LLMs (MLLMs), combined with the sheer token volume and heightened heterogeneity of data sources, amplify both the significance and complexity of data selection. To harvest multi-modal instructional data in a robust and efficient manner, we re-define the granularity of the quality metric by decomposing it into 14 vision-language-related capabilities, and introduce multi-modal rich scorers to evaluate the capabilities of each data candidate. To promote diversity, in light of the inherent objective of the alignment stage, we take interaction style as diversity indicator and use a multi-modal rich styler to identify data instruction patterns. In doing so, our multi-modal rich scorers and styler (mmSSR) guarantee that high-scoring information is conveyed to users in diversified forms. Free from embedding-based clustering or greedy sampling, mmSSR efficiently scales to millions of data with varying budget constraints, supports customization for general or specific capability acquisition, and facilitates training-free generalization to new domains for curation. Across 10+ experimental settings, validated by 14 multi-modal benchmarks, we demonstrate consistent improvements over random sampling, baseline strategies and state-of-the-art selection methods, achieving 99.1% of full performance with only 30% of the 2.6M data.

TASTE: Text-Aligned Speech Tokenization and Embedding for Spoken Language Modeling

Large Language Models (LLMs) excel in text-based natural language processing tasks but remain constrained by their reliance on textual inputs and outputs. To enable more natural human-LLM interaction, recent progress have focused on deriving a spoken language model (SLM) that can not only listen but also generate speech. To achieve this, a promising direction is to conduct speech-text joint modeling. However, recent SLM still lag behind text LLM due to the modality mismatch. One significant mismatch can be the sequence lengths between speech and text tokens. To address this, we introduce Text-Aligned Speech Tokenization and Embedding (TASTE), a method that directly addresses the modality gap by aligning speech token with the corresponding text transcription during the tokenization stage. We propose a method that can achieve this through the special aggregation mechanism and with speech reconstruction as the training objective. We conduct extensive experiments and show that TASTE can preserve essential paralinguistic information while dramatically reducing the token sequence length. Furthermore, by leveraging TASTE, we can adapt text-based LLMs into effective SLMs with parameter-efficient fine-tuning techniques such as Low-Rank Adaptation (LoRA). Experimental results on benchmark tasks, including SALMON and StoryCloze, demonstrate that TASTE-based SLMs perform similarly to previous full-finetuning methods. To our knowledge, TASTE is the first end-to-end approach that utilizes a reconstruction objective to automatically learn a text-aligned speech tokenization and embedding suitable for spoken language modeling. Our demo, code, and models are publicly available at https://github.com/mtkresearch/TASTE-SpokenLM.

When Tokens Talk Too Much: A Survey of Multimodal Long-Context Token Compression across Images, Videos, and Audios

Multimodal large language models (MLLMs) have made remarkable strides, largely driven by their ability to process increasingly long and complex contexts, such as high-resolution images, extended video sequences, and lengthy audio input. While this ability significantly enhances MLLM capabilities, it introduces substantial computational challenges, primarily due to the quadratic complexity of self-attention mechanisms with numerous input tokens. To mitigate these bottlenecks, token compression has emerged as an auspicious and critical approach, efficiently reducing the number of tokens during both training and inference. In this paper, we present the first systematic survey and synthesis of the burgeoning field of multimodal long context token compression. Recognizing that effective compression strategies are deeply tied to the unique characteristics and redundancies of each modality, we categorize existing approaches by their primary data focus, enabling researchers to quickly access and learn methods tailored to their specific area of interest: (1) image-centric compression, which addresses spatial redundancy in visual data; (2) video-centric compression, which tackles spatio-temporal redundancy in dynamic sequences; and (3) audio-centric compression, which handles temporal and spectral redundancy in acoustic signals. Beyond this modality-driven categorization, we further dissect methods based on their underlying mechanisms, including transformation-based, similarity-based, attention-based, and query-based approaches. By providing a comprehensive and structured overview, this survey aims to consolidate current progress, identify key challenges, and inspire future research directions in this rapidly evolving domain. We also maintain a public repository to continuously track and update the latest advances in this promising area.

Mitigating Object Hallucinations via Sentence-Level Early Intervention

Multimodal large language models (MLLMs) have revolutionized cross-modal understanding but continue to struggle with hallucinations - fabricated content contradicting visual inputs. Existing hallucination mitigation methods either incur prohibitive computational costs or introduce distribution mismatches between training data and model outputs. We identify a critical insight: hallucinations predominantly emerge at the early stages of text generation and propagate through subsequent outputs. To address this, we propose **SENTINEL** (**S**entence-level **E**arly i**N**tervention **T**hrough **IN**-domain pr**E**ference **L**earning), a framework that eliminates dependency on human annotations. Specifically, we first bootstrap high-quality in-domain preference pairs by iteratively sampling model outputs, validating object existence through cross-checking with two open-vocabulary detectors, and classifying sentences into hallucinated/non-hallucinated categories. Subsequently, we use context-coherent positive samples and hallucinated negative samples to build context-aware preference data iteratively. Finally, we train models using a context-aware preference loss (C-DPO) that emphasizes discriminative learning at the sentence level where hallucinations initially manifest. Experimental results show that SENTINEL can reduce hallucinations by over 90\% compared to the original model and outperforms the previous state-of-the-art method on both hallucination benchmarks and general capabilities benchmarks, demonstrating its superiority and generalization ability. The models, datasets, and code are available at https://github.com/pspdada/SENTINEL.

ChatGPT Alternative Solutions: Large Language Models Survey

In recent times, the grandeur of Large Language Models (LLMs) has not only shone in the realm of natural language processing but has also cast its brilliance across a vast array of applications. This remarkable display of LLM capabilities has ignited a surge in research contributions within this domain, spanning a diverse spectrum of topics. These contributions encompass advancements in neural network architecture, context length enhancements, model alignment, training datasets, benchmarking, efficiency improvements, and more. Recent years have witnessed a dynamic synergy between academia and industry, propelling the field of LLM research to new heights. A notable milestone in this journey is the introduction of ChatGPT, a powerful AI chatbot grounded in LLMs, which has garnered widespread societal attention. The evolving technology of LLMs has begun to reshape the landscape of the entire AI community, promising a revolutionary shift in the way we create and employ AI algorithms. Given this swift-paced technical evolution, our survey embarks on a journey to encapsulate the recent strides made in the world of LLMs. Through an exploration of the background, key discoveries, and prevailing methodologies, we offer an up-to-the-minute review of the literature. By examining multiple LLM models, our paper not only presents a comprehensive overview but also charts a course that identifies existing challenges and points toward potential future research trajectories. This survey furnishes a well-rounded perspective on the current state of generative AI, shedding light on opportunities for further exploration, enhancement, and innovation.

LlamaFusion: Adapting Pretrained Language Models for Multimodal Generation

We present LlamaFusion, a framework for empowering pretrained text-only large language models (LLMs) with multimodal generative capabilities, enabling them to understand and generate both text and images in arbitrary sequences. LlamaFusion leverages existing Llama-3's weights for processing texts autoregressively while introducing additional and parallel transformer modules for processing images with diffusion. During training, the data from each modality is routed to its dedicated modules: modality-specific feedforward layers, query-key-value projections, and normalization layers process each modality independently, while the shared self-attention layers allow interactions across text and image features. By freezing the text-specific modules and only training the image-specific modules, LlamaFusion preserves the language capabilities of text-only LLMs while developing strong visual understanding and generation abilities. Compared to methods that pretrain multimodal generative models from scratch, our experiments demonstrate that, LlamaFusion improves image understanding by 20% and image generation by 3.6% using only 50% of the FLOPs while maintaining Llama-3's language capabilities. We also demonstrate that this framework can adapt existing vision-language models with multimodal generation ability. Overall, this framework not only leverages existing computational investments in text-only LLMs but also enables the parallel development of language and vision capabilities, presenting a promising direction for efficient multimodal model development.

4M: Massively Multimodal Masked Modeling

Current machine learning models for vision are often highly specialized and limited to a single modality and task. In contrast, recent large language models exhibit a wide range of capabilities, hinting at a possibility for similarly versatile models in computer vision. In this paper, we take a step in this direction and propose a multimodal training scheme called 4M. It consists of training a single unified Transformer encoder-decoder using a masked modeling objective across a wide range of input/output modalities - including text, images, geometric, and semantic modalities, as well as neural network feature maps. 4M achieves scalability by unifying the representation space of all modalities through mapping them into discrete tokens and performing multimodal masked modeling on a small randomized subset of tokens. 4M leads to models that exhibit several key capabilities: (1) they can perform a diverse set of vision tasks out of the box, (2) they excel when fine-tuned for unseen downstream tasks or new input modalities, and (3) they can function as a generative model that can be conditioned on arbitrary modalities, enabling a wide variety of expressive multimodal editing capabilities with remarkable flexibility. Through experimental analyses, we demonstrate the potential of 4M for training versatile and scalable foundation models for vision tasks, setting the stage for further exploration in multimodal learning for vision and other domains.

Large Language Models as Foundations for Next-Gen Dense Retrieval: A Comprehensive Empirical Assessment

Pretrained language models like BERT and T5 serve as crucial backbone encoders for dense retrieval. However, these models often exhibit limited generalization capabilities and face challenges in improving in domain accuracy. Recent research has explored using large language models (LLMs) as retrievers, achieving SOTA performance across various tasks. Despite these advancements, the specific benefits of LLMs over traditional retrievers and the impact of different LLM configurations, such as parameter sizes, pretraining duration, and alignment processes on retrieval tasks remain unclear. In this work, we conduct a comprehensive empirical study on a wide range of retrieval tasks, including in domain accuracy, data efficiency, zero shot generalization, lengthy retrieval, instruction based retrieval, and multi task learning. We evaluate over 15 different backbone LLMs and non LLMs. Our findings reveal that larger models and extensive pretraining consistently enhance in domain accuracy and data efficiency. Additionally, larger models demonstrate significant potential in zero shot generalization, lengthy retrieval, instruction based retrieval, and multi task learning. These results underscore the advantages of LLMs as versatile and effective backbone encoders in dense retrieval, providing valuable insights for future research and development in this field.

Uni-MoE: Scaling Unified Multimodal LLMs with Mixture of Experts

Recent advancements in Multimodal Large Language Models (MLLMs) underscore the significance of scalable models and data to boost performance, yet this often incurs substantial computational costs. Although the Mixture of Experts (MoE) architecture has been employed to efficiently scale large language and image-text models, these efforts typically involve fewer experts and limited modalities. To address this, our work presents the pioneering attempt to develop a unified MLLM with the MoE architecture, named Uni-MoE that can handle a wide array of modalities. Specifically, it features modality-specific encoders with connectors for a unified multimodal representation. We also implement a sparse MoE architecture within the LLMs to enable efficient training and inference through modality-level data parallelism and expert-level model parallelism. To enhance the multi-expert collaboration and generalization, we present a progressive training strategy: 1) Cross-modality alignment using various connectors with different cross-modality data, 2) Training modality-specific experts with cross-modality instruction data to activate experts' preferences, and 3) Tuning the Uni-MoE framework utilizing Low-Rank Adaptation (LoRA) on mixed multimodal instruction data. We evaluate the instruction-tuned Uni-MoE on a comprehensive set of multimodal datasets. The extensive experimental results demonstrate Uni-MoE's principal advantage of significantly reducing performance bias in handling mixed multimodal datasets, alongside improved multi-expert collaboration and generalization. Our findings highlight the substantial potential of MoE frameworks in advancing MLLMs and the code is available at https://github.com/HITsz-TMG/UMOE-Scaling-Unified-Multimodal-LLMs.

Aya Vision: Advancing the Frontier of Multilingual Multimodality

Building multimodal language models is fundamentally challenging: it requires aligning vision and language modalities, curating high-quality instruction data, and avoiding the degradation of existing text-only capabilities once vision is introduced. These difficulties are further magnified in the multilingual setting, where the need for multimodal data in different languages exacerbates existing data scarcity, machine translation often distorts meaning, and catastrophic forgetting is more pronounced. To address the aforementioned challenges, we introduce novel techniques spanning both data and modeling. First, we develop a synthetic annotation framework that curates high-quality, diverse multilingual multimodal instruction data, enabling Aya Vision models to produce natural, human-preferred responses to multimodal inputs across many languages. Complementing this, we propose a cross-modal model merging technique that mitigates catastrophic forgetting, effectively preserving text-only capabilities while simultaneously enhancing multimodal generative performance. Aya-Vision-8B achieves best-in-class performance compared to strong multimodal models such as Qwen-2.5-VL-7B, Pixtral-12B, and even much larger Llama-3.2-90B-Vision. We further scale this approach with Aya-Vision-32B, which outperforms models more than twice its size, such as Molmo-72B and LLaMA-3.2-90B-Vision. Our work advances multilingual progress on the multi-modal frontier, and provides insights into techniques that effectively bend the need for compute while delivering extremely high performance.

NExT-GPT: Any-to-Any Multimodal LLM

While recently Multimodal Large Language Models (MM-LLMs) have made exciting strides, they mostly fall prey to the limitation of only input-side multimodal understanding, without the ability to produce content in multiple modalities. As we humans always perceive the world and communicate with people through various modalities, developing any-to-any MM-LLMs capable of accepting and delivering content in any modality becomes essential to human-level AI. To fill the gap, we present an end-to-end general-purpose any-to-any MM-LLM system, NExT-GPT. We connect an LLM with multimodal adaptors and different diffusion decoders, enabling NExT-GPT to perceive inputs and generate outputs in arbitrary combinations of text, images, videos, and audio. By leveraging the existing well-trained highly-performing encoders and decoders, NExT-GPT is tuned with only a small amount of parameter (1%) of certain projection layers, which not only benefits low-cost training and also facilitates convenient expansion to more potential modalities. Moreover, we introduce a modality-switching instruction tuning (MosIT) and manually curate a high-quality dataset for MosIT, based on which NExT-GPT is empowered with complex cross-modal semantic understanding and content generation. Overall, our research showcases the promising possibility of building an AI agent capable of modeling universal modalities, paving the way for more human-like AI research in the community.

ILLUME: Illuminating Your LLMs to See, Draw, and Self-Enhance

In this paper, we introduce ILLUME, a unified multimodal large language model (MLLM) that seamlessly integrates multimodal understanding and generation capabilities within a single large language model through a unified next-token prediction formulation. To address the large dataset size typically required for image-text alignment, we propose to enhance data efficiency through the design of a vision tokenizer that incorporates semantic information and a progressive multi-stage training procedure. This approach reduces the dataset size to just 15M for pretraining -- over four times fewer than what is typically needed -- while achieving competitive or even superior performance with existing unified MLLMs, such as Janus. Additionally, to promote synergistic enhancement between understanding and generation capabilities, which is under-explored in previous works, we introduce a novel self-enhancing multimodal alignment scheme. This scheme supervises the MLLM to self-assess the consistency between text descriptions and self-generated images, facilitating the model to interpret images more accurately and avoid unrealistic and incorrect predictions caused by misalignment in image generation. Based on extensive experiments, our proposed ILLUME stands out and competes with state-of-the-art unified MLLMs and specialized models across various benchmarks for multimodal understanding, generation, and editing.

A Comprehensive Survey on Long Context Language Modeling

Efficient processing of long contexts has been a persistent pursuit in Natural Language Processing. With the growing number of long documents, dialogues, and other textual data, it is important to develop Long Context Language Models (LCLMs) that can process and analyze extensive inputs in an effective and efficient way. In this paper, we present a comprehensive survey on recent advances in long-context modeling for large language models. Our survey is structured around three key aspects: how to obtain effective and efficient LCLMs, how to train and deploy LCLMs efficiently, and how to evaluate and analyze LCLMs comprehensively. For the first aspect, we discuss data strategies, architectural designs, and workflow approaches oriented with long context processing. For the second aspect, we provide a detailed examination of the infrastructure required for LCLM training and inference. For the third aspect, we present evaluation paradigms for long-context comprehension and long-form generation, as well as behavioral analysis and mechanism interpretability of LCLMs. Beyond these three key aspects, we thoroughly explore the diverse application scenarios where existing LCLMs have been deployed and outline promising future development directions. This survey provides an up-to-date review of the literature on long-context LLMs, which we wish to serve as a valuable resource for both researchers and engineers. An associated GitHub repository collecting the latest papers and repos is available at: https://github.com/LCLM-Horizon/A-Comprehensive-Survey-For-Long-Context-Language-Modeling{\color[RGB]{175,36,67}{LCLM-Horizon}}.

Multimodal Needle in a Haystack: Benchmarking Long-Context Capability of Multimodal Large Language Models

Multimodal Large Language Models (MLLMs) have shown significant promise in various applications, leading to broad interest from researchers and practitioners alike. However, a comprehensive evaluation of their long-context capabilities remains underexplored. To address these gaps, we introduce the MultiModal Needle-in-a-haystack (MMNeedle) benchmark, specifically designed to assess the long-context capabilities of MLLMs. Besides multi-image input, we employ image stitching to further increase the input context length, and develop a protocol to automatically generate labels for sub-image level retrieval. Essentially, MMNeedle evaluates MLLMs by stress-testing their capability to locate a target sub-image (needle) within a set of images (haystack) based on textual instructions and descriptions of image contents. This setup necessitates an advanced understanding of extensive visual contexts and effective information retrieval within long-context image inputs. With this benchmark, we evaluate state-of-the-art MLLMs, encompassing both API-based and open-source models. The findings reveal that GPT-4o consistently surpasses other models in long-context scenarios, but suffers from hallucination problems in negative samples, i.e., when needles are not in the haystacks. Our comprehensive long-context evaluation of MLLMs also sheds lights on the considerable performance gap between API-based and open-source models. All the code, data, and instructions required to reproduce the main results are available at https://github.com/Wang-ML-Lab/multimodal-needle-in-a-haystack.

EMMA: Efficient Visual Alignment in Multi-Modal LLMs

Multi-modal Large Language Models (MLLMs) have recently exhibited impressive general-purpose capabilities by leveraging vision foundation models to encode the core concepts of images into representations. These are then combined with instructions and processed by the language model to generate high-quality responses. Despite significant progress in enhancing the language component, challenges persist in optimally fusing visual encodings within the language model for task-specific adaptability. Recent research has focused on improving this fusion through modality adaptation modules but at the cost of significantly increased model complexity and training data needs. In this paper, we propose EMMA (Efficient Multi-Modal Adaptation), a lightweight cross-modality module designed to efficiently fuse visual and textual encodings, generating instruction-aware visual representations for the language model. Our key contributions include: (1) an efficient early fusion mechanism that integrates vision and language representations with minimal added parameters (less than 0.2% increase in model size), (2) an in-depth interpretability analysis that sheds light on the internal mechanisms of the proposed method; (3) comprehensive experiments that demonstrate notable improvements on both specialized and general benchmarks for MLLMs. Empirical results show that EMMA boosts performance across multiple tasks by up to 9.3% while significantly improving robustness against hallucinations. Our code is available at https://github.com/SaraGhazanfari/EMMA

Recoverable Compression: A Multimodal Vision Token Recovery Mechanism Guided by Text Information

With the advancement of large-scale language modeling techniques, large multimodal models combining visual encoders with large language models have demonstrated exceptional performance in various visual tasks. Most of the current large-scale multimodal models achieve this by mapping visual features obtained from the visual encoder into a large language model and using them as inputs alongside text for downstream tasks. Therefore, the number of visual tokens directly affects the training and inference speed of the model. There has been significant work on token pruning for visual transformers, but for large multimodal models, only relying on visual information for token pruning or compression may lead to significant loss of important information. On the other hand, the textual input in the form of a question may contain valuable information that can aid in answering the question, providing additional knowledge to the model. To address the potential oversimplification and excessive pruning that can occur with most purely visual token pruning methods, we propose a text information-guided dynamic visual token recovery mechanism that does not require training. This mechanism leverages the similarity between the question text and visual tokens to recover visually meaningful tokens with important text information while merging other less important tokens. Experimental results demonstrate that our proposed method achieves comparable performance to the original approach while compressing the visual tokens to an average of 10% of the original quantity. Our source code will be made publicly available following acceptance.

Pretraining Language Models for Diachronic Linguistic Change Discovery

Large language models (LLMs) have shown potential as tools for scientific discovery. This has engendered growing interest in their use in humanistic disciplines, such as historical linguistics and literary studies. These fields often construct arguments on the basis of delineations like genre, or more inflexibly, time period. Although efforts have been made to restrict inference to specific domains via fine-tuning or model editing, we posit that the only true guarantee is domain-restricted pretraining -- typically, a data- and compute-expensive proposition. We show that efficient pretraining techniques can produce useful models over corpora too large for easy manual inspection but too small for "typical" LLM approaches. We employ a novel date-attribution pipeline in order to obtain a temporally-segmented dataset of five 10-million-word slices. We train two corresponding five-model batteries over these corpus segments, efficient pretraining and Llama3-8B parameter efficiently finetuned. We find that the pretrained models are faster to train than the finetuned baselines and that they better respect the historical divisions of our corpus. Emphasizing speed and precision over a-historical comprehensiveness enables a number of novel approaches to hypothesis discovery and testing in our target fields. Taking up diachronic linguistics as a testbed, we show that our method enables the detection of a diverse set of phenomena, including en masse lexical change, non-lexical (grammatical and morphological) change, and word sense introduction/obsolescence. We provide a ready-to-use pipeline that allows extension of our approach to other target fields with only minimal adaptation.

A Survey of GPT-3 Family Large Language Models Including ChatGPT and GPT-4

Large language models (LLMs) are a special class of pretrained language models obtained by scaling model size, pretraining corpus and computation. LLMs, because of their large size and pretraining on large volumes of text data, exhibit special abilities which allow them to achieve remarkable performances without any task-specific training in many of the natural language processing tasks. The era of LLMs started with OpenAI GPT-3 model, and the popularity of LLMs is increasing exponentially after the introduction of models like ChatGPT and GPT4. We refer to GPT-3 and its successor OpenAI models, including ChatGPT and GPT4, as GPT-3 family large language models (GLLMs). With the ever-rising popularity of GLLMs, especially in the research community, there is a strong need for a comprehensive survey which summarizes the recent research progress in multiple dimensions and can guide the research community with insightful future research directions. We start the survey paper with foundation concepts like transformers, transfer learning, self-supervised learning, pretrained language models and large language models. We then present a brief overview of GLLMs and discuss the performances of GLLMs in various downstream tasks, specific domains and multiple languages. We also discuss the data labelling and data augmentation abilities of GLLMs, the robustness of GLLMs, the effectiveness of GLLMs as evaluators, and finally, conclude with multiple insightful future research directions. To summarize, this comprehensive survey paper will serve as a good resource for both academic and industry people to stay updated with the latest research related to GPT-3 family large language models.

Learning Item Representations Directly from Multimodal Features for Effective Recommendation

Conventional multimodal recommender systems predominantly leverage Bayesian Personalized Ranking (BPR) optimization to learn item representations by amalgamating item identity (ID) embeddings with multimodal features. Nevertheless, our empirical and theoretical findings unequivocally demonstrate a pronounced optimization gradient bias in favor of acquiring representations from multimodal features over item ID embeddings. As a consequence, item ID embeddings frequently exhibit suboptimal characteristics despite the convergence of multimodal feature parameters. Given the rich informational content inherent in multimodal features, in this paper, we propose a novel model (i.e., LIRDRec) that learns item representations directly from these features to augment recommendation performance. Recognizing that features derived from each modality may capture disparate yet correlated aspects of items, we propose a multimodal transformation mechanism, integrated with modality-specific encoders, to effectively fuse features from all modalities. Moreover, to differentiate the influence of diverse modality types, we devise a progressive weight copying fusion module within LIRDRec. This module incrementally learns the weight assigned to each modality in synthesizing the final user or item representations. Finally, we utilize the powerful visual understanding of Multimodal Large Language Models (MLLMs) to convert the item images into texts and extract semantics embeddings upon the texts via LLMs. Empirical evaluations conducted on five real-world datasets validate the superiority of our approach relative to competing baselines. It is worth noting the proposed model, equipped with embeddings extracted from MLLMs and LLMs, can further improve the recommendation accuracy of NDCG@20 by an average of 4.21% compared to the original embeddings.

Cross-modal Information Flow in Multimodal Large Language Models

The recent advancements in auto-regressive multimodal large language models (MLLMs) have demonstrated promising progress for vision-language tasks. While there exists a variety of studies investigating the processing of linguistic information within large language models, little is currently known about the inner working mechanism of MLLMs and how linguistic and visual information interact within these models. In this study, we aim to fill this gap by examining the information flow between different modalities -- language and vision -- in MLLMs, focusing on visual question answering. Specifically, given an image-question pair as input, we investigate where in the model and how the visual and linguistic information are combined to generate the final prediction. Conducting experiments with a series of models from the LLaVA series, we find that there are two distinct stages in the process of integration of the two modalities. In the lower layers, the model first transfers the more general visual features of the whole image into the representations of (linguistic) question tokens. In the middle layers, it once again transfers visual information about specific objects relevant to the question to the respective token positions of the question. Finally, in the higher layers, the resulting multimodal representation is propagated to the last position of the input sequence for the final prediction. Overall, our findings provide a new and comprehensive perspective on the spatial and functional aspects of image and language processing in the MLLMs, thereby facilitating future research into multimodal information localization and editing.

MELLA: Bridging Linguistic Capability and Cultural Groundedness for Low-Resource Language MLLMs

Multimodal Large Language Models (MLLMs) have shown remarkable performance in high-resource languages. However, their effectiveness diminishes significantly in the contexts of low-resource languages. Current multilingual enhancement methods are often limited to text modality or rely solely on machine translation. While such approaches help models acquire basic linguistic capabilities and produce "thin descriptions", they neglect the importance of multimodal informativeness and cultural groundedness, both of which are crucial for serving low-resource language users effectively. To bridge this gap, in this study, we identify two significant objectives for a truly effective MLLM in low-resource language settings, namely 1) linguistic capability and 2) cultural groundedness, placing special emphasis on cultural awareness. To achieve these dual objectives, we propose a dual-source strategy that guides the collection of data tailored to each goal, sourcing native web alt-text for culture and MLLM-generated captions for linguistics. As a concrete implementation, we introduce MELLA, a multimodal, multilingual dataset. Experiment results show that after fine-tuning on MELLA, there is a general performance improvement for the eight languages on various MLLM backbones, with models producing "thick descriptions". We verify that the performance gains are from both cultural knowledge enhancement and linguistic capability enhancement. Our dataset can be found at https://opendatalab.com/applyMultilingualCorpus.

Implicit Multimodal Alignment: On the Generalization of Frozen LLMs to Multimodal Inputs

Large Language Models (LLMs) have demonstrated impressive performance on multimodal tasks, without any multimodal finetuning. They are the building block for Large Multimodal Models, yet, we still lack a proper understanding of their success. In this work, we expose frozen LLMs to image, video, audio and text inputs and analyse their internal representation aiming to understand their generalization beyond textual inputs. Findings. Perceptual tokens (1) are easily distinguishable from textual ones inside LLMs, with significantly different representations, and complete translation to textual tokens does not exist. Yet, (2) both perceptual and textual tokens activate similar LLM weights. Despite being different, (3) perceptual and textual tokens are implicitly aligned inside LLMs, we call this the implicit multimodal alignment (IMA), and argue that this is linked to architectural design, helping LLMs to generalize. This provide more evidence to believe that the generalization of LLMs to multimodal inputs is mainly due to their architecture. Implications. (1) We find a positive correlation between the implicit alignment score and the task performance, suggesting that this could act as a proxy metric for model evaluation and selection. (2) A negative correlation exists regarding hallucinations, revealing that this problem is mainly due to misalignment between the internal perceptual and textual representations. (3) Perceptual tokens change slightly throughout the model, thus, we propose different approaches to skip computations (e.g. in FFN layers), and significantly reduce the inference cost. (4) Due to the slowly changing embeddings across layers, and the high overlap between textual and multimodal activated weights, we compress LLMs by keeping only 1 subnetwork that works well across a wide range of multimodal tasks. Paper code: https://github.com/mshukor/ima-lmms.

Exploring the Frontier of Vision-Language Models: A Survey of Current Methodologies and Future Directions

The advent of Large Language Models (LLMs) has significantly reshaped the trajectory of the AI revolution. Nevertheless, these LLMs exhibit a notable limitation, as they are primarily adept at processing textual information. To address this constraint, researchers have endeavored to integrate visual capabilities with LLMs, resulting in the emergence of Vision-Language Models (VLMs). These advanced models are instrumental in tackling more intricate tasks such as image captioning and visual question answering. In our comprehensive survey paper, we delve into the key advancements within the realm of VLMs. Our classification organizes VLMs into three distinct categories: models dedicated to vision-language understanding, models that process multimodal inputs to generate unimodal (textual) outputs and models that both accept and produce multimodal inputs and outputs.This classification is based on their respective capabilities and functionalities in processing and generating various modalities of data.We meticulously dissect each model, offering an extensive analysis of its foundational architecture, training data sources, as well as its strengths and limitations wherever possible, providing readers with a comprehensive understanding of its essential components. We also analyzed the performance of VLMs in various benchmark datasets. By doing so, we aim to offer a nuanced understanding of the diverse landscape of VLMs. Additionally, we underscore potential avenues for future research in this dynamic domain, anticipating further breakthroughs and advancements.

Beyond Text: Optimizing RAG with Multimodal Inputs for Industrial Applications

Large Language Models (LLMs) have demonstrated impressive capabilities in answering questions, but they lack domain-specific knowledge and are prone to hallucinations. Retrieval Augmented Generation (RAG) is one approach to address these challenges, while multimodal models are emerging as promising AI assistants for processing both text and images. In this paper we describe a series of experiments aimed at determining how to best integrate multimodal models into RAG systems for the industrial domain. The purpose of the experiments is to determine whether including images alongside text from documents within the industrial domain increases RAG performance and to find the optimal configuration for such a multimodal RAG system. Our experiments include two approaches for image processing and retrieval, as well as two LLMs (GPT4-Vision and LLaVA) for answer synthesis. These image processing strategies involve the use of multimodal embeddings and the generation of textual summaries from images. We evaluate our experiments with an LLM-as-a-Judge approach. Our results reveal that multimodal RAG can outperform single-modality RAG settings, although image retrieval poses a greater challenge than text retrieval. Additionally, leveraging textual summaries from images presents a more promising approach compared to the use of multimodal embeddings, providing more opportunities for future advancements.

M4LE: A Multi-Ability Multi-Range Multi-Task Multi-Domain Long-Context Evaluation Benchmark for Large Language Models

Managing long sequences has become an important and necessary feature for large language models (LLMs). However, it is still an open question of how to comprehensively and systematically evaluate the long-sequence capability of LLMs. One of the reasons is that conventional and widely-used benchmarks mainly consist of short sequences. In this paper, we propose M4LE, a Multi-ability, Multi-range, Multi-task, Multi-domain benchmark for Long-context Evaluation. M4LE is based on a diverse NLP task pool comprising 36 NLP datasets, 11 task types and 12 domains. To alleviate the scarcity of tasks with naturally long sequences and incorporate multiple-ability assessment, we propose an automatic approach (but with negligible human annotations) to convert short-sequence tasks into a unified long-sequence scenario where LLMs have to identify single or multiple relevant spans in long contexts based on explicit or semantic hints. Specifically, the scenario includes five different types of abilities: (1) explicit single-span; (2) semantic single-span; (3) explicit multiple-span; (4) semantic multiple-span; and (5) global context understanding. The resulting samples in M4LE are evenly distributed from 1k to 8k input length. We conducted a systematic evaluation on 11 well-established LLMs, especially those optimized for long-sequence inputs. Our results reveal that: 1) Current LLMs struggle to understand long context, particularly when tasks require multiple-span attention. 2) Semantic retrieval task is more difficult for competent LLMs. 3) Models fine-tuned on longer text with position interpolation have comparable performance to those using Neural Tangent Kernel (NTK) aware scaling methods without fine-tuning. We make our benchmark publicly available to encourage future research in this challenging area.

ML-Mamba: Efficient Multi-Modal Large Language Model Utilizing Mamba-2

Multimodal Large Language Models (MLLMs) have attracted much attention due to their multifunctionality. However, traditional Transformer architectures incur significant overhead due to their secondary computational complexity. To address this issue, we introduce ML-Mamba, a multimodal language model that utilizes the latest and efficient Mamba-2 model for inference. Mamba-2 is known for its linear extension and fast processing of long sequences. We replace the Transformer based backbone with a pre-trained Mamba-2 model and explore methods for integrating 2D visual selective scanning mechanisms into multimodal learning. We also try various visual encoders and Mamba-2 model variants. Our extensive experiments conducted in various multimodal benchmark tests have demonstrated the competitive performance of ML-Mamba and highlighted the potential of state space models in multimodal tasks. The experimental results show that: (1) ML-Mamba achieves performance comparable to state-of-the-art methods such as TinyLaVA and MobileVLM v2 through its linear sequential modeling, while also having faster inference speed; (2) ML-Mamba performs well in visual hallucinations and spatial relationship judgment in closed set benchmark tests; (3) ML-Mamba achieves performance comparable to LLaVA while reducing the number of parameters by 40\%.(4) Compared to the multimodal model using the original Mamba model, the Mamba-2 based large-scale multimodal language model has stronger inference performance and effectiveness.

FUSION: Fully Integration of Vision-Language Representations for Deep Cross-Modal Understanding

We introduce FUSION, a family of multimodal large language models (MLLMs) with a fully vision-language alignment and integration paradigm. Unlike existing methods that primarily rely on late-stage modality interaction during LLM decoding, our approach achieves deep, dynamic integration throughout the entire processing pipeline. To this end, we propose Text-Guided Unified Vision Encoding, incorporating textual information in vision encoding to achieve pixel-level integration. We further design Context-Aware Recursive Alignment Decoding that recursively aggregates visual features conditioned on textual context during decoding, enabling fine-grained, question-level semantic integration. To guide feature mapping and mitigate modality discrepancies, we develop Dual-Supervised Semantic Mapping Loss. Additionally, we construct a Synthesized Language-Driven Question-Answer (QA) dataset through a new data synthesis method, prioritizing high-quality QA pairs to optimize text-guided feature integration. Building on these foundations, we train FUSION at two scales-3B, 8B-and demonstrate that our full-modality integration approach significantly outperforms existing methods with only 630 vision tokens. Notably, FUSION 3B surpasses Cambrian-1 8B and Florence-VL 8B on most benchmarks. FUSION 3B continues to outperform Cambrian-1 8B even when limited to 300 vision tokens. Our ablation studies show that FUSION outperforms LLaVA-NeXT on over half of the benchmarks under same configuration without dynamic resolution, highlighting the effectiveness of our approach. We release our code, model weights, and dataset. https://github.com/starriver030515/FUSION

LongHeads: Multi-Head Attention is Secretly a Long Context Processor

Large language models (LLMs) have achieved impressive performance in numerous domains but often struggle to process lengthy inputs effectively and efficiently due to limited length generalization and attention's quadratic computational demands. Many sought to mitigate this by restricting the attention window within the pre-trained length. However, these methods introduce new issues such as ignoring the middle context and requiring additional training. To address these problems, we propose LongHeads, a training-free framework that enhances LLM's long context ability by unlocking multi-head attention's untapped potential. Instead of allowing each head to attend to the full sentence, which struggles with generalizing to longer sequences due to out-of-distribution (OOD) issues, we allow each head to process in-distribution length by selecting and attending to important context chunks. To this end, we propose a chunk selection strategy that relies on the inherent correlation between the query and the key representations, efficiently distributing context chunks to different heads. In this way, each head ensures it can effectively process attended tokens within the trained length, while different heads in different layers can collectively process longer contexts. LongHeads works efficiently in linear time, fits seamlessly with many LLMs that use relative positional encoding. Our extensive empirical analyses verify LongHeads's efficacy in extending the usable context window for existing models, showcasing its promise for enhancing long text understanding.

Bidirectional Likelihood Estimation with Multi-Modal Large Language Models for Text-Video Retrieval

Text-Video Retrieval aims to find the most relevant text (or video) candidate given a video (or text) query from large-scale online databases. Recent work leverages multi-modal large language models (MLLMs) to improve retrieval, especially for long or complex query-candidate pairs. However, we observe that the naive application of MLLMs, i.e., retrieval based on candidate likelihood, introduces candidate prior bias, favoring candidates with inherently higher priors over those more relevant to the query. To this end, we propose a novel retrieval framework, Bidirectional Likelihood Estimation with MLLM (BLiM), which leverages both query and candidate likelihoods by training the model to generate text from a given video as well as video features from a given text. Furthermore, we introduce Candidate Prior Normalization (CPN), a simple yet effective training-free score calibration module designed to mitigate candidate prior bias in candidate likelihood. On four Text-Video Retrieval benchmarks, our BLiM equipped with CPN outperforms previous state-of-the-art models by 6.4 R@1 on average, effectively alleviating candidate prior bias and emphasizing query-candidate relevance. Our in-depth analysis across various multi-modal tasks beyond retrieval highlights the broad applicability of CPN which enhances visual understanding by reducing reliance on textual priors. Code is available at https://github.com/mlvlab/BLiM.

On Path to Multimodal Generalist: General-Level and General-Bench

The Multimodal Large Language Model (MLLM) is currently experiencing rapid growth, driven by the advanced capabilities of LLMs. Unlike earlier specialists, existing MLLMs are evolving towards a Multimodal Generalist paradigm. Initially limited to understanding multiple modalities, these models have advanced to not only comprehend but also generate across modalities. Their capabilities have expanded from coarse-grained to fine-grained multimodal understanding and from supporting limited modalities to arbitrary ones. While many benchmarks exist to assess MLLMs, a critical question arises: Can we simply assume that higher performance across tasks indicates a stronger MLLM capability, bringing us closer to human-level AI? We argue that the answer is not as straightforward as it seems. This project introduces General-Level, an evaluation framework that defines 5-scale levels of MLLM performance and generality, offering a methodology to compare MLLMs and gauge the progress of existing systems towards more robust multimodal generalists and, ultimately, towards AGI. At the core of the framework is the concept of Synergy, which measures whether models maintain consistent capabilities across comprehension and generation, and across multiple modalities. To support this evaluation, we present General-Bench, which encompasses a broader spectrum of skills, modalities, formats, and capabilities, including over 700 tasks and 325,800 instances. The evaluation results that involve over 100 existing state-of-the-art MLLMs uncover the capability rankings of generalists, highlighting the challenges in reaching genuine AI. We expect this project to pave the way for future research on next-generation multimodal foundation models, providing a robust infrastructure to accelerate the realization of AGI. Project page: https://generalist.top/

Supervised Knowledge Makes Large Language Models Better In-context Learners

Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering. The recent progress in large-scale generative models has further expanded their use in real-world language applications. However, the critical challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored. While previous in-context learning research has focused on enhancing models to adhere to users' specific instructions and quality expectations, and to avoid undesired outputs, little to no work has explored the use of task-Specific fine-tuned Language Models (SLMs) to improve LLMs' in-context learning during the inference stage. Our primary contribution is the establishment of a simple yet effective framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks. Using our proposed plug-in method, enhanced versions of Llama 2 and ChatGPT surpass their original versions regarding generalizability and factuality. We offer a comprehensive suite of resources, including 16 curated datasets, prompts, model checkpoints, and LLM outputs across 9 distinct tasks. Our empirical analysis sheds light on the advantages of incorporating discriminative models into LLMs and highlights the potential of our methodology in fostering more reliable LLMs.