Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeSynthDetoxM: Modern LLMs are Few-Shot Parallel Detoxification Data Annotators
Existing approaches to multilingual text detoxification are hampered by the scarcity of parallel multilingual datasets. In this work, we introduce a pipeline for the generation of multilingual parallel detoxification data. We also introduce SynthDetoxM, a manually collected and synthetically generated multilingual parallel text detoxification dataset comprising 16,000 high-quality detoxification sentence pairs across German, French, Spanish and Russian. The data was sourced from different toxicity evaluation datasets and then rewritten with nine modern open-source LLMs in few-shot setting. Our experiments demonstrate that models trained on the produced synthetic datasets have superior performance to those trained on the human-annotated MultiParaDetox dataset even in data limited setting. Models trained on SynthDetoxM outperform all evaluated LLMs in few-shot setting. We release our dataset and code to help further research in multilingual text detoxification.
Multilingual and Explainable Text Detoxification with Parallel Corpora
Even with various regulations in place across countries and social media platforms (Government of India, 2021; European Parliament and Council of the European Union, 2022, digital abusive speech remains a significant issue. One potential approach to address this challenge is automatic text detoxification, a text style transfer (TST) approach that transforms toxic language into a more neutral or non-toxic form. To date, the availability of parallel corpora for the text detoxification task (Logachevavet al., 2022; Atwell et al., 2022; Dementievavet al., 2024a) has proven to be crucial for state-of-the-art approaches. With this work, we extend parallel text detoxification corpus to new languages -- German, Chinese, Arabic, Hindi, and Amharic -- testing in the extensive multilingual setup TST baselines. Next, we conduct the first of its kind an automated, explainable analysis of the descriptive features of both toxic and non-toxic sentences, diving deeply into the nuances, similarities, and differences of toxicity and detoxification across 9 languages. Finally, based on the obtained insights, we experiment with a novel text detoxification method inspired by the Chain-of-Thoughts reasoning approach, enhancing the prompting process through clustering on relevant descriptive attributes.
Exploring Methods for Cross-lingual Text Style Transfer: The Case of Text Detoxification
Text detoxification is the task of transferring the style of text from toxic to neutral. While here are approaches yielding promising results in monolingual setup, e.g., (Dale et al., 2021; Hallinan et al., 2022), cross-lingual transfer for this task remains a challenging open problem (Moskovskiy et al., 2022). In this work, we present a large-scale study of strategies for cross-lingual text detoxification -- given a parallel detoxification corpus for one language; the goal is to transfer detoxification ability to another language for which we do not have such a corpus. Moreover, we are the first to explore a new task where text translation and detoxification are performed simultaneously, providing several strong baselines for this task. Finally, we introduce new automatic detoxification evaluation metrics with higher correlations with human judgments than previous benchmarks. We assess the most promising approaches also with manual markup, determining the answer for the best strategy to transfer the knowledge of text detoxification between languages.
Exploring Cross-lingual Textual Style Transfer with Large Multilingual Language Models
Detoxification is a task of generating text in polite style while preserving meaning and fluency of the original toxic text. Existing detoxification methods are designed to work in one exact language. This work investigates multilingual and cross-lingual detoxification and the behavior of large multilingual models like in this setting. Unlike previous works we aim to make large language models able to perform detoxification without direct fine-tuning in given language. Experiments show that multilingual models are capable of performing multilingual style transfer. However, models are not able to perform cross-lingual detoxification and direct fine-tuning on exact language is inevitable.
MultiParaDetox: Extending Text Detoxification with Parallel Data to New Languages
Text detoxification is a textual style transfer (TST) task where a text is paraphrased from a toxic surface form, e.g. featuring rude words, to the neutral register. Recently, text detoxification methods found their applications in various task such as detoxification of Large Language Models (LLMs) (Leong et al., 2023; He et al., 2024; Tang et al., 2023) and toxic speech combating in social networks (Deng et al., 2023; Mun et al., 2023; Agarwal et al., 2023). All these applications are extremely important to ensure safe communication in modern digital worlds. However, the previous approaches for parallel text detoxification corpora collection -- ParaDetox (Logacheva et al., 2022) and APPADIA (Atwell et al., 2022) -- were explored only in monolingual setup. In this work, we aim to extend ParaDetox pipeline to multiple languages presenting MultiParaDetox to automate parallel detoxification corpus collection for potentially any language. Then, we experiment with different text detoxification models -- from unsupervised baselines to LLMs and fine-tuned models on the presented parallel corpora -- showing the great benefit of parallel corpus presence to obtain state-of-the-art text detoxification models for any language.
Methods for Detoxification of Texts for the Russian Language
We introduce the first study of automatic detoxification of Russian texts to combat offensive language. Such a kind of textual style transfer can be used, for instance, for processing toxic content in social media. While much work has been done for the English language in this field, it has never been solved for the Russian language yet. We test two types of models - unsupervised approach based on BERT architecture that performs local corrections and supervised approach based on pretrained language GPT-2 model - and compare them with several baselines. In addition, we describe evaluation setup providing training datasets and metrics for automatic evaluation. The results show that the tested approaches can be successfully used for detoxification, although there is room for improvement.
Detoxifying Text with MaRCo: Controllable Revision with Experts and Anti-Experts
Text detoxification has the potential to mitigate the harms of toxicity by rephrasing text to remove offensive meaning, but subtle toxicity remains challenging to tackle. We introduce MaRCo, a detoxification algorithm that combines controllable generation and text rewriting methods using a Product of Experts with autoencoder language models (LMs). MaRCo uses likelihoods under a non-toxic LM (expert) and a toxic LM (anti-expert) to find candidate words to mask and potentially replace. We evaluate our method on several subtle toxicity and microaggressions datasets, and show that it not only outperforms baselines on automatic metrics, but MaRCo's rewrites are preferred 2.1 times more in human evaluation. Its applicability to instances of subtle toxicity is especially promising, demonstrating a path forward for addressing increasingly elusive online hate.
GreenLLaMA: A Framework for Detoxification with Explanations
Prior works on detoxification are scattered in the sense that they do not cover all aspects of detoxification needed in a real-world scenario. Notably, prior works restrict the task of developing detoxification models to only a seen subset of platforms, leaving the question of how the models would perform on unseen platforms unexplored. Additionally, these works do not address non-detoxifiability, a phenomenon whereby the toxic text cannot be detoxified without altering the meaning. We propose GreenLLaMA, the first comprehensive end-to-end detoxification framework, which attempts to alleviate the aforementioned limitations. We first introduce a cross-platform pseudo-parallel corpus applying multi-step data processing and generation strategies leveraging ChatGPT. We then train a suite of detoxification models with our cross-platform corpus. We show that our detoxification models outperform the SoTA model trained with human-annotated parallel corpus. We further introduce explanation to promote transparency and trustworthiness. GreenLLaMA additionally offers a unique paraphrase detector especially dedicated for the detoxification task to tackle the non-detoxifiable cases. Through experimental analysis, we demonstrate the effectiveness of our cross-platform corpus and the robustness of GreenLLaMA against adversarial toxicity.
CMD: a framework for Context-aware Model self-Detoxification
Text detoxification aims to minimize the risk of language models producing toxic content. Existing detoxification methods of directly constraining the model output or further training the model on the non-toxic corpus fail to achieve a decent balance between detoxification effectiveness and generation quality. This issue stems from the neglect of constrain imposed by the context since language models are designed to generate output that closely matches the context while detoxification methods endeavor to ensure the safety of the output even if it semantically deviates from the context. In view of this, we introduce a Context-aware Model self-Detoxification~(CMD) framework that pays attention to both the context and the detoxification process, i.e., first detoxifying the context and then making the language model generate along the safe context. Specifically, CMD framework involves two phases: utilizing language models to synthesize data and applying these data for training. We also introduce a toxic contrastive loss that encourages the model generation away from the negative toxic samples. Experiments on various LLMs have verified the effectiveness of our MSD framework, which can yield the best performance compared to baselines.
LLM in the Loop: Creating the PARADEHATE Dataset for Hate Speech Detoxification
Detoxification, the task of rewriting harmful language into non-toxic text, has become increasingly important amid the growing prevalence of toxic content online. However, high-quality parallel datasets for detoxification, especially for hate speech, remain scarce due to the cost and sensitivity of human annotation. In this paper, we propose a novel LLM-in-the-loop pipeline leveraging GPT-4o-mini for automated detoxification. We first replicate the ParaDetox pipeline by replacing human annotators with an LLM and show that the LLM performs comparably to human annotation. Building on this, we construct PARADEHATE, a large-scale parallel dataset specifically for hatespeech detoxification. We release PARADEHATE as a benchmark of over 8K hate/non-hate text pairs and evaluate a wide range of baseline methods. Experimental results show that models such as BART, fine-tuned on PARADEHATE, achieve better performance in style accuracy, content preservation, and fluency, demonstrating the effectiveness of LLM-generated detoxification text as a scalable alternative to human annotation.
From One to Many: Expanding the Scope of Toxicity Mitigation in Language Models
To date, toxicity mitigation in language models has almost entirely been focused on single-language settings. As language models embrace multilingual capabilities, it's crucial our safety measures keep pace. Recognizing this research gap, our approach expands the scope of conventional toxicity mitigation to address the complexities presented by multiple languages. In the absence of sufficient annotated datasets across languages, we employ translated data to evaluate and enhance our mitigation techniques. We also compare finetuning mitigation approaches against retrieval-augmented techniques under both static and continual toxicity mitigation scenarios. This allows us to examine the effects of translation quality and the cross-lingual transfer on toxicity mitigation. We also explore how model size and data quantity affect the success of these mitigation efforts. Covering nine languages, our study represents a broad array of linguistic families and levels of resource availability, ranging from high to mid-resource languages. Through comprehensive experiments, we provide insights into the complexities of multilingual toxicity mitigation, offering valuable insights and paving the way for future research in this increasingly important field. Code and data are available at https://github.com/for-ai/goodtriever.
PolygloToxicityPrompts: Multilingual Evaluation of Neural Toxic Degeneration in Large Language Models
Recent advances in large language models (LLMs) have led to their extensive global deployment, and ensuring their safety calls for comprehensive and multilingual toxicity evaluations. However, existing toxicity benchmarks are overwhelmingly focused on English, posing serious risks to deploying LLMs in other languages. We address this by introducing PolygloToxicityPrompts (PTP), the first large-scale multilingual toxicity evaluation benchmark of 425K naturally occurring prompts spanning 17 languages. We overcome the scarcity of naturally occurring toxicity in web-text and ensure coverage across languages with varying resources by automatically scraping over 100M web-text documents. Using PTP, we investigate research questions to study the impact of model size, prompt language, and instruction and preference-tuning methods on toxicity by benchmarking over 60 LLMs. Notably, we find that toxicity increases as language resources decrease or model size increases. Although instruction- and preference-tuning reduce toxicity, the choice of preference-tuning method does not have any significant impact. Our findings shed light on crucial shortcomings of LLM safeguarding and highlight areas for future research.
K/DA: Automated Data Generation Pipeline for Detoxifying Implicitly Offensive Language in Korean
Language detoxification involves removing toxicity from offensive language. While a neutral-toxic paired dataset provides a straightforward approach for training detoxification models, creating such datasets presents several challenges: i) the need for human annotation to build paired data, and ii) the rapid evolution of offensive terms, rendering static datasets quickly outdated. To tackle these challenges, we introduce an automated paired data generation pipeline, called K/DA. This pipeline is designed to generate offensive language with implicit offensiveness and trend-aligned slang, making the resulting dataset suitable for detoxification model training. We demonstrate that the dataset generated by K/DA exhibits high pair consistency and greater implicit offensiveness compared to existing Korean datasets, and also demonstrates applicability to other languages. Furthermore, it enables effective training of a high-performing detoxification model with simple instruction fine-tuning.
Text Detoxification using Large Pre-trained Neural Models
We present two novel unsupervised methods for eliminating toxicity in text. Our first method combines two recent ideas: (1) guidance of the generation process with small style-conditional language models and (2) use of paraphrasing models to perform style transfer. We use a well-performing paraphraser guided by style-trained language models to keep the text content and remove toxicity. Our second method uses BERT to replace toxic words with their non-offensive synonyms. We make the method more flexible by enabling BERT to replace mask tokens with a variable number of words. Finally, we present the first large-scale comparative study of style transfer models on the task of toxicity removal. We compare our models with a number of methods for style transfer. The models are evaluated in a reference-free way using a combination of unsupervised style transfer metrics. Both methods we suggest yield new SOTA results.
Preference Tuning For Toxicity Mitigation Generalizes Across Languages
Detoxifying multilingual Large Language Models (LLMs) has become crucial due to their increasing global use. In this work, we explore zero-shot cross-lingual generalization of preference tuning in detoxifying LLMs. Unlike previous studies that show limited cross-lingual generalization for other safety tasks, we demonstrate that Direct Preference Optimization (DPO) training with only English data can significantly reduce toxicity in multilingual open-ended generations. For example, the probability of mGPT-1.3B generating toxic continuations drops from 46.8% to 3.9% across 17 different languages after training. Our results also extend to other multilingual LLMs, such as BLOOM, Llama3, and Aya-23. Using mechanistic interpretability tools like causal intervention and activation analysis, we identified the dual multilinguality property of MLP layers in LLMs, which explains the cross-lingual generalization of DPO. Finally, we show that bilingual sentence retrieval can predict the cross-lingual transferability of DPO preference tuning.
Toxicity-Aware Few-Shot Prompting for Low-Resource Singlish Translation
As online communication increasingly incorporates under-represented languages and colloquial dialects, standard translation systems often fail to preserve local slang, code-mixing, and culturally embedded markers of harmful speech. Translating toxic content between low-resource language pairs poses additional challenges due to scarce parallel data and safety filters that sanitize offensive expressions. In this work, we propose a reproducible, two-stage framework for toxicity-preserving translation, demonstrated on a code-mixed Singlish safety corpus. First, we perform human-verified few-shot prompt engineering: we iteratively curate and rank annotator-selected Singlish-target examples to capture nuanced slang, tone, and toxicity. Second, we optimize model-prompt pairs by benchmarking several large language models using semantic similarity via direct and back-translation. Quantitative human evaluation confirms the effectiveness and efficiency of our pipeline. Beyond improving translation quality, our framework contributes to the safety of multicultural LLMs by supporting culturally sensitive moderation and benchmarking in low-resource contexts. By positioning Singlish as a testbed for inclusive NLP, we underscore the importance of preserving sociolinguistic nuance in real-world applications such as content moderation and regional platform governance.
A New Generation of Perspective API: Efficient Multilingual Character-level Transformers
On the world wide web, toxic content detectors are a crucial line of defense against potentially hateful and offensive messages. As such, building highly effective classifiers that enable a safer internet is an important research area. Moreover, the web is a highly multilingual, cross-cultural community that develops its own lingo over time. As such, it is crucial to develop models that are effective across a diverse range of languages, usages, and styles. In this paper, we present the fundamentals behind the next version of the Perspective API from Google Jigsaw. At the heart of the approach is a single multilingual token-free Charformer model that is applicable across a range of languages, domains, and tasks. We demonstrate that by forgoing static vocabularies, we gain flexibility across a variety of settings. We additionally outline the techniques employed to make such a byte-level model efficient and feasible for productionization. Through extensive experiments on multilingual toxic comment classification benchmarks derived from real API traffic and evaluation on an array of code-switching, covert toxicity, emoji-based hate, human-readable obfuscation, distribution shift, and bias evaluation settings, we show that our proposed approach outperforms strong baselines. Finally, we present our findings from deploying this system in production.
WLV-RIT at SemEval-2021 Task 5: A Neural Transformer Framework for Detecting Toxic Spans
In recent years, the widespread use of social media has led to an increase in the generation of toxic and offensive content on online platforms. In response, social media platforms have worked on developing automatic detection methods and employing human moderators to cope with this deluge of offensive content. While various state-of-the-art statistical models have been applied to detect toxic posts, there are only a few studies that focus on detecting the words or expressions that make a post offensive. This motivates the organization of the SemEval-2021 Task 5: Toxic Spans Detection competition, which has provided participants with a dataset containing toxic spans annotation in English posts. In this paper, we present the WLV-RIT entry for the SemEval-2021 Task 5. Our best performing neural transformer model achieves an 0.68 F1-Score. Furthermore, we develop an open-source framework for multilingual detection of offensive spans, i.e., MUDES, based on neural transformers that detect toxic spans in texts.
Unified Detoxifying and Debiasing in Language Generation via Inference-time Adaptive Optimization
Warning: this paper contains model outputs exhibiting offensiveness and biases. Recently pre-trained language models (PLMs) have prospered in various natural language generation (NLG) tasks due to their ability to generate fairly fluent text. Nevertheless, these models are observed to capture and reproduce harmful contents in training corpora, typically toxic language and social biases, raising severe moral issues. Prior works on ethical NLG tackle detoxifying and debiasing separately, which is problematic since we find debiased models still exhibit toxicity while detoxified ones even exacerbate biases. To address such a challenge, we propose the first unified framework of detoxifying and debiasing called UDDIA, which jointly formalizes these two problems as rectifying the output space. We theoretically interpret our framework as learning a text distribution mixing weighted attributes. Besides, UDDIA conducts adaptive optimization of only a few parameters during decoding based on a parameter-efficient tuning schema without any training data. This leads to minimal generation quality loss and improved rectification performance with acceptable computational cost. Experimental results demonstrate that compared to several strong baselines, UDDIA achieves debiasing and detoxifying simultaneously and better balances efficiency and effectiveness, taking a further step towards practical ethical NLG.
Toxicity Classification in Ukrainian
The task of toxicity detection is still a relevant task, especially in the context of safe and fair LMs development. Nevertheless, labeled binary toxicity classification corpora are not available for all languages, which is understandable given the resource-intensive nature of the annotation process. Ukrainian, in particular, is among the languages lacking such resources. To our knowledge, there has been no existing toxicity classification corpus in Ukrainian. In this study, we aim to fill this gap by investigating cross-lingual knowledge transfer techniques and creating labeled corpora by: (i)~translating from an English corpus, (ii)~filtering toxic samples using keywords, and (iii)~annotating with crowdsourcing. We compare LLMs prompting and other cross-lingual transfer approaches with and without fine-tuning offering insights into the most robust and efficient baselines.
Maya: An Instruction Finetuned Multilingual Multimodal Model
The rapid development of large Vision-Language Models (VLMs) has led to impressive results on academic benchmarks, primarily in widely spoken languages. However, significant gaps remain in the ability of current VLMs to handle low-resource languages and varied cultural contexts, largely due to a lack of high-quality, diverse, and safety-vetted data. Consequently, these models often struggle to understand low-resource languages and cultural nuances in a manner free from toxicity. To address these limitations, we introduce Maya, an open-source Multimodal Multilingual model. Our contributions are threefold: 1) a multilingual image-text pretraining dataset in eight languages, based on the LLaVA pretraining dataset; 2) a thorough analysis of toxicity within the LLaVA dataset, followed by the creation of a novel toxicity-free version across eight languages; and 3) a multilingual image-text model supporting these languages, enhancing cultural and linguistic comprehension in vision-language tasks. Code available at https://github.com/nahidalam/maya.
No Language Left Behind: Scaling Human-Centered Machine Translation
Driven by the goal of eradicating language barriers on a global scale, machine translation has solidified itself as a key focus of artificial intelligence research today. However, such efforts have coalesced around a small subset of languages, leaving behind the vast majority of mostly low-resource languages. What does it take to break the 200 language barrier while ensuring safe, high quality results, all while keeping ethical considerations in mind? In No Language Left Behind, we took on this challenge by first contextualizing the need for low-resource language translation support through exploratory interviews with native speakers. Then, we created datasets and models aimed at narrowing the performance gap between low and high-resource languages. More specifically, we developed a conditional compute model based on Sparsely Gated Mixture of Experts that is trained on data obtained with novel and effective data mining techniques tailored for low-resource languages. We propose multiple architectural and training improvements to counteract overfitting while training on thousands of tasks. Critically, we evaluated the performance of over 40,000 different translation directions using a human-translated benchmark, Flores-200, and combined human evaluation with a novel toxicity benchmark covering all languages in Flores-200 to assess translation safety. Our model achieves an improvement of 44% BLEU relative to the previous state-of-the-art, laying important groundwork towards realizing a universal translation system. Finally, we open source all contributions described in this work, accessible at https://github.com/facebookresearch/fairseq/tree/nllb.
Every Language Counts: Learn and Unlearn in Multilingual LLMs
This paper investigates the propagation of harmful information in multilingual large language models (LLMs) and evaluates the efficacy of various unlearning methods. We demonstrate that fake information, regardless of the language it is in, once introduced into these models through training data, can spread across different languages, compromising the integrity and reliability of the generated content. Our findings reveal that standard unlearning techniques, which typically focus on English data, are insufficient in mitigating the spread of harmful content in multilingual contexts and could inadvertently reinforce harmful content across languages. We show that only by addressing harmful responses in both English and the original language of the harmful data can we effectively eliminate generations for all languages. This underscores the critical need for comprehensive unlearning strategies that consider the multilingual nature of modern LLMs to enhance their safety and reliability across diverse linguistic landscapes.
Challenges in Detoxifying Language Models
Large language models (LM) generate remarkably fluent text and can be efficiently adapted across NLP tasks. Measuring and guaranteeing the quality of generated text in terms of safety is imperative for deploying LMs in the real world; to this end, prior work often relies on automatic evaluation of LM toxicity. We critically discuss this approach, evaluate several toxicity mitigation strategies with respect to both automatic and human evaluation, and analyze consequences of toxicity mitigation in terms of model bias and LM quality. We demonstrate that while basic intervention strategies can effectively optimize previously established automatic metrics on the RealToxicityPrompts dataset, this comes at the cost of reduced LM coverage for both texts about, and dialects of, marginalized groups. Additionally, we find that human raters often disagree with high automatic toxicity scores after strong toxicity reduction interventions -- highlighting further the nuances involved in careful evaluation of LM toxicity.
Toxic Language Detection in Social Media for Brazilian Portuguese: New Dataset and Multilingual Analysis
Hate speech and toxic comments are a common concern of social media platform users. Although these comments are, fortunately, the minority in these platforms, they are still capable of causing harm. Therefore, identifying these comments is an important task for studying and preventing the proliferation of toxicity in social media. Previous work in automatically detecting toxic comments focus mainly in English, with very few work in languages like Brazilian Portuguese. In this paper, we propose a new large-scale dataset for Brazilian Portuguese with tweets annotated as either toxic or non-toxic or in different types of toxicity. We present our dataset collection and annotation process, where we aimed to select candidates covering multiple demographic groups. State-of-the-art BERT models were able to achieve 76% macro-F1 score using monolingual data in the binary case. We also show that large-scale monolingual data is still needed to create more accurate models, despite recent advances in multilingual approaches. An error analysis and experiments with multi-label classification show the difficulty of classifying certain types of toxic comments that appear less frequently in our data and highlights the need to develop models that are aware of different categories of toxicity.
Added Toxicity Mitigation at Inference Time for Multimodal and Massively Multilingual Translation
Added toxicity in the context of translation refers to the fact of producing a translation output with more toxicity than there exists in the input. In this paper, we present MinTox which is a novel pipeline to identify added toxicity and mitigate this issue which works at inference time. MinTox uses a toxicity detection classifier which is multimodal (speech and text) and works in languages at scale. The mitigation method is applied to languages at scale and directly in text outputs. MinTox is applied to SEAMLESSM4T, which is the latest multimodal and massively multilingual machine translation system. For this system, MinTox achieves significant added toxicity mitigation across domains, modalities and language directions. MinTox manages to approximately filter out from 25% to 95% of added toxicity (depending on the modality and domain) while keeping translation quality.
RTP-LX: Can LLMs Evaluate Toxicity in Multilingual Scenarios?
Large language models (LLMs) and small language models (SLMs) are being adopted at remarkable speed, although their safety still remains a serious concern. With the advent of multilingual S/LLMs, the question now becomes a matter of scale: can we expand multilingual safety evaluations of these models with the same velocity at which they are deployed? To this end we introduce RTP-LX, a human-transcreated and human-annotated corpus of toxic prompts and outputs in 28 languages. RTP-LX follows participatory design practices, and a portion of the corpus is especially designed to detect culturally-specific toxic language. We evaluate seven S/LLMs on their ability to detect toxic content in a culturally-sensitive, multilingual scenario. We find that, although they typically score acceptably in terms of accuracy, they have low agreement with human judges when judging holistically the toxicity of a prompt, and have difficulty discerning harm in context-dependent scenarios, particularly with subtle-yet-harmful content (e.g. microagressions, bias). We release of this dataset to contribute to further reduce harmful uses of these models and improve their safe deployment.
Are Large Language Models Actually Good at Text Style Transfer?
We analyze the performance of large language models (LLMs) on Text Style Transfer (TST), specifically focusing on sentiment transfer and text detoxification across three languages: English, Hindi, and Bengali. Text Style Transfer involves modifying the linguistic style of a text while preserving its core content. We evaluate the capabilities of pre-trained LLMs using zero-shot and few-shot prompting as well as parameter-efficient finetuning on publicly available datasets. Our evaluation using automatic metrics, GPT-4 and human evaluations reveals that while some prompted LLMs perform well in English, their performance in on other languages (Hindi, Bengali) remains average. However, finetuning significantly improves results compared to zero-shot and few-shot prompting, making them comparable to previous state-of-the-art. This underscores the necessity of dedicated datasets and specialized models for effective TST.
IndicLLMSuite: A Blueprint for Creating Pre-training and Fine-Tuning Datasets for Indian Languages
Despite the considerable advancements in English LLMs, the progress in building comparable models for other languages has been hindered due to the scarcity of tailored resources. Our work aims to bridge this divide by introducing an expansive suite of resources specifically designed for the development of Indic LLMs, covering 22 languages, containing a total of 251B tokens and 74.8M instruction-response pairs. Recognizing the importance of both data quality and quantity, our approach combines highly curated manually verified data, unverified yet valuable data, and synthetic data. We build a clean, open-source pipeline for curating pre-training data from diverse sources, including websites, PDFs, and videos, incorporating best practices for crawling, cleaning, flagging, and deduplication. For instruction-fine tuning, we amalgamate existing Indic datasets, translate/transliterate English datasets into Indian languages, and utilize LLaMa2 and Mixtral models to create conversations grounded in articles from Indian Wikipedia and Wikihow. Additionally, we address toxicity alignment by generating toxic prompts for multiple scenarios and then generate non-toxic responses by feeding these toxic prompts to an aligned LLaMa2 model. We hope that the datasets, tools, and resources released as a part of this work will not only propel the research and development of Indic LLMs but also establish an open-source blueprint for extending such efforts to other languages. The data and other artifacts created as part of this work are released with permissive licenses.
Large Language Models for Toxic Language Detection in Low-Resource Balkan Languages
Online toxic language causes real harm, especially in regions with limited moderation tools. In this study, we evaluate how large language models handle toxic comments in Serbian, Croatian, and Bosnian, languages with limited labeled data. We built and manually labeled a dataset of 4,500 YouTube and TikTok comments drawn from videos across diverse categories, including music, politics, sports, modeling, influencer content, discussions of sexism, and general topics. Four models (GPT-3.5 Turbo, GPT-4.1, Gemini 1.5 Pro, and Claude 3 Opus) were tested in two modes: zero-shot and context-augmented. We measured precision, recall, F1 score, accuracy and false positive rates. Including a short context snippet raised recall by about 0.12 on average and improved F1 score by up to 0.10, though it sometimes increased false positives. The best balance came from Gemini in context-augmented mode, reaching an F1 score of 0.82 and accuracy of 0.82, while zero-shot GPT-4.1 led on precision and had the lowest false alarms. We show how adding minimal context can improve toxic language detection in low-resource settings and suggest practical strategies such as improved prompt design and threshold calibration. These results show that prompt design alone can yield meaningful gains in toxicity detection for underserved Balkan language communities.
Goodtriever: Adaptive Toxicity Mitigation with Retrieval-augmented Models
Considerable effort has been dedicated to mitigating toxicity, but existing methods often require drastic modifications to model parameters or the use of computationally intensive auxiliary models. Furthermore, previous approaches have often neglected the crucial factor of language's evolving nature over time. In this work, we present a comprehensive perspective on toxicity mitigation that takes into account its changing nature. We introduce Goodtriever, a flexible methodology that matches the current state-of-the-art toxicity mitigation while achieving 43% relative latency reduction during inference and being more computationally efficient. By incorporating a retrieval-based approach at decoding time, Goodtriever enables toxicity-controlled text generation. Our research advocates for an increased focus on adaptable mitigation techniques, which better reflect the data drift models face when deployed in the wild. Code and data are available at https://github.com/for-ai/goodtriever.
ToxiGen: A Large-Scale Machine-Generated Dataset for Adversarial and Implicit Hate Speech Detection
Toxic language detection systems often falsely flag text that contains minority group mentions as toxic, as those groups are often the targets of online hate. Such over-reliance on spurious correlations also causes systems to struggle with detecting implicitly toxic language. To help mitigate these issues, we create ToxiGen, a new large-scale and machine-generated dataset of 274k toxic and benign statements about 13 minority groups. We develop a demonstration-based prompting framework and an adversarial classifier-in-the-loop decoding method to generate subtly toxic and benign text with a massive pretrained language model. Controlling machine generation in this way allows ToxiGen to cover implicitly toxic text at a larger scale, and about more demographic groups, than previous resources of human-written text. We conduct a human evaluation on a challenging subset of ToxiGen and find that annotators struggle to distinguish machine-generated text from human-written language. We also find that 94.5% of toxic examples are labeled as hate speech by human annotators. Using three publicly-available datasets, we show that finetuning a toxicity classifier on our data improves its performance on human-written data substantially. We also demonstrate that ToxiGen can be used to fight machine-generated toxicity as finetuning improves the classifier significantly on our evaluation subset. Our code and data can be found at https://github.com/microsoft/ToxiGen.
A Dataset for Pharmacovigilance in German, French, and Japanese: Annotating Adverse Drug Reactions across Languages
User-generated data sources have gained significance in uncovering Adverse Drug Reactions (ADRs), with an increasing number of discussions occurring in the digital world. However, the existing clinical corpora predominantly revolve around scientific articles in English. This work presents a multilingual corpus of texts concerning ADRs gathered from diverse sources, including patient fora, social media, and clinical reports in German, French, and Japanese. Our corpus contains annotations covering 12 entity types, four attribute types, and 13 relation types. It contributes to the development of real-world multilingual language models for healthcare. We provide statistics to highlight certain challenges associated with the corpus and conduct preliminary experiments resulting in strong baselines for extracting entities and relations between these entities, both within and across languages.
Multilingual Text Representation
Modern NLP breakthrough includes large multilingual models capable of performing tasks across more than 100 languages. State-of-the-art language models came a long way, starting from the simple one-hot representation of words capable of performing tasks like natural language understanding, common-sense reasoning, or question-answering, thus capturing both the syntax and semantics of texts. At the same time, language models are expanding beyond our known language boundary, even competitively performing over very low-resource dialects of endangered languages. However, there are still problems to solve to ensure an equitable representation of texts through a unified modeling space across language and speakers. In this survey, we shed light on this iterative progression of multilingual text representation and discuss the driving factors that ultimately led to the current state-of-the-art. Subsequently, we discuss how the full potential of language democratization could be obtained, reaching beyond the known limits and what is the scope of improvement in that space.
Understanding and Mitigating Toxicity in Image-Text Pretraining Datasets: A Case Study on LLaVA
Pretraining datasets are foundational to the development of multimodal models, yet they often have inherent biases and toxic content from the web-scale corpora they are sourced from. In this paper, we investigate the prevalence of toxicity in LLaVA image-text pretraining dataset, examining how harmful content manifests in different modalities. We present a comprehensive analysis of common toxicity categories and propose targeted mitigation strategies, resulting in the creation of a refined toxicity-mitigated dataset. This dataset removes 7,531 of toxic image-text pairs in the LLaVA pre-training dataset. We offer guidelines for implementing robust toxicity detection pipelines. Our findings underscore the need to actively identify and filter toxic content - such as hate speech, explicit imagery, and targeted harassment - to build more responsible and equitable multimodal systems. The toxicity-mitigated dataset is open source and is available for further research.
Perplexed by Quality: A Perplexity-based Method for Adult and Harmful Content Detection in Multilingual Heterogeneous Web Data
As demand for large corpora increases with the size of current state-of-the-art language models, using web data as the main part of the pre-training corpus for these models has become a ubiquitous practice. This, in turn, has introduced an important challenge for NLP practitioners, as they are now confronted with the task of developing highly optimized models and pipelines for pre-processing large quantities of textual data, which implies, effectively classifying and filtering multilingual, heterogeneous and noisy data, at web scale. One of the main components of this pre-processing step for the pre-training corpora of large language models, is the removal of adult and harmful content. In this paper we explore different methods for detecting adult and harmful of content in multilingual heterogeneous web data. We first show how traditional methods in harmful content detection, that seemingly perform quite well in small and specialized datasets quickly break down when confronted with heterogeneous noisy web data. We then resort to using a perplexity based approach but with a twist: Instead of using a so-called "clean" corpus to train a small language model and then use perplexity so select the documents with low perplexity, i.e., the documents that resemble this so-called "clean" corpus the most. We train solely with adult and harmful textual data, and then select the documents having a perplexity value above a given threshold. This approach will virtually cluster our documents into two distinct groups, which will greatly facilitate the choice of the threshold for the perplexity and will also allow us to obtain higher precision than with the traditional classification methods for detecting adult and harmful content.
RealToxicityPrompts: Evaluating Neural Toxic Degeneration in Language Models
Pretrained neural language models (LMs) are prone to generating racist, sexist, or otherwise toxic language which hinders their safe deployment. We investigate the extent to which pretrained LMs can be prompted to generate toxic language, and the effectiveness of controllable text generation algorithms at preventing such toxic degeneration. We create and release RealToxicityPrompts, a dataset of 100K naturally occurring, sentence-level prompts derived from a large corpus of English web text, paired with toxicity scores from a widely-used toxicity classifier. Using RealToxicityPrompts, we find that pretrained LMs can degenerate into toxic text even from seemingly innocuous prompts. We empirically assess several controllable generation methods, and find that while data- or compute-intensive methods (e.g., adaptive pretraining on non-toxic data) are more effective at steering away from toxicity than simpler solutions (e.g., banning "bad" words), no current method is failsafe against neural toxic degeneration. To pinpoint the potential cause of such persistent toxic degeneration, we analyze two web text corpora used to pretrain several LMs (including GPT-2; Radford et. al, 2019), and find a significant amount of offensive, factually unreliable, and otherwise toxic content. Our work provides a test bed for evaluating toxic generations by LMs and stresses the need for better data selection processes for pretraining.
Char-mander Use mBackdoor! A Study of Cross-lingual Backdoor Attacks in Multilingual LLMs
We explore Cross-lingual Backdoor ATtacks (X-BAT) in multilingual Large Language Models (mLLMs), revealing how backdoors inserted in one language can automatically transfer to others through shared embedding spaces. Using toxicity classification as a case study, we demonstrate that attackers can compromise multilingual systems by poisoning data in a single language, with rare tokens serving as specific effective triggers. Our findings expose a critical vulnerability in the fundamental architecture that enables cross-lingual transfer in these models. Our code and data are publicly available at https://github.com/himanshubeniwal/X-BAT.
Quality at a Glance: An Audit of Web-Crawled Multilingual Datasets
With the success of large-scale pre-training and multilingual modeling in Natural Language Processing (NLP), recent years have seen a proliferation of large, web-mined text datasets covering hundreds of languages. We manually audit the quality of 205 language-specific corpora released with five major public datasets (CCAligned, ParaCrawl, WikiMatrix, OSCAR, mC4). Lower-resource corpora have systematic issues: At least 15 corpora have no usable text, and a significant fraction contains less than 50% sentences of acceptable quality. In addition, many are mislabeled or use nonstandard/ambiguous language codes. We demonstrate that these issues are easy to detect even for non-proficient speakers, and supplement the human audit with automatic analyses. Finally, we recommend techniques to evaluate and improve multilingual corpora and discuss potential risks that come with low-quality data releases.
Cross-Lingual Transfer for Low-Resource Natural Language Processing
Natural Language Processing (NLP) has seen remarkable advances in recent years, particularly with the emergence of Large Language Models that have achieved unprecedented performance across many tasks. However, these developments have mainly benefited a small number of high-resource languages such as English. The majority of languages still face significant challenges due to the scarcity of training data and computational resources. To address this issue, this thesis focuses on cross-lingual transfer learning, a research area aimed at leveraging data and models from high-resource languages to improve NLP performance for low-resource languages. Specifically, we focus on Sequence Labeling tasks such as Named Entity Recognition, Opinion Target Extraction, and Argument Mining. The research is structured around three main objectives: (1) advancing data-based cross-lingual transfer learning methods through improved translation and annotation projection techniques, (2) developing enhanced model-based transfer learning approaches utilizing state-of-the-art multilingual models, and (3) applying these methods to real-world problems while creating open-source resources that facilitate future research in low-resource NLP. More specifically, this thesis presents a new method to improve data-based transfer with T-Projection, a state-of-the-art annotation projection method that leverages text-to-text multilingual models and machine translation systems. T-Projection significantly outperforms previous annotation projection methods by a wide margin. For model-based transfer, we introduce a constrained decoding algorithm that enhances cross-lingual Sequence Labeling in zero-shot settings using text-to-text models. Finally, we develop Medical mT5, the first multilingual text-to-text medical model, demonstrating the practical impact of our research on real-world applications.
Multilingual Large Language Models: A Systematic Survey
This paper provides a comprehensive survey of the latest research on multilingual large language models (MLLMs). MLLMs not only are able to understand and generate language across linguistic boundaries, but also represent an important advancement in artificial intelligence. We first discuss the architecture and pre-training objectives of MLLMs, highlighting the key components and methodologies that contribute to their multilingual capabilities. We then discuss the construction of multilingual pre-training and alignment datasets, underscoring the importance of data quality and diversity in enhancing MLLM performance. An important focus of this survey is on the evaluation of MLLMs. We present a detailed taxonomy and roadmap covering the assessment of MLLMs' cross-lingual knowledge, reasoning, alignment with human values, safety, interpretability and specialized applications. Specifically, we extensively discuss multilingual evaluation benchmarks and datasets, and explore the use of LLMs themselves as multilingual evaluators. To enhance MLLMs from black to white boxes, we also address the interpretability of multilingual capabilities, cross-lingual transfer and language bias within these models. Finally, we provide a comprehensive review of real-world applications of MLLMs across diverse domains, including biology, medicine, computer science, mathematics and law. We showcase how these models have driven innovation and improvements in these specialized fields while also highlighting the challenges and opportunities in deploying MLLMs within diverse language communities and application scenarios. We listed the paper related in this survey and publicly available at https://github.com/tjunlp-lab/Awesome-Multilingual-LLMs-Papers.
Multi-Task Contrastive Learning for 8192-Token Bilingual Text Embeddings
We introduce a novel suite of state-of-the-art bilingual text embedding models that are designed to support English and another target language. These models are capable of processing lengthy text inputs with up to 8192 tokens, making them highly versatile for a range of natural language processing tasks such as text retrieval, clustering, and semantic textual similarity (STS) calculations. By focusing on bilingual models and introducing a unique multi-task learning objective, we have significantly improved the model performance on STS tasks, which outperforms the capabilities of existing multilingual models in both target language understanding and cross-lingual evaluation tasks. Moreover, our bilingual models are more efficient, requiring fewer parameters and less memory due to their smaller vocabulary needs. Furthermore, we have expanded the Massive Text Embedding Benchmark (MTEB) to include benchmarks for German and Spanish embedding models. This integration aims to stimulate further research and advancement in text embedding technologies for these languages.
JiraiBench: A Bilingual Benchmark for Evaluating Large Language Models' Detection of Human Self-Destructive Behavior Content in Jirai Community
This paper introduces JiraiBench, the first bilingual benchmark for evaluating large language models' effectiveness in detecting self-destructive content across Chinese and Japanese social media communities. Focusing on the transnational "Jirai" (landmine) online subculture that encompasses multiple forms of self-destructive behaviors including drug overdose, eating disorders, and self-harm, we present a comprehensive evaluation framework incorporating both linguistic and cultural dimensions. Our dataset comprises 10,419 Chinese posts and 5,000 Japanese posts with multidimensional annotation along three behavioral categories, achieving substantial inter-annotator agreement. Experimental evaluations across four state-of-the-art models reveal significant performance variations based on instructional language, with Japanese prompts unexpectedly outperforming Chinese prompts when processing Chinese content. This emergent cross-cultural transfer suggests that cultural proximity can sometimes outweigh linguistic similarity in detection tasks. Cross-lingual transfer experiments with fine-tuned models further demonstrate the potential for knowledge transfer between these language systems without explicit target language training. These findings highlight the need for culturally-informed approaches to multilingual content moderation and provide empirical evidence for the importance of cultural context in developing more effective detection systems for vulnerable online communities.
ChineseWebText 2.0: Large-Scale High-quality Chinese Web Text with Multi-dimensional and fine-grained information
During the development of large language models (LLMs), pre-training data play a critical role in shaping LLMs' capabilities. In recent years several large-scale and high-quality pre-training datasets have been released to accelerate the research of LLMs, including ChineseWebText1.0, C4, Pile, WanJuan, MAPCC and others. However, as LLMs continue to evolve, focus has increasingly shifted to domain-specific capabilities and safety concerns, making those previous coarse-grained texts insufficient for meeting training requirements. Furthermore, fine-grained information, such as quality, domain and toxicity, is becoming increasingly important in building powerful and reliable LLMs for various scenarios. To address these challenges, in this paper we propose a new tool-chain called MDFG-tool for constructing large-scale and high-quality Chinese datasets with multi-dimensional and fine-grained information. First, we employ manually crafted rules to discard explicit noisy texts from raw contents. Second, the quality evaluation model, domain classifier, and toxicity evaluation model are well-designed to assess the remaining cleaned data respectively. Finally, we integrate these three types of fine-grained information for each text. With this approach, we release the largest, high-quality and fine-grained Chinese text ChineseWebText2.0, which consists of 3.8TB and each text is associated with a quality score, domain labels, a toxicity label and a toxicity score, facilitating the LLM researchers to select data based on various types of fine-grained information. The data, codes and the tool-chain are available on this website https://github.com/CASIA-LM/ChineseWebText-2.0
Toxicity of the Commons: Curating Open-Source Pre-Training Data
Open-source large language models are becoming increasingly available and popular among researchers and practitioners. While significant progress has been made on open-weight models, open training data is a practice yet to be adopted by the leading open-weight models creators. At the same time, there researchers are working to make language models safer. We propose a data curation pipeline to reduce harmful outputs by models trained on public domain data. There are unique challenges to working with public domain data, as these sources differ from web text in both form and content. Many sources are historical documents and are the result of Optical Character Recognition (OCR). Consequently, current state-of-the-art approaches to toxicity filtering are often infeasible or inappropriate for open data models. In this paper, we introduce a new fully open-source pipeline for open-data toxicity filtering. Our contributions are threefold. We create a custom training dataset, ToxicCommons, which is composed of texts which have been classified across five different dimensions (racial/origin-based, gender/sex-based, religious, ability-based discrimination, and violence). We use this dataset to train a custom classifier, Celadon, that can be used to detect toxic content in open data more efficiently at a larger scale. Finally, we describe the balanced approach to content filtration that optimizes safety filtering with respect to the filtered data available for training.
Vietnamese AI Generated Text Detection
In recent years, Large Language Models (LLMs) have become integrated into our daily lives, serving as invaluable assistants in completing tasks. Widely embraced by users, the abuse of LLMs is inevitable, particularly in using them to generate text content for various purposes, leading to difficulties in distinguishing between text generated by LLMs and that written by humans. In this study, we present a dataset named ViDetect, comprising 6.800 samples of Vietnamese essay, with 3.400 samples authored by humans and the remainder generated by LLMs, serving the purpose of detecting text generated by AI. We conducted evaluations using state-of-the-art methods, including ViT5, BartPho, PhoBERT, mDeberta V3, and mBERT. These results contribute not only to the growing body of research on detecting text generated by AI but also demonstrate the adaptability and effectiveness of different methods in the Vietnamese language context. This research lays the foundation for future advancements in AI-generated text detection and provides valuable insights for researchers in the field of natural language processing.
MemeGuard: An LLM and VLM-based Framework for Advancing Content Moderation via Meme Intervention
In the digital world, memes present a unique challenge for content moderation due to their potential to spread harmful content. Although detection methods have improved, proactive solutions such as intervention are still limited, with current research focusing mostly on text-based content, neglecting the widespread influence of multimodal content like memes. Addressing this gap, we present MemeGuard, a comprehensive framework leveraging Large Language Models (LLMs) and Visual Language Models (VLMs) for meme intervention. MemeGuard harnesses a specially fine-tuned VLM, VLMeme, for meme interpretation, and a multimodal knowledge selection and ranking mechanism (MKS) for distilling relevant knowledge. This knowledge is then employed by a general-purpose LLM to generate contextually appropriate interventions. Another key contribution of this work is the \textbf{Intervening} \textbf{Cyberbullying in Multimodal Memes (ICMM)} dataset, a high-quality, labeled dataset featuring toxic memes and their corresponding human-annotated interventions. We leverage ICMM to test MemeGuard, demonstrating its proficiency in generating relevant and effective responses to toxic memes.
ChineseHarm-Bench: A Chinese Harmful Content Detection Benchmark
Large language models (LLMs) have been increasingly applied to automated harmful content detection tasks, assisting moderators in identifying policy violations and improving the overall efficiency and accuracy of content review. However, existing resources for harmful content detection are predominantly focused on English, with Chinese datasets remaining scarce and often limited in scope. We present a comprehensive, professionally annotated benchmark for Chinese content harm detection, which covers six representative categories and is constructed entirely from real-world data. Our annotation process further yields a knowledge rule base that provides explicit expert knowledge to assist LLMs in Chinese harmful content detection. In addition, we propose a knowledge-augmented baseline that integrates both human-annotated knowledge rules and implicit knowledge from large language models, enabling smaller models to achieve performance comparable to state-of-the-art LLMs. Code and data are available at https://github.com/zjunlp/ChineseHarm-bench.
Overcoming Language Disparity in Online Content Classification with Multimodal Learning
Advances in Natural Language Processing (NLP) have revolutionized the way researchers and practitioners address crucial societal problems. Large language models are now the standard to develop state-of-the-art solutions for text detection and classification tasks. However, the development of advanced computational techniques and resources is disproportionately focused on the English language, sidelining a majority of the languages spoken globally. While existing research has developed better multilingual and monolingual language models to bridge this language disparity between English and non-English languages, we explore the promise of incorporating the information contained in images via multimodal machine learning. Our comparative analyses on three detection tasks focusing on crisis information, fake news, and emotion recognition, as well as five high-resource non-English languages, demonstrate that: (a) detection frameworks based on pre-trained large language models like BERT and multilingual-BERT systematically perform better on the English language compared against non-English languages, and (b) including images via multimodal learning bridges this performance gap. We situate our findings with respect to existing work on the pitfalls of large language models, and discuss their theoretical and practical implications. Resources for this paper are available at https://multimodality-language-disparity.github.io/.
Multilingual Large Language Model: A Survey of Resources, Taxonomy and Frontiers
Multilingual Large Language Models are capable of using powerful Large Language Models to handle and respond to queries in multiple languages, which achieves remarkable success in multilingual natural language processing tasks. Despite these breakthroughs, there still remains a lack of a comprehensive survey to summarize existing approaches and recent developments in this field. To this end, in this paper, we present a thorough review and provide a unified perspective to summarize the recent progress as well as emerging trends in multilingual large language models (MLLMs) literature. The contributions of this paper can be summarized: (1) First survey: to our knowledge, we take the first step and present a thorough review in MLLMs research field according to multi-lingual alignment; (2) New taxonomy: we offer a new and unified perspective to summarize the current progress of MLLMs; (3) New frontiers: we highlight several emerging frontiers and discuss the corresponding challenges; (4) Abundant resources: we collect abundant open-source resources, including relevant papers, data corpora, and leaderboards. We hope our work can provide the community with quick access and spur breakthrough research in MLLMs.
GTA: Gated Toxicity Avoidance for LM Performance Preservation
Caution: This paper includes offensive words that could potentially cause unpleasantness. The fast-paced evolution of generative language models such as GPT-4 has demonstrated outstanding results in various NLP generation tasks. However, due to the potential generation of offensive words related to race or gender, various Controllable Text Generation (CTG) methods have been proposed to mitigate the occurrence of harmful words. However, existing CTG methods not only reduce toxicity but also negatively impact several aspects of the language model's generation performance, including topic consistency, grammar, and perplexity. This paper explores the limitations of previous methods and introduces a novel solution in the form of a simple Gated Toxicity Avoidance (GTA) that can be applied to any CTG method. We also evaluate the effectiveness of the proposed GTA by comparing it with state-of-the-art CTG methods across various datasets. Our findings reveal that gated toxicity avoidance efficiently achieves comparable levels of toxicity reduction to the original CTG methods while preserving the generation performance of the language model.
MMTEB: Massive Multilingual Text Embedding Benchmark
Text embeddings are typically evaluated on a limited set of tasks, which are constrained by language, domain, and task diversity. To address these limitations and provide a more comprehensive evaluation, we introduce the Massive Multilingual Text Embedding Benchmark (MMTEB) - a large-scale, community-driven expansion of MTEB, covering over 500 quality-controlled evaluation tasks across 250+ languages. MMTEB includes a diverse set of challenging, novel tasks such as instruction following, long-document retrieval, and code retrieval, representing the largest multilingual collection of evaluation tasks for embedding models to date. Using this collection, we develop several highly multilingual benchmarks, which we use to evaluate a representative set of models. We find that while large language models (LLMs) with billions of parameters can achieve state-of-the-art performance on certain language subsets and task categories, the best-performing publicly available model is multilingual-e5-large-instruct with only 560 million parameters. To facilitate accessibility and reduce computational cost, we introduce a novel downsampling method based on inter-task correlation, ensuring a diverse selection while preserving relative model rankings. Furthermore, we optimize tasks such as retrieval by sampling hard negatives, creating smaller but effective splits. These optimizations allow us to introduce benchmarks that drastically reduce computational demands. For instance, our newly introduced zero-shot English benchmark maintains a ranking order similar to the full-scale version but at a fraction of the computational cost.
Reducing Unintended Identity Bias in Russian Hate Speech Detection
Toxicity has become a grave problem for many online communities and has been growing across many languages, including Russian. Hate speech creates an environment of intimidation, discrimination, and may even incite some real-world violence. Both researchers and social platforms have been focused on developing models to detect toxicity in online communication for a while now. A common problem of these models is the presence of bias towards some words (e.g. woman, black, jew) that are not toxic, but serve as triggers for the classifier due to model caveats. In this paper, we describe our efforts towards classifying hate speech in Russian, and propose simple techniques of reducing unintended bias, such as generating training data with language models using terms and words related to protected identities as context and applying word dropout to such words.
HRIPBench: Benchmarking LLMs in Harm Reduction Information Provision to Support People Who Use Drugs
Millions of individuals' well-being are challenged by the harms of substance use. Harm reduction as a public health strategy is designed to improve their health outcomes and reduce safety risks. Some large language models (LLMs) have demonstrated a decent level of medical knowledge, promising to address the information needs of people who use drugs (PWUD). However, their performance in relevant tasks remains largely unexplored. We introduce HRIPBench, a benchmark designed to evaluate LLM's accuracy and safety risks in harm reduction information provision. The benchmark dataset HRIP-Basic has 2,160 question-answer-evidence pairs. The scope covers three tasks: checking safety boundaries, providing quantitative values, and inferring polysubstance use risks. We build the Instruction and RAG schemes to evaluate model behaviours based on their inherent knowledge and the integration of domain knowledge. Our results indicate that state-of-the-art LLMs still struggle to provide accurate harm reduction information, and sometimes, carry out severe safety risks to PWUD. The use of LLMs in harm reduction contexts should be cautiously constrained to avoid inducing negative health outcomes. WARNING: This paper contains illicit content that potentially induces harms.
Multilingual Jailbreak Challenges in Large Language Models
While large language models (LLMs) exhibit remarkable capabilities across a wide range of tasks, they pose potential safety concerns, such as the ``jailbreak'' problem, wherein malicious instructions can manipulate LLMs to exhibit undesirable behavior. Although several preventive measures have been developed to mitigate the potential risks associated with LLMs, they have primarily focused on English data. In this study, we reveal the presence of multilingual jailbreak challenges within LLMs and consider two potential risk scenarios: unintentional and intentional. The unintentional scenario involves users querying LLMs using non-English prompts and inadvertently bypassing the safety mechanisms, while the intentional scenario concerns malicious users combining malicious instructions with multilingual prompts to deliberately attack LLMs. The experimental results reveal that in the unintentional scenario, the rate of unsafe content increases as the availability of languages decreases. Specifically, low-resource languages exhibit three times the likelihood of encountering harmful content compared to high-resource languages, with both ChatGPT and GPT-4. In the intentional scenario, multilingual prompts can exacerbate the negative impact of malicious instructions, with astonishingly high rates of unsafe output: 80.92\% for ChatGPT and 40.71\% for GPT-4. To handle such a challenge in the multilingual context, we propose a novel Self-Defense framework that automatically generates multilingual training data for safety fine-tuning. Experimental results show that ChatGPT fine-tuned with such data can achieve a substantial reduction in unsafe content generation. Data is available at https://github.com/DAMO-NLP-SG/multilingual-safety-for-LLMs. Warning: This paper contains examples with potentially harmful content.
Cross-Domain Toxic Spans Detection
Given the dynamic nature of toxic language use, automated methods for detecting toxic spans are likely to encounter distributional shift. To explore this phenomenon, we evaluate three approaches for detecting toxic spans under cross-domain conditions: lexicon-based, rationale extraction, and fine-tuned language models. Our findings indicate that a simple method using off-the-shelf lexicons performs best in the cross-domain setup. The cross-domain error analysis suggests that (1) rationale extraction methods are prone to false negatives, while (2) language models, despite performing best for the in-domain case, recall fewer explicitly toxic words than lexicons and are prone to certain types of false positives. Our code is publicly available at: https://github.com/sfschouten/toxic-cross-domain.
TransliCo: A Contrastive Learning Framework to Address the Script Barrier in Multilingual Pretrained Language Models
The world's more than 7000 languages are written in at least 293 scripts. Due to various reasons, many closely related languages use different scripts, which poses a difficulty for multilingual pretrained language models (mPLMs) in learning crosslingual knowledge through lexical overlap. As a consequence, mPLMs are faced with a script barrier: representations from different scripts are located in different subspaces, which can result in crosslingual transfer involving languages of different scripts performing suboptimally. To address this problem, we propose TransliCo, a framework that optimizes the Transliteration Contrastive Modeling (TCM) objective to fine-tune an mPLM by contrasting sentences in its training data and their transliterations in a unified script (in our case Latin), which enhances uniformity in the representation space for different scripts. Using Glot500-m, an mPLM pretrained on over 500 languages, as our source model, we fine-tune it on a small portion (5%) of its training data, and refer to the resulting model as Furina. We show that Furina not only better aligns representations from distinct scripts but also outperforms the original Glot500-m on various zero-shot crosslingual transfer tasks. Additionally, we achieve consistent improvement in a case study on the Indic group where the languages exhibit areal features but use different scripts. We make our code and models publicly available.
Towards Safer Pretraining: Analyzing and Filtering Harmful Content in Webscale datasets for Responsible LLMs
Large language models (LLMs) have become integral to various real-world applications, leveraging massive, web-sourced datasets like Common Crawl, C4, and FineWeb for pretraining. While these datasets provide linguistic data essential for high-quality natural language generation, they often contain harmful content, such as hate speech, misinformation, and biased narratives. Training LLMs on such unfiltered data risks perpetuating toxic behaviors, spreading misinformation, and amplifying societal biases which can undermine trust in LLM-driven applications and raise ethical concerns about their use. This paper presents a large-scale analysis of inappropriate content across these datasets, offering a comprehensive taxonomy that categorizes harmful webpages into Topical and Toxic based on their intent. We also introduce a prompt evaluation dataset, a high-accuracy Topical and Toxic Prompt (TTP), and a transformer-based model (HarmFormer) for content filtering. Additionally, we create a new multi-harm open-ended toxicity benchmark (HAVOC) and provide crucial insights into how models respond to adversarial toxic inputs. Upon publishing, we will also opensource our model signal on the entire C4 dataset. Our work offers insights into ensuring safer LLM pretraining and serves as a resource for Responsible AI (RAI) compliance.
Qorgau: Evaluating LLM Safety in Kazakh-Russian Bilingual Contexts
Large language models (LLMs) are known to have the potential to generate harmful content, posing risks to users. While significant progress has been made in developing taxonomies for LLM risks and safety evaluation prompts, most studies have focused on monolingual contexts, primarily in English. However, language- and region-specific risks in bilingual contexts are often overlooked, and core findings can diverge from those in monolingual settings. In this paper, we introduce Qorgau, a novel dataset specifically designed for safety evaluation in Kazakh and Russian, reflecting the unique bilingual context in Kazakhstan, where both Kazakh (a low-resource language) and Russian (a high-resource language) are spoken. Experiments with both multilingual and language-specific LLMs reveal notable differences in safety performance, emphasizing the need for tailored, region-specific datasets to ensure the responsible and safe deployment of LLMs in countries like Kazakhstan. Warning: this paper contains example data that may be offensive, harmful, or biased.
A Shocking Amount of the Web is Machine Translated: Insights from Multi-Way Parallelism
We show that content on the web is often translated into many languages, and the low quality of these multi-way translations indicates they were likely created using Machine Translation (MT). Multi-way parallel, machine generated content not only dominates the translations in lower resource languages; it also constitutes a large fraction of the total web content in those languages. We also find evidence of a selection bias in the type of content which is translated into many languages, consistent with low quality English content being translated en masse into many lower resource languages, via MT. Our work raises serious concerns about training models such as multilingual large language models on both monolingual and bilingual data scraped from the web.
IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation
The T5 model and its unified text-to-text paradigm contributed in advancing the state-of-the-art for many natural language processing tasks. While some multilingual variants of the T5 model have recently been introduced, their performances were found to provide suboptimal performances for languages other than English if compared to monolingual variants. We are motivated by these findings to introduce IT5, the first family of encoder-decoder transformer models pretrained specifically on Italian. We perform a thorough cleaning of a web-crawled Italian corpus including more than 40 billion words and use it to pretrain three IT5 models of different sizes. The performance of IT5 models and their multilingual counterparts is then evaluated on a broad range of natural language understanding and generation benchmarks for Italian. We find the monolingual IT5 models to provide the best scale-to-performance ratio across tested models, consistently outperforming their multilingual counterparts and setting a new state-of-the-art for most Italian conditional language generation tasks.
A Biomedical Entity Extraction Pipeline for Oncology Health Records in Portuguese
Textual health records of cancer patients are usually protracted and highly unstructured, making it very time-consuming for health professionals to get a complete overview of the patient's therapeutic course. As such limitations can lead to suboptimal and/or inefficient treatment procedures, healthcare providers would greatly benefit from a system that effectively summarizes the information of those records. With the advent of deep neural models, this objective has been partially attained for English clinical texts, however, the research community still lacks an effective solution for languages with limited resources. In this paper, we present the approach we developed to extract procedures, drugs, and diseases from oncology health records written in European Portuguese. This project was conducted in collaboration with the Portuguese Institute for Oncology which, besides holding over 10 years of duly protected medical records, also provided oncologist expertise throughout the development of the project. Since there is no annotated corpus for biomedical entity extraction in Portuguese, we also present the strategy we followed in annotating the corpus for the development of the models. The final models, which combined a neural architecture with entity linking, achieved F_1 scores of 88.6, 95.0, and 55.8 per cent in the mention extraction of procedures, drugs, and diseases, respectively.
GlotScript: A Resource and Tool for Low Resource Writing System Identification
We present GlotScript, an open resource and tool for low resource writing system identification. GlotScript-R is a resource that provides the attested writing systems for more than 7,000 languages. It is compiled by aggregating information from existing writing system resources. GlotScript-T is a writing system identification tool that covers all 161 Unicode 15.0 scripts. For an input text, it returns its script distribution where scripts are identified by ISO 15924 codes. We also present two use cases for GlotScript. First, we demonstrate that GlotScript supports cleaning multilingual corpora such as mC4 and OSCAR. Second, we analyze the tokenization of a number of language models such as GPT-4 using GlotScript and provide insights on the coverage of low resource scripts and languages by each language model. We hope that GlotScript will become a useful resource for work on low resource languages in the NLP community. GlotScript-R and GlotScript-T are available at https://github.com/cisnlp/GlotScript.
Medical mT5: An Open-Source Multilingual Text-to-Text LLM for The Medical Domain
Research on language technology for the development of medical applications is currently a hot topic in Natural Language Understanding and Generation. Thus, a number of large language models (LLMs) have recently been adapted to the medical domain, so that they can be used as a tool for mediating in human-AI interaction. While these LLMs display competitive performance on automated medical texts benchmarks, they have been pre-trained and evaluated with a focus on a single language (English mostly). This is particularly true of text-to-text models, which typically require large amounts of domain-specific pre-training data, often not easily accessible for many languages. In this paper, we address these shortcomings by compiling, to the best of our knowledge, the largest multilingual corpus for the medical domain in four languages, namely English, French, Italian and Spanish. This new corpus has been used to train Medical mT5, the first open-source text-to-text multilingual model for the medical domain. Additionally, we present two new evaluation benchmarks for all four languages with the aim of facilitating multilingual research in this domain. A comprehensive evaluation shows that Medical mT5 outperforms both encoders and similarly sized text-to-text models for the Spanish, French, and Italian benchmarks, while being competitive with current state-of-the-art LLMs in English.
Aya Model: An Instruction Finetuned Open-Access Multilingual Language Model
Recent breakthroughs in large language models (LLMs) have centered around a handful of data-rich languages. What does it take to broaden access to breakthroughs beyond first-class citizen languages? Our work introduces Aya, a massively multilingual generative language model that follows instructions in 101 languages of which over 50% are considered as lower-resourced. Aya outperforms mT0 and BLOOMZ on the majority of tasks while covering double the number of languages. We introduce extensive new evaluation suites that broaden the state-of-art for multilingual eval across 99 languages -- including discriminative and generative tasks, human evaluation, and simulated win rates that cover both held-out tasks and in-distribution performance. Furthermore, we conduct detailed investigations on the optimal finetuning mixture composition, data pruning, as well as the toxicity, bias, and safety of our models. We open-source our instruction datasets and our model at https://hf.co/CohereForAI/aya-101
Learning Compact Metrics for MT
Recent developments in machine translation and multilingual text generation have led researchers to adopt trained metrics such as COMET or BLEURT, which treat evaluation as a regression problem and use representations from multilingual pre-trained models such as XLM-RoBERTa or mBERT. Yet studies on related tasks suggest that these models are most efficient when they are large, which is costly and impractical for evaluation. We investigate the trade-off between multilinguality and model capacity with RemBERT, a state-of-the-art multilingual language model, using data from the WMT Metrics Shared Task. We present a series of experiments which show that model size is indeed a bottleneck for cross-lingual transfer, then demonstrate how distillation can help addressing this bottleneck, by leveraging synthetic data generation and transferring knowledge from one teacher to multiple students trained on related languages. Our method yields up to 10.5% improvement over vanilla fine-tuning and reaches 92.6% of RemBERT's performance using only a third of its parameters.
MEL: Legal Spanish Language Model
Legal texts, characterized by complex and specialized terminology, present a significant challenge for Language Models. Adding an underrepresented language, such as Spanish, to the mix makes it even more challenging. While pre-trained models like XLM-RoBERTa have shown capabilities in handling multilingual corpora, their performance on domain specific documents remains underexplored. This paper presents the development and evaluation of MEL, a legal language model based on XLM-RoBERTa-large, fine-tuned on legal documents such as BOE (Bolet\'in Oficial del Estado, the Spanish oficial report of laws) and congress texts. We detail the data collection, processing, training, and evaluation processes. Evaluation benchmarks show a significant improvement over baseline models in understanding the legal Spanish language. We also present case studies demonstrating the model's application to new legal texts, highlighting its potential to perform top results over different NLP tasks.
A Survey on Large Language Models with Multilingualism: Recent Advances and New Frontiers
The rapid development of Large Language Models (LLMs) demonstrates remarkable multilingual capabilities in natural language processing, attracting global attention in both academia and industry. To mitigate potential discrimination and enhance the overall usability and accessibility for diverse language user groups, it is important for the development of language-fair technology. Despite the breakthroughs of LLMs, the investigation into the multilingual scenario remains insufficient, where a comprehensive survey to summarize recent approaches, developments, limitations, and potential solutions is desirable. To this end, we provide a survey with multiple perspectives on the utilization of LLMs in the multilingual scenario. We first rethink the transitions between previous and current research on pre-trained language models. Then we introduce several perspectives on the multilingualism of LLMs, including training and inference methods, model security, multi-domain with language culture, and usage of datasets. We also discuss the major challenges that arise in these aspects, along with possible solutions. Besides, we highlight future research directions that aim at further enhancing LLMs with multilingualism. The survey aims to help the research community address multilingual problems and provide a comprehensive understanding of the core concepts, key techniques, and latest developments in multilingual natural language processing based on LLMs.
Challenges in Automated Debiasing for Toxic Language Detection
Biased associations have been a challenge in the development of classifiers for detecting toxic language, hindering both fairness and accuracy. As potential solutions, we investigate recently introduced debiasing methods for text classification datasets and models, as applied to toxic language detection. Our focus is on lexical (e.g., swear words, slurs, identity mentions) and dialectal markers (specifically African American English). Our comprehensive experiments establish that existing methods are limited in their ability to prevent biased behavior in current toxicity detectors. We then propose an automatic, dialect-aware data correction method, as a proof-of-concept. Despite the use of synthetic labels, this method reduces dialectal associations with toxicity. Overall, our findings show that debiasing a model trained on biased toxic language data is not as effective as simply relabeling the data to remove existing biases.
Evaluating Copyright Takedown Methods for Language Models
Language models (LMs) derive their capabilities from extensive training on diverse data, including potentially copyrighted material. These models can memorize and generate content similar to their training data, posing potential concerns. Therefore, model creators are motivated to develop mitigation methods that prevent generating protected content. We term this procedure as copyright takedowns for LMs, noting the conceptual similarity to (but legal distinction from) the DMCA takedown This paper introduces the first evaluation of the feasibility and side effects of copyright takedowns for LMs. We propose CoTaEval, an evaluation framework to assess the effectiveness of copyright takedown methods, the impact on the model's ability to retain uncopyrightable factual knowledge from the training data whose recitation is embargoed, and how well the model maintains its general utility and efficiency. We examine several strategies, including adding system prompts, decoding-time filtering interventions, and unlearning approaches. Our findings indicate that no tested method excels across all metrics, showing significant room for research in this unique problem setting and indicating potential unresolved challenges for live policy proposals.
UPB at SemEval-2021 Task 5: Virtual Adversarial Training for Toxic Spans Detection
The real-world impact of polarization and toxicity in the online sphere marked the end of 2020 and the beginning of this year in a negative way. Semeval-2021, Task 5 - Toxic Spans Detection is based on a novel annotation of a subset of the Jigsaw Unintended Bias dataset and is the first language toxicity detection task dedicated to identifying the toxicity-level spans. For this task, participants had to automatically detect character spans in short comments that render the message as toxic. Our model considers applying Virtual Adversarial Training in a semi-supervised setting during the fine-tuning process of several Transformer-based models (i.e., BERT and RoBERTa), in combination with Conditional Random Fields. Our approach leads to performance improvements and more robust models, enabling us to achieve an F1-score of 65.73% in the official submission and an F1-score of 66.13% after further tuning during post-evaluation.
Salamandra Technical Report
This work introduces Salamandra, a suite of open-source decoder-only large language models available in three different sizes: 2, 7, and 40 billion parameters. The models were trained from scratch on highly multilingual data that comprises text in 35 European languages and code. Our carefully curated corpus is made exclusively from open-access data compiled from a wide variety of sources. Along with the base models, supplementary checkpoints that were fine-tuned on public-domain instruction data are also released for chat applications. Additionally, we also share our preliminary experiments on multimodality, which serve as proof-of-concept to showcase potential applications for the Salamandra family. Our extensive evaluations on multilingual benchmarks reveal that Salamandra has strong capabilities, achieving competitive performance when compared to similarly sized open-source models. We provide comprehensive evaluation results both on standard downstream tasks as well as key aspects related to bias and safety.With this technical report, we intend to promote open science by sharing all the details behind our design choices, data curation strategy and evaluation methodology. In addition to that, we deviate from the usual practice by making our training and evaluation scripts publicly accessible. We release all models under a permissive Apache 2.0 license in order to foster future research and facilitate commercial use, thereby contributing to the open-source ecosystem of large language models.
Revisiting non-English Text Simplification: A Unified Multilingual Benchmark
Recent advancements in high-quality, large-scale English resources have pushed the frontier of English Automatic Text Simplification (ATS) research. However, less work has been done on multilingual text simplification due to the lack of a diverse evaluation benchmark that covers complex-simple sentence pairs in many languages. This paper introduces the MultiSim benchmark, a collection of 27 resources in 12 distinct languages containing over 1.7 million complex-simple sentence pairs. This benchmark will encourage research in developing more effective multilingual text simplification models and evaluation metrics. Our experiments using MultiSim with pre-trained multilingual language models reveal exciting performance improvements from multilingual training in non-English settings. We observe strong performance from Russian in zero-shot cross-lingual transfer to low-resource languages. We further show that few-shot prompting with BLOOM-176b achieves comparable quality to reference simplifications outperforming fine-tuned models in most languages. We validate these findings through human evaluation.
Glot500: Scaling Multilingual Corpora and Language Models to 500 Languages
The NLP community has mainly focused on scaling Large Language Models (LLMs) vertically, i.e., making them better for about 100 languages. We instead scale LLMs horizontally: we create, through continued pretraining, Glot500-m, an LLM that covers 511 languages, almost all of them low-resource. An important part of this effort is to collect and clean Glot500-c, a corpus that covers these 511 languages and allows us to train Glot500-m. We evaluate Glot500-m on five diverse tasks across these languages. We observe large improvements for both high-resource and lowresource languages compared to an XLM-R baseline. Our analysis shows that no single factor explains the quality of multilingual LLM representations. Rather, a combination of factors determines quality including corpus size, script, "help" from related languages and the total capacity of the model. Our work addresses an important goal of NLP research: we should not limit NLP to a small fraction of the world's languages and instead strive to support as many languages as possible to bring the benefits of NLP technology to all languages and cultures. Code, data and models are available at https://github.com/cisnlp/Glot500.
mRAT-SQL+GAP:A Portuguese Text-to-SQL Transformer
The translation of natural language questions to SQL queries has attracted growing attention, in particular in connection with transformers and similar language models. A large number of techniques are geared towards the English language; in this work, we thus investigated translation to SQL when input questions are given in the Portuguese language. To do so, we properly adapted state-of-the-art tools and resources. We changed the RAT-SQL+GAP system by relying on a multilingual BART model (we report tests with other language models), and we produced a translated version of the Spider dataset. Our experiments expose interesting phenomena that arise when non-English languages are targeted; in particular, it is better to train with original and translated training datasets together, even if a single target language is desired. This multilingual BART model fine-tuned with a double-size training dataset (English and Portuguese) achieved 83% of the baseline, making inferences for the Portuguese test dataset. This investigation can help other researchers to produce results in Machine Learning in a language different from English. Our multilingual ready version of RAT-SQL+GAP and the data are available, open-sourced as mRAT-SQL+GAP at: https://github.com/C4AI/gap-text2sql
Klexikon: A German Dataset for Joint Summarization and Simplification
Traditionally, Text Simplification is treated as a monolingual translation task where sentences between source texts and their simplified counterparts are aligned for training. However, especially for longer input documents, summarizing the text (or dropping less relevant content altogether) plays an important role in the simplification process, which is currently not reflected in existing datasets. Simultaneously, resources for non-English languages are scarce in general and prohibitive for training new solutions. To tackle this problem, we pose core requirements for a system that can jointly summarize and simplify long source documents. We further describe the creation of a new dataset for joint Text Simplification and Summarization based on German Wikipedia and the German children's lexicon "Klexikon", consisting of almost 2900 documents. We release a document-aligned version that particularly highlights the summarization aspect, and provide statistical evidence that this resource is well suited to simplification as well. Code and data are available on Github: https://github.com/dennlinger/klexikon
SICKNL: A Dataset for Dutch Natural Language Inference
We present SICK-NL (read: signal), a dataset targeting Natural Language Inference in Dutch. SICK-NL is obtained by translating the SICK dataset of Marelli et al. (2014)from English into Dutch. Having a parallel inference dataset allows us to compare both monolingual and multilingual NLP models for English and Dutch on the two tasks. In the paper, we motivate and detail the translation process, perform a baseline evaluation on both the original SICK dataset and its Dutch incarnation SICK-NL, taking inspiration from Dutch skipgram embeddings and contextualised embedding models. In addition, we encapsulate two phenomena encountered in the translation to formulate stress tests and verify how well the Dutch models capture syntactic restructurings that do not affect semantics. Our main finding is all models perform worse on SICK-NL than on SICK, indicating that the Dutch dataset is more challenging than the English original. Results on the stress tests show that models don't fully capture word order freedom in Dutch, warranting future systematic studies.
Babel: Open Multilingual Large Language Models Serving Over 90% of Global Speakers
Large language models (LLMs) have revolutionized natural language processing (NLP), yet open-source multilingual LLMs remain scarce, with existing models often limited in language coverage. Such models typically prioritize well-resourced languages, while widely spoken but under-resourced languages are often overlooked. To address this disparity, we introduce Babel, an open multilingual LLM that covers the top 25 languages by number of speakers, supports over 90% of the global population, and includes many languages neglected by other open multilingual LLMs. Unlike traditional continue pretraining approaches, Babel expands its parameter count through a layer extension technique that elevates Babel's performance ceiling. We introduce two variants: Babel-9B, designed for efficient inference and fine-tuning, and Babel-83B, which sets a new standard for open multilingual LLMs. Extensive evaluations on multilingual tasks demonstrate its superior performance compared to open LLMs of comparable size. In addition, using open-source supervised fine-tuning datasets, Babel achieves remarkable performance, with Babel-9B-Chat leading among 10B-sized LLMs and Babel-83B-Chat setting a new standard for multilingual tasks, reaching the same level of commercial models.
Better to Ask in English: Cross-Lingual Evaluation of Large Language Models for Healthcare Queries
Large language models (LLMs) are transforming the ways the general public accesses and consumes information. Their influence is particularly pronounced in pivotal sectors like healthcare, where lay individuals are increasingly appropriating LLMs as conversational agents for everyday queries. While LLMs demonstrate impressive language understanding and generation proficiencies, concerns regarding their safety remain paramount in these high-stake domains. Moreover, the development of LLMs is disproportionately focused on English. It remains unclear how these LLMs perform in the context of non-English languages, a gap that is critical for ensuring equity in the real-world use of these systems.This paper provides a framework to investigate the effectiveness of LLMs as multi-lingual dialogue systems for healthcare queries. Our empirically-derived framework XlingEval focuses on three fundamental criteria for evaluating LLM responses to naturalistic human-authored health-related questions: correctness, consistency, and verifiability. Through extensive experiments on four major global languages, including English, Spanish, Chinese, and Hindi, spanning three expert-annotated large health Q&A datasets, and through an amalgamation of algorithmic and human-evaluation strategies, we found a pronounced disparity in LLM responses across these languages, indicating a need for enhanced cross-lingual capabilities. We further propose XlingHealth, a cross-lingual benchmark for examining the multilingual capabilities of LLMs in the healthcare context. Our findings underscore the pressing need to bolster the cross-lingual capacities of these models, and to provide an equitable information ecosystem accessible to all.
A Taxonomy for Data Contamination in Large Language Models
Large language models pretrained on extensive web corpora demonstrate remarkable performance across a wide range of downstream tasks. However, a growing concern is data contamination, where evaluation datasets may be contained in the pretraining corpus, inflating model performance. Decontamination, the process of detecting and removing such data, is a potential solution; yet these contaminants may originate from altered versions of the test set, evading detection during decontamination. How different types of contamination impact the performance of language models on downstream tasks is not fully understood. We present a taxonomy that categorizes the various types of contamination encountered by LLMs during the pretraining phase and identify which types pose the highest risk. We analyze the impact of contamination on two key NLP tasks -- summarization and question answering -- revealing how different types of contamination influence task performance during evaluation.
CUDRT: Benchmarking the Detection of Human vs. Large Language Models Generated Texts
The proliferation of large language models (LLMs) has significantly enhanced text generation capabilities across various industries. However, these models' ability to generate human-like text poses substantial challenges in discerning between human and AI authorship. Despite the effectiveness of existing AI-generated text detectors, their development is hindered by the lack of comprehensive, publicly available benchmarks. Current benchmarks are limited to specific scenarios, such as question answering and text polishing, and predominantly focus on English texts, failing to capture the diverse applications and linguistic nuances of LLMs. To address these limitations, this paper constructs a comprehensive bilingual benchmark in both Chinese and English to evaluate mainstream AI-generated text detectors. We categorize LLM text generation into five distinct operations: Create, Update, Delete, Rewrite, and Translate (CUDRT), encompassing all current LLMs activities. We also establish a robust benchmark evaluation framework to support scalable and reproducible experiments. For each CUDRT category, we have developed extensive datasets to thoroughly assess detector performance. By employing the latest mainstream LLMs specific to each language, our datasets provide a thorough evaluation environment. Extensive experimental results offer critical insights for optimizing AI-generated text detectors and suggest future research directions to improve detection accuracy and generalizability across various scenarios.
NLLB-E5: A Scalable Multilingual Retrieval Model
Despite significant progress in multilingual information retrieval, the lack of models capable of effectively supporting multiple languages, particularly low-resource like Indic languages, remains a critical challenge. This paper presents NLLB-E5: A Scalable Multilingual Retrieval Model. NLLB-E5 leverages the in-built multilingual capabilities in the NLLB encoder for translation tasks. It proposes a distillation approach from multilingual retriever E5 to provide a zero-shot retrieval approach handling multiple languages, including all major Indic languages, without requiring multilingual training data. We evaluate the model on a comprehensive suite of existing benchmarks, including Hindi-BEIR, highlighting its robust performance across diverse languages and tasks. Our findings uncover task and domain-specific challenges, providing valuable insights into the retrieval performance, especially for low-resource languages. NLLB-E5 addresses the urgent need for an inclusive, scalable, and language-agnostic text retrieval model, advancing the field of multilingual information access and promoting digital inclusivity for millions of users globally.
MINERS: Multilingual Language Models as Semantic Retrievers
Words have been represented in a high-dimensional vector space that encodes their semantic similarities, enabling downstream applications such as retrieving synonyms, antonyms, and relevant contexts. However, despite recent advances in multilingual language models (LMs), the effectiveness of these models' representations in semantic retrieval contexts has not been comprehensively explored. To fill this gap, this paper introduces the MINERS, a benchmark designed to evaluate the ability of multilingual LMs in semantic retrieval tasks, including bitext mining and classification via retrieval-augmented contexts. We create a comprehensive framework to assess the robustness of LMs in retrieving samples across over 200 diverse languages, including extremely low-resource languages in challenging cross-lingual and code-switching settings. Our results demonstrate that by solely retrieving semantically similar embeddings yields performance competitive with state-of-the-art approaches, without requiring any fine-tuning.
Can Large Language Models (or Humans) Distill Text?
We investigate the potential of large language models (LLMs) to distill text: to remove the textual traces of an undesired forbidden variable. We employ a range of LLMs with varying architectures and training approaches to distill text by identifying and removing information about the target variable while preserving other relevant signals. Our findings shed light on the strengths and limitations of LLMs in addressing the distillation and provide insights into the strategies for leveraging these models in computational social science investigations involving text data. In particular, we show that in the strong test of removing sentiment, the statistical association between the processed text and sentiment is still clearly detectable to machine learning classifiers post-LLM-distillation. Furthermore, we find that human annotators also struggle to distill sentiment while preserving other semantic content. This suggests there may be limited separability between concept variables in some text contexts, highlighting limitations of methods relying on text-level transformations and also raising questions about the robustness of distillation methods that achieve statistical independence in representation space if this is difficult for human coders operating on raw text to attain.
Poro 34B and the Blessing of Multilinguality
The pretraining of state-of-the-art large language models now requires trillions of words of text, which is orders of magnitude more than available for the vast majority of languages. While including text in more than one language is an obvious way to acquire more pretraining data, multilinguality is often seen as a curse, and most model training efforts continue to focus near-exclusively on individual large languages. We believe that multilinguality can be a blessing and that it should be possible to substantially improve over the capabilities of monolingual models for small languages through multilingual training. In this study, we introduce Poro 34B, a 34 billion parameter model trained for 1 trillion tokens of Finnish, English, and programming languages, and demonstrate that a multilingual training approach can produce a model that not only substantially advances over the capabilities of existing models for Finnish, but also excels in translation and is competitive in its class in generating English and programming languages. We release the model parameters, scripts, and data under open licenses at https://huggingface.co/LumiOpen/Poro-34B.
ToxicTone: A Mandarin Audio Dataset Annotated for Toxicity and Toxic Utterance Tonality
Despite extensive research on toxic speech detection in text, a critical gap remains in handling spoken Mandarin audio. The lack of annotated datasets that capture the unique prosodic cues and culturally specific expressions in Mandarin leaves spoken toxicity underexplored. To address this, we introduce ToxicTone -- the largest public dataset of its kind -- featuring detailed annotations that distinguish both forms of toxicity (e.g., profanity, bullying) and sources of toxicity (e.g., anger, sarcasm, dismissiveness). Our data, sourced from diverse real-world audio and organized into 13 topical categories, mirrors authentic communication scenarios. We also propose a multimodal detection framework that integrates acoustic, linguistic, and emotional features using state-of-the-art speech and emotion encoders. Extensive experiments show our approach outperforms text-only and baseline models, underscoring the essential role of speech-specific cues in revealing hidden toxic expressions.
Towards Building Multilingual Language Model for Medicine
In this paper, we aim to develop an open-source, multilingual language model for medicine, that the benefits a wider, linguistically diverse audience from different regions. In general, we present the contribution from the following aspects: first, for multilingual medical-specific adaptation, we construct a new multilingual medical corpus, that contains approximately 25.5B tokens encompassing 6 main languages, termed as MMedC, that enables auto-regressive training for existing general LLMs. second, to monitor the development of multilingual LLMs in medicine, we propose a new multilingual medical multi-choice question-answering benchmark with rationale, termed as MMedBench; third, we have assessed a number of popular, opensource large language models (LLMs) on our benchmark, along with those further auto-regressive trained on MMedC, as a result, our final model, termed as MMedLM 2, with only 7B parameters, achieves superior performance compared to all other open-source models, even rivaling GPT-4 on MMedBench. We will make the resources publicly available, including code, model weights, and datasets.
M-Prometheus: A Suite of Open Multilingual LLM Judges
The use of language models for automatically evaluating long-form text (LLM-as-a-judge) is becoming increasingly common, yet most LLM judges are optimized exclusively for English, with strategies for enhancing their multilingual evaluation capabilities remaining largely unexplored in the current literature. This has created a disparity in the quality of automatic evaluation methods for non-English languages, ultimately hindering the development of models with better multilingual capabilities. To bridge this gap, we introduce M-Prometheus, a suite of open-weight LLM judges ranging from 3B to 14B parameters that can provide both direct assessment and pairwise comparison feedback on multilingual outputs. M-Prometheus models outperform state-of-the-art open LLM judges on multilingual reward benchmarks spanning more than 20 languages, as well as on literary machine translation (MT) evaluation covering 4 language pairs. Furthermore, M-Prometheus models can be leveraged at decoding time to significantly improve generated outputs across all 3 tested languages, showcasing their utility for the development of better multilingual models. Lastly, through extensive ablations, we identify the key factors for obtaining an effective multilingual judge, including backbone model selection and training on natively multilingual feedback data instead of translated data. We release our models, training dataset, and code.
MULTITuDE: Large-Scale Multilingual Machine-Generated Text Detection Benchmark
There is a lack of research into capabilities of recent LLMs to generate convincing text in languages other than English and into performance of detectors of machine-generated text in multilingual settings. This is also reflected in the available benchmarks which lack authentic texts in languages other than English and predominantly cover older generators. To fill this gap, we introduce MULTITuDE, a novel benchmarking dataset for multilingual machine-generated text detection comprising of 74,081 authentic and machine-generated texts in 11 languages (ar, ca, cs, de, en, es, nl, pt, ru, uk, and zh) generated by 8 multilingual LLMs. Using this benchmark, we compare the performance of zero-shot (statistical and black-box) and fine-tuned detectors. Considering the multilinguality, we evaluate 1) how these detectors generalize to unseen languages (linguistically similar as well as dissimilar) and unseen LLMs and 2) whether the detectors improve their performance when trained on multiple languages.
MultiSpider: Towards Benchmarking Multilingual Text-to-SQL Semantic Parsing
Text-to-SQL semantic parsing is an important NLP task, which greatly facilitates the interaction between users and the database and becomes the key component in many human-computer interaction systems. Much recent progress in text-to-SQL has been driven by large-scale datasets, but most of them are centered on English. In this work, we present MultiSpider, the largest multilingual text-to-SQL dataset which covers seven languages (English, German, French, Spanish, Japanese, Chinese, and Vietnamese). Upon MultiSpider, we further identify the lexical and structural challenges of text-to-SQL (caused by specific language properties and dialect sayings) and their intensity across different languages. Experimental results under three typical settings (zero-shot, monolingual and multilingual) reveal a 6.1% absolute drop in accuracy in non-English languages. Qualitative and quantitative analyses are conducted to understand the reason for the performance drop of each language. Besides the dataset, we also propose a simple schema augmentation framework SAVe (Schema-Augmentation-with-Verification), which significantly boosts the overall performance by about 1.8% and closes the 29.5% performance gap across languages.
The Tatoeba Translation Challenge -- Realistic Data Sets for Low Resource and Multilingual MT
This paper describes the development of a new benchmark for machine translation that provides training and test data for thousands of language pairs covering over 500 languages and tools for creating state-of-the-art translation models from that collection. The main goal is to trigger the development of open translation tools and models with a much broader coverage of the World's languages. Using the package it is possible to work on realistic low-resource scenarios avoiding artificially reduced setups that are common when demonstrating zero-shot or few-shot learning. For the first time, this package provides a comprehensive collection of diverse data sets in hundreds of languages with systematic language and script annotation and data splits to extend the narrow coverage of existing benchmarks. Together with the data release, we also provide a growing number of pre-trained baseline models for individual language pairs and selected language groups.
MALADE: Orchestration of LLM-powered Agents with Retrieval Augmented Generation for Pharmacovigilance
In the era of Large Language Models (LLMs), given their remarkable text understanding and generation abilities, there is an unprecedented opportunity to develop new, LLM-based methods for trustworthy medical knowledge synthesis, extraction and summarization. This paper focuses on the problem of Pharmacovigilance (PhV), where the significance and challenges lie in identifying Adverse Drug Events (ADEs) from diverse text sources, such as medical literature, clinical notes, and drug labels. Unfortunately, this task is hindered by factors including variations in the terminologies of drugs and outcomes, and ADE descriptions often being buried in large amounts of narrative text. We present MALADE, the first effective collaborative multi-agent system powered by LLM with Retrieval Augmented Generation for ADE extraction from drug label data. This technique involves augmenting a query to an LLM with relevant information extracted from text resources, and instructing the LLM to compose a response consistent with the augmented data. MALADE is a general LLM-agnostic architecture, and its unique capabilities are: (1) leveraging a variety of external sources, such as medical literature, drug labels, and FDA tools (e.g., OpenFDA drug information API), (2) extracting drug-outcome association in a structured format along with the strength of the association, and (3) providing explanations for established associations. Instantiated with GPT-4 Turbo or GPT-4o, and FDA drug label data, MALADE demonstrates its efficacy with an Area Under ROC Curve of 0.90 against the OMOP Ground Truth table of ADEs. Our implementation leverages the Langroid multi-agent LLM framework and can be found at https://github.com/jihyechoi77/malade.
The BigScience ROOTS Corpus: A 1.6TB Composite Multilingual Dataset
As language models grow ever larger, the need for large-scale high-quality text datasets has never been more pressing, especially in multilingual settings. The BigScience workshop, a 1-year international and multidisciplinary initiative, was formed with the goal of researching and training large language models as a values-driven undertaking, putting issues of ethics, harm, and governance in the foreground. This paper documents the data creation and curation efforts undertaken by BigScience to assemble the Responsible Open-science Open-collaboration Text Sources (ROOTS) corpus, a 1.6TB dataset spanning 59 languages that was used to train the 176-billion-parameter BigScience Large Open-science Open-access Multilingual (BLOOM) language model. We further release a large initial subset of the corpus and analyses thereof, and hope to empower large-scale monolingual and multilingual modeling projects with both the data and the processing tools, as well as stimulate research around this large multilingual corpus.
ReaderLM-v2: Small Language Model for HTML to Markdown and JSON
We present ReaderLM-v2, a compact 1.5 billion parameter language model designed for efficient web content extraction. Our model processes documents up to 512K tokens, transforming messy HTML into clean Markdown or JSON formats with high accuracy -- making it an ideal tool for grounding large language models. The model's effectiveness results from two key innovations: (1) a three-stage data synthesis pipeline that generates high quality, diverse training data by iteratively drafting, refining, and critiquing web content extraction; and (2) a unified training framework combining continuous pre-training with multi-objective optimization. Intensive evaluation demonstrates that ReaderLM-v2 outperforms GPT-4o-2024-08-06 and other larger models by 15-20\% on carefully curated benchmarks, particularly excelling at documents exceeding 100K tokens, while maintaining significantly lower computational requirements.
Do Multilingual Language Models Capture Differing Moral Norms?
Massively multilingual sentence representations are trained on large corpora of uncurated data, with a very imbalanced proportion of languages included in the training. This may cause the models to grasp cultural values including moral judgments from the high-resource languages and impose them on the low-resource languages. The lack of data in certain languages can also lead to developing random and thus potentially harmful beliefs. Both these issues can negatively influence zero-shot cross-lingual model transfer and potentially lead to harmful outcomes. Therefore, we aim to (1) detect and quantify these issues by comparing different models in different languages, (2) develop methods for improving undesirable properties of the models. Our initial experiments using the multilingual model XLM-R show that indeed multilingual LMs capture moral norms, even with potentially higher human-agreement than monolingual ones. However, it is not yet clear to what extent these moral norms differ between languages.
ModelCitizens: Representing Community Voices in Online Safety
Automatic toxic language detection is critical for creating safe, inclusive online spaces. However, it is a highly subjective task, with perceptions of toxic language shaped by community norms and lived experience. Existing toxicity detection models are typically trained on annotations that collapse diverse annotator perspectives into a single ground truth, erasing important context-specific notions of toxicity such as reclaimed language. To address this, we introduce MODELCITIZENS, a dataset of 6.8K social media posts and 40K toxicity annotations across diverse identity groups. To capture the role of conversational context on toxicity, typical of social media posts, we augment MODELCITIZENS posts with LLM-generated conversational scenarios. State-of-the-art toxicity detection tools (e.g. OpenAI Moderation API, GPT-o4-mini) underperform on MODELCITIZENS, with further degradation on context-augmented posts. Finally, we release LLAMACITIZEN-8B and GEMMACITIZEN-12B, LLaMA- and Gemma-based models finetuned on MODELCITIZENS, which outperform GPT-o4-mini by 5.5% on in-distribution evaluations. Our findings highlight the importance of community-informed annotation and modeling for inclusive content moderation. The data, models and code are available at https://github.com/asuvarna31/modelcitizens.
Beto, Bentz, Becas: The Surprising Cross-Lingual Effectiveness of BERT
Pretrained contextual representation models (Peters et al., 2018; Devlin et al., 2018) have pushed forward the state-of-the-art on many NLP tasks. A new release of BERT (Devlin, 2018) includes a model simultaneously pretrained on 104 languages with impressive performance for zero-shot cross-lingual transfer on a natural language inference task. This paper explores the broader cross-lingual potential of mBERT (multilingual) as a zero shot language transfer model on 5 NLP tasks covering a total of 39 languages from various language families: NLI, document classification, NER, POS tagging, and dependency parsing. We compare mBERT with the best-published methods for zero-shot cross-lingual transfer and find mBERT competitive on each task. Additionally, we investigate the most effective strategy for utilizing mBERT in this manner, determine to what extent mBERT generalizes away from language specific features, and measure factors that influence cross-lingual transfer.
Multi3Hate: Multimodal, Multilingual, and Multicultural Hate Speech Detection with Vision-Language Models
Warning: this paper contains content that may be offensive or upsetting Hate speech moderation on global platforms poses unique challenges due to the multimodal and multilingual nature of content, along with the varying cultural perceptions. How well do current vision-language models (VLMs) navigate these nuances? To investigate this, we create the first multimodal and multilingual parallel hate speech dataset, annotated by a multicultural set of annotators, called Multi3Hate. It contains 300 parallel meme samples across 5 languages: English, German, Spanish, Hindi, and Mandarin. We demonstrate that cultural background significantly affects multimodal hate speech annotation in our dataset. The average pairwise agreement among countries is just 74%, significantly lower than that of randomly selected annotator groups. Our qualitative analysis indicates that the lowest pairwise label agreement-only 67% between the USA and India-can be attributed to cultural factors. We then conduct experiments with 5 large VLMs in a zero-shot setting, finding that these models align more closely with annotations from the US than with those from other cultures, even when the memes and prompts are presented in the dominant language of the other culture. Code and dataset are available at https://github.com/MinhDucBui/Multi3Hate.
Language Model Tokenizers Introduce Unfairness Between Languages
Recent language models have shown impressive multilingual performance, even when not explicitly trained for it. Despite this, there are concerns about the quality of their outputs across different languages. In this paper, we show how disparity in the treatment of different languages arises at the tokenization stage, well before a model is even invoked. The same text translated into different languages can have drastically different tokenization lengths, with differences up to 15 times in some cases. These disparities persist even for tokenizers that are intentionally trained for multilingual support. Character-level and byte-level models also exhibit over 4 times the difference in the encoding length for some language pairs. This induces unfair treatment for some language communities in regard to the cost of accessing commercial language services, the processing time and latency, as well as the amount of content that can be provided as context to the models. Therefore, we make the case that we should train future language models using multilingually fair subword tokenizers.
Distillation for Multilingual Information Retrieval
Recent work in cross-language information retrieval (CLIR), where queries and documents are in different languages, has shown the benefit of the Translate-Distill framework that trains a cross-language neural dual-encoder model using translation and distillation. However, Translate-Distill only supports a single document language. Multilingual information retrieval (MLIR), which ranks a multilingual document collection, is harder to train than CLIR because the model must assign comparable relevance scores to documents in different languages. This work extends Translate-Distill and propose Multilingual Translate-Distill (MTD) for MLIR. We show that ColBERT-X models trained with MTD outperform their counterparts trained ith Multilingual Translate-Train, which is the previous state-of-the-art training approach, by 5% to 25% in nDCG@20 and 15% to 45% in MAP. We also show that the model is robust to the way languages are mixed in training batches. Our implementation is available on GitHub.
ColBERT-XM: A Modular Multi-Vector Representation Model for Zero-Shot Multilingual Information Retrieval
State-of-the-art neural retrievers predominantly focus on high-resource languages like English, which impedes their adoption in retrieval scenarios involving other languages. Current approaches circumvent the lack of high-quality labeled data in non-English languages by leveraging multilingual pretrained language models capable of cross-lingual transfer. However, these models require substantial task-specific fine-tuning across multiple languages, often perform poorly in languages with minimal representation in the pretraining corpus, and struggle to incorporate new languages after the pretraining phase. In this work, we present a novel modular dense retrieval model that learns from the rich data of a single high-resource language and effectively zero-shot transfers to a wide array of languages, thereby eliminating the need for language-specific labeled data. Our model, ColBERT-XM, demonstrates competitive performance against existing state-of-the-art multilingual retrievers trained on more extensive datasets in various languages. Further analysis reveals that our modular approach is highly data-efficient, effectively adapts to out-of-distribution data, and significantly reduces energy consumption and carbon emissions. By demonstrating its proficiency in zero-shot scenarios, ColBERT-XM marks a shift towards more sustainable and inclusive retrieval systems, enabling effective information accessibility in numerous languages. We publicly release our code and models for the community.
mT5: A massively multilingual pre-trained text-to-text transformer
The recent "Text-to-Text Transfer Transformer" (T5) leveraged a unified text-to-text format and scale to attain state-of-the-art results on a wide variety of English-language NLP tasks. In this paper, we introduce mT5, a multilingual variant of T5 that was pre-trained on a new Common Crawl-based dataset covering 101 languages. We detail the design and modified training of mT5 and demonstrate its state-of-the-art performance on many multilingual benchmarks. We also describe a simple technique to prevent "accidental translation" in the zero-shot setting, where a generative model chooses to (partially) translate its prediction into the wrong language. All of the code and model checkpoints used in this work are publicly available.
Towards Comprehensive Detection of Chinese Harmful Memes
This paper has been accepted in the NeurIPS 2024 D & B Track. Harmful memes have proliferated on the Chinese Internet, while research on detecting Chinese harmful memes significantly lags behind due to the absence of reliable datasets and effective detectors. To this end, we focus on the comprehensive detection of Chinese harmful memes. We construct ToxiCN MM, the first Chinese harmful meme dataset, which consists of 12,000 samples with fine-grained annotations for various meme types. Additionally, we propose a baseline detector, Multimodal Knowledge Enhancement (MKE), incorporating contextual information of meme content generated by the LLM to enhance the understanding of Chinese memes. During the evaluation phase, we conduct extensive quantitative experiments and qualitative analyses on multiple baselines, including LLMs and our MKE. The experimental results indicate that detecting Chinese harmful memes is challenging for existing models while demonstrating the effectiveness of MKE. The resources for this paper are available at https://github.com/DUT-lujunyu/ToxiCN_MM.
XTREME-R: Towards More Challenging and Nuanced Multilingual Evaluation
Machine learning has brought striking advances in multilingual natural language processing capabilities over the past year. For example, the latest techniques have improved the state-of-the-art performance on the XTREME multilingual benchmark by more than 13 points. While a sizeable gap to human-level performance remains, improvements have been easier to achieve in some tasks than in others. This paper analyzes the current state of cross-lingual transfer learning and summarizes some lessons learned. In order to catalyze meaningful progress, we extend XTREME to XTREME-R, which consists of an improved set of ten natural language understanding tasks, including challenging language-agnostic retrieval tasks, and covers 50 typologically diverse languages. In addition, we provide a massively multilingual diagnostic suite (MultiCheckList) and fine-grained multi-dataset evaluation capabilities through an interactive public leaderboard to gain a better understanding of such models. The leaderboard and code for XTREME-R will be made available at https://sites.research.google/xtreme and https://github.com/google-research/xtreme respectively.
Multi-EuP: The Multilingual European Parliament Dataset for Analysis of Bias in Information Retrieval
We present Multi-EuP, a new multilingual benchmark dataset, comprising 22K multi-lingual documents collected from the European Parliament, spanning 24 languages. This dataset is designed to investigate fairness in a multilingual information retrieval (IR) context to analyze both language and demographic bias in a ranking context. It boasts an authentic multilingual corpus, featuring topics translated into all 24 languages, as well as cross-lingual relevance judgments. Furthermore, it offers rich demographic information associated with its documents, facilitating the study of demographic bias. We report the effectiveness of Multi-EuP for benchmarking both monolingual and multilingual IR. We also conduct a preliminary experiment on language bias caused by the choice of tokenization strategy.
An Efficient Multilingual Language Model Compression through Vocabulary Trimming
Multilingual language model (LM) have become a powerful tool in NLP especially for non-English languages. Nevertheless, model parameters of multilingual LMs remain large due to the larger embedding matrix of the vocabulary covering tokens in different languages. On the contrary, monolingual LMs can be trained in a target language with the language-specific vocabulary only, but this requires a large budget and availability of reliable corpora to achieve a high-quality LM from scratch. In this paper, we propose vocabulary-trimming (VT), a method to reduce a multilingual LM vocabulary to a target language by deleting irrelevant tokens from its vocabulary. In theory, VT can compress any existing multilingual LM to build monolingual LMs in any language covered by the multilingual LM. In our experiments, we show that VT can retain the original performance of the multilingual LM, while being smaller in size (in general around 50% of the original vocabulary size is enough) than the original multilingual LM. The evaluation is performed over four NLP tasks (two generative and two classification tasks) among four widely used multilingual LMs in seven languages. Finally, we show that this methodology can keep the best of both monolingual and multilingual worlds by keeping a small size as monolingual models without the need for specifically retraining them, and even limiting potentially harmful social biases.
MYTE: Morphology-Driven Byte Encoding for Better and Fairer Multilingual Language Modeling
A major consideration in multilingual language modeling is how to best represent languages with diverse vocabularies and scripts. Although contemporary text encoding methods cover most of the world's writing systems, they exhibit bias towards the high-resource languages of the Global West. As a result, texts of underrepresented languages tend to be segmented into long sequences of linguistically meaningless units. To address the disparities, we introduce a new paradigm that encodes the same information with segments of consistent size across diverse languages. Our encoding convention (MYTE) is based on morphemes, as their inventories are more balanced across languages than characters, which are used in previous methods. We show that MYTE produces shorter encodings for all 99 analyzed languages, with the most notable improvements for non-European languages and non-Latin scripts. This, in turn, improves multilingual LM performance and diminishes the perplexity gap throughout diverse languages.
NeoBabel: A Multilingual Open Tower for Visual Generation
Text-to-image generation advancements have been predominantly English-centric, creating barriers for non-English speakers and perpetuating digital inequities. While existing systems rely on translation pipelines, these introduce semantic drift, computational overhead, and cultural misalignment. We introduce NeoBabel, a novel multilingual image generation framework that sets a new Pareto frontier in performance, efficiency and inclusivity, supporting six languages: English, Chinese, Dutch, French, Hindi, and Persian. The model is trained using a combination of large-scale multilingual pretraining and high-resolution instruction tuning. To evaluate its capabilities, we expand two English-only benchmarks to multilingual equivalents: m-GenEval and m-DPG. NeoBabel achieves state-of-the-art multilingual performance while retaining strong English capability, scoring 0.75 on m-GenEval and 0.68 on m-DPG. Notably, it performs on par with leading models on English tasks while outperforming them by +0.11 and +0.09 on multilingual benchmarks, even though these models are built on multilingual base LLMs. This demonstrates the effectiveness of our targeted alignment training for preserving and extending crosslingual generalization. We further introduce two new metrics to rigorously assess multilingual alignment and robustness to code-mixed prompts. Notably, NeoBabel matches or exceeds English-only models while being 2-4x smaller. We release an open toolkit, including all code, model checkpoints, a curated dataset of 124M multilingual text-image pairs, and standardized multilingual evaluation protocols, to advance inclusive AI research. Our work demonstrates that multilingual capability is not a trade-off but a catalyst for improved robustness, efficiency, and cultural fidelity in generative AI.
Investigating Neural Machine Translation for Low-Resource Languages: Using Bavarian as a Case Study
Machine Translation has made impressive progress in recent years offering close to human-level performance on many languages, but studies have primarily focused on high-resource languages with broad online presence and resources. With the help of growing Large Language Models, more and more low-resource languages achieve better results through the presence of other languages. However, studies have shown that not all low-resource languages can benefit from multilingual systems, especially those with insufficient training and evaluation data. In this paper, we revisit state-of-the-art Neural Machine Translation techniques to develop automatic translation systems between German and Bavarian. We investigate conditions of low-resource languages such as data scarcity and parameter sensitivity and focus on refined solutions that combat low-resource difficulties and creative solutions such as harnessing language similarity. Our experiment entails applying Back-translation and Transfer Learning to automatically generate more training data and achieve higher translation performance. We demonstrate noisiness in the data and present our approach to carry out text preprocessing extensively. Evaluation was conducted using combined metrics: BLEU, chrF and TER. Statistical significance results with Bonferroni correction show surprisingly high baseline systems, and that Back-translation leads to significant improvement. Furthermore, we present a qualitative analysis of translation errors and system limitations.
DCAD-2000: A Multilingual Dataset across 2000+ Languages with Data Cleaning as Anomaly Detection
The rapid development of multilingual large language models (LLMs) highlights the need for high-quality, diverse, and clean multilingual datasets. In this paper, we introduce DCAD-2000 (Data Cleaning as Anomaly Detection), a large-scale multilingual corpus built using newly extracted Common Crawl data and existing multilingual datasets. DCAD-2000 includes over 2,282 languages, 46.72TB of data, and 8.63 billion documents, spanning 155 high- and medium-resource languages and 159 writing scripts. To overcome the limitations of current data cleaning methods, which rely on manual heuristic thresholds, we propose reframing data cleaning as an anomaly detection task. This dynamic filtering approach significantly enhances data quality by identifying and removing noisy or anomalous content. We evaluate the quality of DCAD-2000 on the FineTask benchmark, demonstrating substantial improvements in multilingual dataset quality and task performance.
Taxi1500: A Multilingual Dataset for Text Classification in 1500 Languages
While natural language processing tools have been developed extensively for some of the world's languages, a significant portion of the world's over 7000 languages are still neglected. One reason for this is that evaluation datasets do not yet cover a wide range of languages, including low-resource and endangered ones. We aim to address this issue by creating a text classification dataset encompassing a large number of languages, many of which currently have little to no annotated data available. We leverage parallel translations of the Bible to construct such a dataset by first developing applicable topics and employing a crowdsourcing tool to collect annotated data. By annotating the English side of the data and projecting the labels onto other languages through aligned verses, we generate text classification datasets for more than 1500 languages. We extensively benchmark several existing multilingual language models using our dataset. To facilitate the advancement of research in this area, we will release our dataset and code.
Pile of Law: Learning Responsible Data Filtering from the Law and a 256GB Open-Source Legal Dataset
One concern with the rise of large language models lies with their potential for significant harm, particularly from pretraining on biased, obscene, copyrighted, and private information. Emerging ethical approaches have attempted to filter pretraining material, but such approaches have been ad hoc and failed to take context into account. We offer an approach to filtering grounded in law, which has directly addressed the tradeoffs in filtering material. First, we gather and make available the Pile of Law, a 256GB (and growing) dataset of open-source English-language legal and administrative data, covering court opinions, contracts, administrative rules, and legislative records. Pretraining on the Pile of Law may help with legal tasks that have the promise to improve access to justice. Second, we distill the legal norms that governments have developed to constrain the inclusion of toxic or private content into actionable lessons for researchers and discuss how our dataset reflects these norms. Third, we show how the Pile of Law offers researchers the opportunity to learn such filtering rules directly from the data, providing an exciting new research direction in model-based processing.
CCNet: Extracting High Quality Monolingual Datasets from Web Crawl Data
Pre-training text representations have led to significant improvements in many areas of natural language processing. The quality of these models benefits greatly from the size of the pretraining corpora as long as its quality is preserved. In this paper, we describe an automatic pipeline to extract massive high-quality monolingual datasets from Common Crawl for a variety of languages. Our pipeline follows the data processing introduced in fastText (Mikolov et al., 2017; Grave et al., 2018), that deduplicates documents and identifies their language. We augment this pipeline with a filtering step to select documents that are close to high quality corpora like Wikipedia.
MuLan: Adapting Multilingual Diffusion Models for Hundreds of Languages with Negligible Cost
In this work, we explore a cost-effective framework for multilingual image generation. We find that, unlike models tuned on high-quality images with multilingual annotations, leveraging text encoders pre-trained on widely available, noisy Internet image-text pairs significantly enhances data efficiency in text-to-image (T2I) generation across multiple languages. Based on this insight, we introduce MuLan, Multi-Language adapter, a lightweight language adapter with fewer than 20M parameters, trained alongside a frozen text encoder and image diffusion model. Compared to previous multilingual T2I models, this framework offers: (1) Cost efficiency. Using readily accessible English data and off-the-shelf multilingual text encoders minimizes the training cost; (2) High performance. Achieving comparable generation capabilities in over 110 languages with CLIP similarity scores nearly matching those in English (38.61 for English vs. 37.61 for other languages); and (3) Broad applicability. Seamlessly integrating with compatible community tools like LoRA, LCM, ControlNet, and IP-Adapter, expanding its potential use cases.
mMARCO: A Multilingual Version of the MS MARCO Passage Ranking Dataset
The MS MARCO ranking dataset has been widely used for training deep learning models for IR tasks, achieving considerable effectiveness on diverse zero-shot scenarios. However, this type of resource is scarce in languages other than English. In this work, we present mMARCO, a multilingual version of the MS MARCO passage ranking dataset comprising 13 languages that was created using machine translation. We evaluated mMARCO by finetuning monolingual and multilingual reranking models, as well as a multilingual dense retrieval model on this dataset. We also evaluated models finetuned using the mMARCO dataset in a zero-shot scenario on Mr. TyDi dataset, demonstrating that multilingual models finetuned on our translated dataset achieve superior effectiveness to models finetuned on the original English version alone. Our experiments also show that a distilled multilingual reranker is competitive with non-distilled models while having 5.4 times fewer parameters. Lastly, we show a positive correlation between translation quality and retrieval effectiveness, providing evidence that improvements in translation methods might lead to improvements in multilingual information retrieval. The translated datasets and finetuned models are available at https://github.com/unicamp-dl/mMARCO.
A Dataset for N-ary Relation Extraction of Drug Combinations
Combination therapies have become the standard of care for diseases such as cancer, tuberculosis, malaria and HIV. However, the combinatorial set of available multi-drug treatments creates a challenge in identifying effective combination therapies available in a situation. To assist medical professionals in identifying beneficial drug-combinations, we construct an expert-annotated dataset for extracting information about the efficacy of drug combinations from the scientific literature. Beyond its practical utility, the dataset also presents a unique NLP challenge, as the first relation extraction dataset consisting of variable-length relations. Furthermore, the relations in this dataset predominantly require language understanding beyond the sentence level, adding to the challenge of this task. We provide a promising baseline model and identify clear areas for further improvement. We release our dataset, code, and baseline models publicly to encourage the NLP community to participate in this task.
Multilingual LAMA: Investigating Knowledge in Multilingual Pretrained Language Models
Recently, it has been found that monolingual English language models can be used as knowledge bases. Instead of structural knowledge base queries, masked sentences such as "Paris is the capital of [MASK]" are used as probes. We translate the established benchmarks TREx and GoogleRE into 53 languages. Working with mBERT, we investigate three questions. (i) Can mBERT be used as a multilingual knowledge base? Most prior work only considers English. Extending research to multiple languages is important for diversity and accessibility. (ii) Is mBERT's performance as knowledge base language-independent or does it vary from language to language? (iii) A multilingual model is trained on more text, e.g., mBERT is trained on 104 Wikipedias. Can mBERT leverage this for better performance? We find that using mBERT as a knowledge base yields varying performance across languages and pooling predictions across languages improves performance. Conversely, mBERT exhibits a language bias; e.g., when queried in Italian, it tends to predict Italy as the country of origin.
ChatGPT Beyond English: Towards a Comprehensive Evaluation of Large Language Models in Multilingual Learning
Over the last few years, large language models (LLMs) have emerged as the most important breakthroughs in natural language processing (NLP) that fundamentally transform research and developments in the field. ChatGPT represents one of the most exciting LLM systems developed recently to showcase impressive skills for language generation and highly attract public attention. Among various exciting applications discovered for ChatGPT in English, the model can process and generate texts for multiple languages due to its multilingual training data. Given the broad adoption of ChatGPT for English in different problems and areas, a natural question is whether ChatGPT can also be applied effectively for other languages or it is necessary to develop more language-specific technologies. The answer to this question requires a thorough evaluation of ChatGPT over multiple tasks with diverse languages and large datasets (i.e., beyond reported anecdotes), which is still missing or limited in current research. Our work aims to fill this gap for the evaluation of ChatGPT and similar LLMs to provide more comprehensive information for multilingual NLP applications. While this work will be an ongoing effort to include additional experiments in the future, our current paper evaluates ChatGPT on 7 different tasks, covering 37 diverse languages with high, medium, low, and extremely low resources. We also focus on the zero-shot learning setting for ChatGPT to improve reproducibility and better simulate the interactions of general users. Compared to the performance of previous models, our extensive experimental results demonstrate a worse performance of ChatGPT for different NLP tasks and languages, calling for further research to develop better models and understanding for multilingual learning.
Machine Translation for Nko: Tools, Corpora and Baseline Results
Currently, there is no usable machine translation system for Nko, a language spoken by tens of millions of people across multiple West African countries, which holds significant cultural and educational value. To address this issue, we present a set of tools, resources, and baseline results aimed towards the development of usable machine translation systems for Nko and other languages that do not currently have sufficiently large parallel text corpora available. (1) Friaparallelel: A novel collaborative parallel text curation software that incorporates quality control through copyedit-based workflows. (2) Expansion of the FLoRes-200 and NLLB-Seed corpora with 2,009 and 6,193 high-quality Nko translations in parallel with 204 and 40 other languages. (3) nicolingua-0005: A collection of trilingual and bilingual corpora with 130,850 parallel segments and monolingual corpora containing over 3 million Nko words. (4) Baseline bilingual and multilingual neural machine translation results with the best model scoring 30.83 English-Nko chrF++ on FLoRes-devtest.
Speaking Multiple Languages Affects the Moral Bias of Language Models
Pre-trained multilingual language models (PMLMs) are commonly used when dealing with data from multiple languages and cross-lingual transfer. However, PMLMs are trained on varying amounts of data for each language. In practice this means their performance is often much better on English than many other languages. We explore to what extent this also applies to moral norms. Do the models capture moral norms from English and impose them on other languages? Do the models exhibit random and thus potentially harmful beliefs in certain languages? Both these issues could negatively impact cross-lingual transfer and potentially lead to harmful outcomes. In this paper, we (1) apply the MoralDirection framework to multilingual models, comparing results in German, Czech, Arabic, Mandarin Chinese, and English, (2) analyse model behaviour on filtered parallel subtitles corpora, and (3) apply the models to a Moral Foundations Questionnaire, comparing with human responses from different countries. Our experiments demonstrate that, indeed, PMLMs encode differing moral biases, but these do not necessarily correspond to cultural differences or commonalities in human opinions.
M4GT-Bench: Evaluation Benchmark for Black-Box Machine-Generated Text Detection
The advent of Large Language Models (LLMs) has brought an unprecedented surge in machine-generated text (MGT) across diverse channels. This raises legitimate concerns about its potential misuse and societal implications. The need to identify and differentiate such content from genuine human-generated text is critical in combating disinformation, preserving the integrity of education and scientific fields, and maintaining trust in communication. In this work, we address this problem by introducing a new benchmark based on a multilingual, multi-domain, and multi-generator corpus of MGTs -- M4GT-Bench. The benchmark is compiled of three tasks: (1) mono-lingual and multi-lingual binary MGT detection; (2) multi-way detection where one need to identify, which particular model generated the text; and (3) mixed human-machine text detection, where a word boundary delimiting MGT from human-written content should be determined. On the developed benchmark, we have tested several MGT detection baselines and also conducted an evaluation of human performance. We see that obtaining good performance in MGT detection usually requires an access to the training data from the same domain and generators. The benchmark is available at https://github.com/mbzuai-nlp/M4GT-Bench.
Exploring Alignment in Shared Cross-lingual Spaces
Despite their remarkable ability to capture linguistic nuances across diverse languages, questions persist regarding the degree of alignment between languages in multilingual embeddings. Drawing inspiration from research on high-dimensional representations in neural language models, we employ clustering to uncover latent concepts within multilingual models. Our analysis focuses on quantifying the alignment and overlap of these concepts across various languages within the latent space. To this end, we introduce two metrics and aimed at quantifying these aspects, enabling a deeper exploration of multilingual embeddings. Our study encompasses three multilingual models (mT5, mBERT, and XLM-R) and three downstream tasks (Machine Translation, Named Entity Recognition, and Sentiment Analysis). Key findings from our analysis include: i) deeper layers in the network demonstrate increased cross-lingual alignment due to the presence of language-agnostic concepts, ii) fine-tuning of the models enhances alignment within the latent space, and iii) such task-specific calibration helps in explaining the emergence of zero-shot capabilities in the models.The code is available at \url{https://github.com/baselmousi/multilingual-latent-concepts}
BioLORD-2023: Semantic Textual Representations Fusing LLM and Clinical Knowledge Graph Insights
In this study, we investigate the potential of Large Language Models to complement biomedical knowledge graphs in the training of semantic models for the biomedical and clinical domains. Drawing on the wealth of the UMLS knowledge graph and harnessing cutting-edge Large Language Models, we propose a new state-of-the-art approach for obtaining high-fidelity representations of biomedical concepts and sentences, consisting of three steps: an improved contrastive learning phase, a novel self-distillation phase, and a weight averaging phase. Through rigorous evaluations via the extensive BioLORD testing suite and diverse downstream tasks, we demonstrate consistent and substantial performance improvements over the previous state of the art (e.g. +2pts on MedSTS, +2.5pts on MedNLI-S, +6.1pts on EHR-Rel-B). Besides our new state-of-the-art biomedical model for English, we also distill and release a multilingual model compatible with 50+ languages and finetuned on 7 European languages. Many clinical pipelines can benefit from our latest models. Our new multilingual model enables a range of languages to benefit from our advancements in biomedical semantic representation learning, opening a new avenue for bioinformatics researchers around the world. As a result, we hope to see BioLORD-2023 becoming a precious tool for future biomedical applications.
Comparison between parameter-efficient techniques and full fine-tuning: A case study on multilingual news article classification
Adapters and Low-Rank Adaptation (LoRA) are parameter-efficient fine-tuning techniques designed to make the training of language models more efficient. Previous results demonstrated that these methods can even improve performance on some classification tasks. This paper complements the existing research by investigating how these techniques influence the classification performance and computation costs compared to full fine-tuning when applied to multilingual text classification tasks (genre, framing, and persuasion techniques detection; with different input lengths, number of predicted classes and classification difficulty), some of which have limited training data. In addition, we conduct in-depth analyses of their efficacy across different training scenarios (training on the original multilingual data; on the translations into English; and on a subset of English-only data) and different languages. Our findings provide valuable insights into the applicability of the parameter-efficient fine-tuning techniques, particularly to complex multilingual and multilabel classification tasks.
The Less the Merrier? Investigating Language Representation in Multilingual Models
Multilingual Language Models offer a way to incorporate multiple languages in one model and utilize cross-language transfer learning to improve performance for different Natural Language Processing (NLP) tasks. Despite progress in multilingual models, not all languages are supported as well, particularly in low-resource settings. In this work, we investigate the linguistic representation of different languages in multilingual models. We start by asking the question which languages are supported in popular multilingual models and which languages are left behind. Then, for included languages, we look at models' learned representations based on language family and dialect and try to understand how models' learned representations for~(1) seen and~(2) unseen languages vary across different language groups. In addition, we test and analyze performance on downstream tasks such as text generation and Named Entity Recognition. We observe from our experiments that community-centered models -- models that focus on languages of a given family or geographical location and are built by communities who speak them -- perform better at distinguishing between languages in the same family for low-resource languages. Our paper contributes to the literature in understanding multilingual models and their shortcomings and offers insights on potential ways to improve them.
MultiSocial: Multilingual Benchmark of Machine-Generated Text Detection of Social-Media Texts
Recent LLMs are able to generate high-quality multilingual texts, indistinguishable for humans from authentic human-written ones. Research in machine-generated text detection is however mostly focused on the English language and longer texts, such as news articles, scientific papers or student essays. Social-media texts are usually much shorter and often feature informal language, grammatical errors, or distinct linguistic items (e.g., emoticons, hashtags). There is a gap in studying the ability of existing methods in detection of such texts, reflected also in the lack of existing multilingual benchmark datasets. To fill this gap we propose the first multilingual (22 languages) and multi-platform (5 social media platforms) dataset for benchmarking machine-generated text detection in the social-media domain, called MultiSocial. It contains 472,097 texts, of which about 58k are human-written and approximately the same amount is generated by each of 7 multilingual LLMs. We use this benchmark to compare existing detection methods in zero-shot as well as fine-tuned form. Our results indicate that the fine-tuned detectors have no problem to be trained on social-media texts and that the platform selection for training matters.
Sailor: Open Language Models for South-East Asia
We present Sailor, a family of open language models ranging from 0.5B to 7B parameters, tailored for South-East Asian (SEA) languages. These models are continually pre-trained from Qwen1.5, a great language model for multilingual use cases. From Qwen1.5, Sailor models accept 200B to 400B tokens, primarily covering the languages of English, Chinese, Vietnamese, Thai, Indonesian, Malay, and Lao. The training leverages several techniques, including BPE dropout for improving the model robustness, aggressive data cleaning and deduplication, and small proxy models to optimize data mixture. Experimental results on four typical tasks indicate that Sailor models demonstrate strong performance across different benchmarks, including commonsense reasoning, question answering, reading comprehension and examination. Embracing the open-source spirit, we share our insights through this report to spark a wider interest in developing large language models for multilingual use cases.
MELLA: Bridging Linguistic Capability and Cultural Groundedness for Low-Resource Language MLLMs
Multimodal Large Language Models (MLLMs) have shown remarkable performance in high-resource languages. However, their effectiveness diminishes significantly in the contexts of low-resource languages. Current multilingual enhancement methods are often limited to text modality or rely solely on machine translation. While such approaches help models acquire basic linguistic capabilities and produce "thin descriptions", they neglect the importance of multimodal informativeness and cultural groundedness, both of which are crucial for serving low-resource language users effectively. To bridge this gap, in this study, we identify two significant objectives for a truly effective MLLM in low-resource language settings, namely 1) linguistic capability and 2) cultural groundedness, placing special emphasis on cultural awareness. To achieve these dual objectives, we propose a dual-source strategy that guides the collection of data tailored to each goal, sourcing native web alt-text for culture and MLLM-generated captions for linguistics. As a concrete implementation, we introduce MELLA, a multimodal, multilingual dataset. Experiment results show that after fine-tuning on MELLA, there is a general performance improvement for the eight languages on various MLLM backbones, with models producing "thick descriptions". We verify that the performance gains are from both cultural knowledge enhancement and linguistic capability enhancement. Our dataset can be found at https://opendatalab.com/applyMultilingualCorpus.
PolyLM: An Open Source Polyglot Large Language Model
Large language models (LLMs) demonstrate remarkable ability to comprehend, reason, and generate following nature language instructions. However, the development of LLMs has been primarily focused on high-resource languages, such as English, thereby limiting their applicability and research in other languages. Consequently, we present PolyLM, a multilingual LLM trained on 640 billion (B) tokens, avaliable in two model sizes: 1.7B and 13B. To enhance its multilingual capabilities, we 1) integrate bilingual data into training data; and 2) adopt a curriculum learning strategy that increases the proportion of non-English data from 30% in the first stage to 60% in the final stage during pre-training. Further, we propose a multilingual self-instruct method which automatically generates 132.7K diverse multilingual instructions for model fine-tuning. To assess the model's performance, we collect several existing multilingual tasks, including multilingual understanding, question answering, generation, and translation. Extensive experiments show that PolyLM surpasses other open-source models such as LLaMA and BLOOM on multilingual tasks while maintaining comparable performance in English. Our models, alone with the instruction data and multilingual benchmark, are available at: https://modelscope.cn/models/damo/nlp_polylm_13b_text_generation.
A Survey on Multilingual Large Language Models: Corpora, Alignment, and Bias
Based on the foundation of Large Language Models (LLMs), Multilingual Large Language Models (MLLMs) have been developed to address the challenges of multilingual natural language processing tasks, hoping to achieve knowledge transfer from high-resource to low-resource languages. However, significant limitations and challenges still exist, such as language imbalance, multilingual alignment, and inherent bias. In this paper, we aim to provide a comprehensive analysis of MLLMs, delving deeply into discussions surrounding these critical issues. First of all, we start by presenting an overview of MLLMs, covering their evolution, key techniques, and multilingual capacities. Secondly, we explore widely utilized multilingual corpora for MLLMs' training and multilingual datasets oriented for downstream tasks that are crucial for enhancing the cross-lingual capability of MLLMs. Thirdly, we survey the existing studies on multilingual representations and investigate whether the current MLLMs can learn a universal language representation. Fourthly, we discuss bias on MLLMs including its category and evaluation metrics, and summarize the existing debiasing techniques. Finally, we discuss existing challenges and point out promising research directions. By demonstrating these aspects, this paper aims to facilitate a deeper understanding of MLLMs and their potentiality in various domains.
A New Massive Multilingual Dataset for High-Performance Language Technologies
We present the HPLT (High Performance Language Technologies) language resources, a new massive multilingual dataset including both monolingual and bilingual corpora extracted from CommonCrawl and previously unused web crawls from the Internet Archive. We describe our methods for data acquisition, management and processing of large corpora, which rely on open-source software tools and high-performance computing. Our monolingual collection focuses on low- to medium-resourced languages and covers 75 languages and a total of ~5.6 trillion word tokens de-duplicated on the document level. Our English-centric parallel corpus is derived from its monolingual counterpart and covers 18 language pairs and more than 96 million aligned sentence pairs with roughly 1.4 billion English tokens. The HPLT language resources are one of the largest open text corpora ever released, providing a great resource for language modeling and machine translation training. We publicly release the corpora, the software, and the tools used in this work.
Lingua Manga: A Generic Large Language Model Centric System for Data Curation
Data curation is a wide-ranging area which contains many critical but time-consuming data processing tasks. However, the diversity of such tasks makes it challenging to develop a general-purpose data curation system. To address this issue, we present Lingua Manga, a user-friendly and versatile system that utilizes pre-trained large language models. Lingua Manga offers automatic optimization for achieving high performance and label efficiency while facilitating flexible and rapid development. Through three example applications with distinct objectives and users of varying levels of technical proficiency, we demonstrate that Lingua Manga can effectively assist both skilled programmers and low-code or even no-code users in addressing data curation challenges.
Theme-driven Keyphrase Extraction to Analyze Social Media Discourse
Social media platforms are vital resources for sharing self-reported health experiences, offering rich data on various health topics. Despite advancements in Natural Language Processing (NLP) enabling large-scale social media data analysis, a gap remains in applying keyphrase extraction to health-related content. Keyphrase extraction is used to identify salient concepts in social media discourse without being constrained by predefined entity classes. This paper introduces a theme-driven keyphrase extraction framework tailored for social media, a pioneering approach designed to capture clinically relevant keyphrases from user-generated health texts. Themes are defined as broad categories determined by the objectives of the extraction task. We formulate this novel task of theme-driven keyphrase extraction and demonstrate its potential for efficiently mining social media text for the use case of treatment for opioid use disorder. This paper leverages qualitative and quantitative analysis to demonstrate the feasibility of extracting actionable insights from social media data and efficiently extracting keyphrases using minimally supervised NLP models. Our contributions include the development of a novel data collection and curation framework for theme-driven keyphrase extraction and the creation of MOUD-Keyphrase, the first dataset of its kind comprising human-annotated keyphrases from a Reddit community. We also identify the scope of minimally supervised NLP models to extract keyphrases from social media data efficiently. Lastly, we found that a large language model (ChatGPT) outperforms unsupervised keyphrase extraction models, and we evaluate its efficacy in this task.
The Roles of English in Evaluating Multilingual Language Models
Multilingual natural language processing is getting increased attention, with numerous models, benchmarks, and methods being released for many languages. English is often used in multilingual evaluation to prompt language models (LMs), mainly to overcome the lack of instruction tuning data in other languages. In this position paper, we lay out two roles of English in multilingual LM evaluations: as an interface and as a natural language. We argue that these roles have different goals: task performance versus language understanding. This discrepancy is highlighted with examples from datasets and evaluation setups. Numerous works explicitly use English as an interface to boost task performance. We recommend to move away from this imprecise method and instead focus on furthering language understanding.
Ask the experts: sourcing high-quality datasets for nutritional counselling through Human-AI collaboration
Large Language Models (LLMs), with their flexible generation abilities, can be powerful data sources in domains with few or no available corpora. However, problems like hallucinations and biases limit such applications. In this case study, we pick nutrition counselling, a domain lacking any public resource, and show that high-quality datasets can be gathered by combining LLMs, crowd-workers and nutrition experts. We first crowd-source and cluster a novel dataset of diet-related issues, then work with experts to prompt ChatGPT into producing related supportive text. Finally, we let the experts evaluate the safety of the generated text. We release HAI-coaching, the first expert-annotated nutrition counselling dataset containing ~2.4K dietary struggles from crowd workers, and ~97K related supportive texts generated by ChatGPT. Extensive analysis shows that ChatGPT while producing highly fluent and human-like text, also manifests harmful behaviours, especially in sensitive topics like mental health, making it unsuitable for unsupervised use.
A Pretrainer's Guide to Training Data: Measuring the Effects of Data Age, Domain Coverage, Quality, & Toxicity
Pretraining is the preliminary and fundamental step in developing capable language models (LM). Despite this, pretraining data design is critically under-documented and often guided by empirically unsupported intuitions. To address this, we pretrain 28 1.5B parameter decoder-only models, training on data curated (1) at different times, (2) with varying toxicity and quality filters, and (3) with different domain compositions. First, we quantify the effect of pretraining data age. A temporal shift between evaluation data and pretraining data leads to performance degradation, which is not overcome by finetuning. Second, we explore the effect of quality and toxicity filters, showing a trade-off between performance on standard benchmarks and risk of toxic generations. Our findings indicate there does not exist a one-size-fits-all solution to filtering training data. We also find that the effects of different types of filtering are not predictable from text domain characteristics. Lastly, we empirically validate that the inclusion of heterogeneous data sources, like books and web, is broadly beneficial and warrants greater prioritization. These findings constitute the largest set of experiments to validate, quantify, and expose many undocumented intuitions about text pretraining, which we hope will help support more informed data-centric decisions in LM development.
Reddit-Impacts: A Named Entity Recognition Dataset for Analyzing Clinical and Social Effects of Substance Use Derived from Social Media
Substance use disorders (SUDs) are a growing concern globally, necessitating enhanced understanding of the problem and its trends through data-driven research. Social media are unique and important sources of information about SUDs, particularly since the data in such sources are often generated by people with lived experiences. In this paper, we introduce Reddit-Impacts, a challenging Named Entity Recognition (NER) dataset curated from subreddits dedicated to discussions on prescription and illicit opioids, as well as medications for opioid use disorder. The dataset specifically concentrates on the lesser-studied, yet critically important, aspects of substance use--its clinical and social impacts. We collected data from chosen subreddits using the publicly available Application Programming Interface for Reddit. We manually annotated text spans representing clinical and social impacts reported by people who also reported personal nonmedical use of substances including but not limited to opioids, stimulants and benzodiazepines. Our objective is to create a resource that can enable the development of systems that can automatically detect clinical and social impacts of substance use from text-based social media data. The successful development of such systems may enable us to better understand how nonmedical use of substances affects individual health and societal dynamics, aiding the development of effective public health strategies. In addition to creating the annotated data set, we applied several machine learning models to establish baseline performances. Specifically, we experimented with transformer models like BERT, and RoBERTa, one few-shot learning model DANN by leveraging the full training dataset, and GPT-3.5 by using one-shot learning, for automatic NER of clinical and social impacts. The dataset has been made available through the 2024 SMM4H shared tasks.
SemEval-2024 Task 8: Multidomain, Multimodel and Multilingual Machine-Generated Text Detection
We present the results and the main findings of SemEval-2024 Task 8: Multigenerator, Multidomain, and Multilingual Machine-Generated Text Detection. The task featured three subtasks. Subtask A is a binary classification task determining whether a text is written by a human or generated by a machine. This subtask has two tracks: a monolingual track focused solely on English texts and a multilingual track. Subtask B is to detect the exact source of a text, discerning whether it is written by a human or generated by a specific LLM. Subtask C aims to identify the changing point within a text, at which the authorship transitions from human to machine. The task attracted a large number of participants: subtask A monolingual (126), subtask A multilingual (59), subtask B (70), and subtask C (30). In this paper, we present the task, analyze the results, and discuss the system submissions and the methods they used. For all subtasks, the best systems used LLMs.
MMM: Multilingual Mutual Reinforcement Effect Mix Datasets & Test with Open-domain Information Extraction Large Language Models
The Mutual Reinforcement Effect (MRE) represents a promising avenue in information extraction and multitasking research. Nevertheless, its applicability has been constrained due to the exclusive availability of MRE mix datasets in Japanese, thereby limiting comprehensive exploration by the global research community. To address this limitation, we introduce a Multilingual MRE mix dataset (MMM) that encompasses 21 sub-datasets in English, Japanese, and Chinese. In this paper, we also propose a method for dataset translation assisted by Large Language Models (LLMs), which significantly reduces the manual annotation time required for dataset construction by leveraging LLMs to translate the original Japanese datasets. Additionally, we have enriched the dataset by incorporating open-domain Named Entity Recognition (NER) and sentence classification tasks. Utilizing this expanded dataset, we developed a unified input-output framework to train an Open-domain Information Extraction Large Language Model (OIELLM). The OIELLM model demonstrates the capability to effectively process novel MMM datasets, exhibiting significant improvements in performance.
The Nordic Pile: A 1.2TB Nordic Dataset for Language Modeling
Pre-training Large Language Models (LLMs) require massive amounts of text data, and the performance of the LLMs typically correlates with the scale and quality of the datasets. This means that it may be challenging to build LLMs for smaller languages such as Nordic ones, where the availability of text corpora is limited. In order to facilitate the development of the LLMS in the Nordic languages, we curate a high-quality dataset consisting of 1.2TB of text, in all of the major North Germanic languages (Danish, Icelandic, Norwegian, and Swedish), as well as some high-quality English data. This paper details our considerations and processes for collecting, cleaning, and filtering the dataset.
A Simple Framework to Accelerate Multilingual Language Model for Monolingual Text Generation
Recent advancements in large language models have facilitated the execution of complex language tasks, not only in English but also in non-English languages. However, the tokenizers of most language models, such as Llama, trained on English-centric corpora, tend to excessively fragment tokens in non-English languages. This issue is especially pronounced in non-roman alphabetic languages, which are often divided at a character or even Unicode level, leading to slower text generation. To address this, our study introduces a novel framework designed to expedite text generation in these languages. This framework predicts larger linguistic units than those of conventional multilingual tokenizers and is specifically tailored to the target language, thereby reducing the number of decoding steps required. Our empirical results demonstrate that the proposed framework increases the generation speed by a factor of 1.9 compared to standard decoding while maintaining the performance of a pre-trained multilingual model on monolingual tasks.
The Russian Drug Reaction Corpus and Neural Models for Drug Reactions and Effectiveness Detection in User Reviews
The Russian Drug Reaction Corpus (RuDReC) is a new partially annotated corpus of consumer reviews in Russian about pharmaceutical products for the detection of health-related named entities and the effectiveness of pharmaceutical products. The corpus itself consists of two parts, the raw one and the labelled one. The raw part includes 1.4 million health-related user-generated texts collected from various Internet sources, including social media. The labelled part contains 500 consumer reviews about drug therapy with drug- and disease-related information. Labels for sentences include health-related issues or their absence. The sentences with one are additionally labelled at the expression level for identification of fine-grained subtypes such as drug classes and drug forms, drug indications, and drug reactions. Further, we present a baseline model for named entity recognition (NER) and multi-label sentence classification tasks on this corpus. The macro F1 score of 74.85% in the NER task was achieved by our RuDR-BERT model. For the sentence classification task, our model achieves the macro F1 score of 68.82% gaining 7.47% over the score of BERT model trained on Russian data. We make the RuDReC corpus and pretrained weights of domain-specific BERT models freely available at https://github.com/cimm-kzn/RuDReC
ToXCL: A Unified Framework for Toxic Speech Detection and Explanation
The proliferation of online toxic speech is a pertinent problem posing threats to demographic groups. While explicit toxic speech contains offensive lexical signals, implicit one consists of coded or indirect language. Therefore, it is crucial for models not only to detect implicit toxic speech but also to explain its toxicity. This draws a unique need for unified frameworks that can effectively detect and explain implicit toxic speech. Prior works mainly formulated the task of toxic speech detection and explanation as a text generation problem. Nonetheless, models trained using this strategy can be prone to suffer from the consequent error propagation problem. Moreover, our experiments reveal that the detection results of such models are much lower than those that focus only on the detection task. To bridge these gaps, we introduce ToXCL, a unified framework for the detection and explanation of implicit toxic speech. Our model consists of three modules: a (i) Target Group Generator to generate the targeted demographic group(s) of a given post; an (ii) Encoder-Decoder Model in which the encoder focuses on detecting implicit toxic speech and is boosted by a (iii) Teacher Classifier via knowledge distillation, and the decoder generates the necessary explanation. ToXCL achieves new state-of-the-art effectiveness, and outperforms baselines significantly.
Facebook AI WMT21 News Translation Task Submission
We describe Facebook's multilingual model submission to the WMT2021 shared task on news translation. We participate in 14 language directions: English to and from Czech, German, Hausa, Icelandic, Japanese, Russian, and Chinese. To develop systems covering all these directions, we focus on multilingual models. We utilize data from all available sources --- WMT, large-scale data mining, and in-domain backtranslation --- to create high quality bilingual and multilingual baselines. Subsequently, we investigate strategies for scaling multilingual model size, such that one system has sufficient capacity for high quality representations of all eight languages. Our final submission is an ensemble of dense and sparse Mixture-of-Expert multilingual translation models, followed by finetuning on in-domain news data and noisy channel reranking. Compared to previous year's winning submissions, our multilingual system improved the translation quality on all language directions, with an average improvement of 2.0 BLEU. In the WMT2021 task, our system ranks first in 10 directions based on automatic evaluation.
An analysis of full-size Russian complexly NER labelled corpus of Internet user reviews on the drugs based on deep learning and language neural nets
We present the full-size Russian complexly NER-labeled corpus of Internet user reviews, along with an evaluation of accuracy levels reached on this corpus by a set of advanced deep learning neural networks to extract the pharmacologically meaningful entities from Russian texts. The corpus annotation includes mentions of the following entities: Medication (33005 mentions), Adverse Drug Reaction (1778), Disease (17403), and Note (4490). Two of them - Medication and Disease - comprise a set of attributes. A part of the corpus has the coreference annotation with 1560 coreference chains in 300 documents. Special multi-label model based on a language model and the set of features is developed, appropriate for presented corpus labeling. The influence of the choice of different modifications of the models: word vector representations, types of language models pre-trained for Russian, text normalization styles, and other preliminary processing are analyzed. The sufficient size of our corpus allows to study the effects of particularities of corpus labeling and balancing entities in the corpus. As a result, the state of the art for the pharmacological entity extraction problem for Russian is established on a full-size labeled corpus. In case of the adverse drug reaction (ADR) recognition, it is 61.1 by the F1-exact metric that, as our analysis shows, is on par with the accuracy level for other language corpora with similar characteristics and the ADR representativnes. The evaluated baseline precision of coreference relation extraction on the corpus is 71, that is higher the results reached on other Russian corpora.
How does a Multilingual LM Handle Multiple Languages?
Multilingual language models have significantly advanced due to rapid progress in natural language processing. Models like BLOOM 1.7B, trained on diverse multilingual datasets, aim to bridge linguistic gaps. However, their effectiveness in capturing linguistic knowledge, particularly for low-resource languages, remains an open question. This study critically examines MLMs capabilities in multilingual understanding, semantic representation, and cross-lingual knowledge transfer. While these models perform well for high-resource languages, they struggle with less-represented ones. Additionally, traditional evaluation methods often overlook their internal syntactic and semantic encoding. This research addresses key limitations through three objectives. First, it assesses semantic similarity by analyzing multilingual word embeddings for consistency using cosine similarity. Second, it examines BLOOM-1.7B and Qwen2 through Named Entity Recognition and sentence similarity tasks to understand their linguistic structures. Third, it explores cross-lingual knowledge transfer by evaluating generalization from high-resource to low-resource languages in sentiment analysis and text classification. By leveraging linguistic probing, performance metrics, and visualizations, this study provides insights into the strengths and limitations of MLMs. The findings aim to enhance multilingual NLP models, ensuring better support for both high- and low-resource languages, thereby promoting inclusivity in language technologies.
Seeing and Understanding: Bridging Vision with Chemical Knowledge Via ChemVLM
In this technical report, we propose ChemVLM, the first open-source multimodal large language model dedicated to the fields of chemistry, designed to address the incompatibility between chemical image understanding and text analysis. Built upon the VIT-MLP-LLM architecture, we leverage ChemLLM-20B as the foundational large model, endowing our model with robust capabilities in understanding and utilizing chemical text knowledge. Additionally, we employ InternVIT-6B as a powerful image encoder. We have curated high-quality data from the chemical domain, including molecules, reaction formulas, and chemistry examination data, and compiled these into a bilingual multimodal question-answering dataset. We test the performance of our model on multiple open-source benchmarks and three custom evaluation sets. Experimental results demonstrate that our model achieves excellent performance, securing state-of-the-art results in five out of six involved tasks. Our model can be found at https://huggingface.co/AI4Chem/ChemVLM-26B.
Recycling the Web: A Method to Enhance Pre-training Data Quality and Quantity for Language Models
Scaling laws predict that the performance of large language models improves with increasing model size and data size. In practice, pre-training has been relying on massive web crawls, using almost all data sources publicly available on the internet so far. However, this pool of natural data does not grow at the same rate as the compute supply. Furthermore, the availability of high-quality texts is even more limited: data filtering pipelines often remove up to 99% of the initial web scrapes to achieve state-of-the-art. To address the "data wall" of pre-training scaling, our work explores ways to transform and recycle data discarded in existing filtering processes. We propose REWIRE, REcycling the Web with guIded REwrite, a method to enrich low-quality documents so that they could become useful for training. This in turn allows us to increase the representation of synthetic data in the final pre-training set. Experiments at 1B, 3B and 7B scales of the DCLM benchmark show that mixing high-quality raw texts and our rewritten texts lead to 1.0, 1.3 and 2.5 percentage points improvement respectively across 22 diverse tasks, compared to training on only filtered web data. Training on the raw-synthetic data mix is also more effective than having access to 2x web data. Through further analysis, we demonstrate that about 82% of the mixed in texts come from transforming lower-quality documents that would otherwise be discarded. REWIRE also outperforms related approaches of generating synthetic data, including Wikipedia-style paraphrasing, question-answer synthesizing and knowledge extraction. These results suggest that recycling web texts holds the potential for being a simple and effective approach for scaling pre-training data.
GenAI Content Detection Task 1: English and Multilingual Machine-Generated Text Detection: AI vs. Human
We present the GenAI Content Detection Task~1 -- a shared task on binary machine generated text detection, conducted as a part of the GenAI workshop at COLING 2025. The task consists of two subtasks: Monolingual (English) and Multilingual. The shared task attracted many participants: 36 teams made official submissions to the Monolingual subtask during the test phase and 26 teams -- to the Multilingual. We provide a comprehensive overview of the data, a summary of the results -- including system rankings and performance scores -- detailed descriptions of the participating systems, and an in-depth analysis of submissions. https://github.com/mbzuai-nlp/COLING-2025-Workshop-on-MGT-Detection-Task1
Decontextualization: Making Sentences Stand-Alone
Models for question answering, dialogue agents, and summarization often interpret the meaning of a sentence in a rich context and use that meaning in a new context. Taking excerpts of text can be problematic, as key pieces may not be explicit in a local window. We isolate and define the problem of sentence decontextualization: taking a sentence together with its context and rewriting it to be interpretable out of context, while preserving its meaning. We describe an annotation procedure, collect data on the Wikipedia corpus, and use the data to train models to automatically decontextualize sentences. We present preliminary studies that show the value of sentence decontextualization in a user facing task, and as preprocessing for systems that perform document understanding. We argue that decontextualization is an important subtask in many downstream applications, and that the definitions and resources provided can benefit tasks that operate on sentences that occur in a richer context.
Checklist Engineering Empowers Multilingual LLM Judges
Automated text evaluation has long been a central issue in Natural Language Processing (NLP). Recently, the field has shifted toward using Large Language Models (LLMs) as evaluators-a trend known as the LLM-as-a-Judge paradigm. While promising and easily adaptable across tasks, this approach has seen limited exploration in multilingual contexts. Existing multilingual studies often rely on proprietary models or require extensive training data for fine-tuning, raising concerns about cost, time, and efficiency. In this paper, we propose Checklist Engineering based LLM-as-a-Judge (CE-Judge), a training-free framework that uses checklist intuition for multilingual evaluation with an open-source model. Experiments across multiple languages and three benchmark datasets, under both pointwise and pairwise settings, show that our method generally surpasses the baselines and performs on par with the GPT-4o model.
CompoundPiece: Evaluating and Improving Decompounding Performance of Language Models
While many languages possess processes of joining two or more words to create compound words, previous studies have been typically limited only to languages with excessively productive compound formation (e.g., German, Dutch) and there is no public dataset containing compound and non-compound words across a large number of languages. In this work, we systematically study decompounding, the task of splitting compound words into their constituents, at a wide scale. We first address the data gap by introducing a dataset of 255k compound and non-compound words across 56 diverse languages obtained from Wiktionary. We then use this dataset to evaluate an array of Large Language Models (LLMs) on the decompounding task. We find that LLMs perform poorly, especially on words which are tokenized unfavorably by subword tokenization. We thus introduce a novel methodology to train dedicated models for decompounding. The proposed two-stage procedure relies on a fully self-supervised objective in the first stage, while the second, supervised learning stage optionally fine-tunes the model on the annotated Wiktionary data. Our self-supervised models outperform the prior best unsupervised decompounding models by 13.9% accuracy on average. Our fine-tuned models outperform all prior (language-specific) decompounding tools. Furthermore, we use our models to leverage decompounding during the creation of a subword tokenizer, which we refer to as CompoundPiece. CompoundPiece tokenizes compound words more favorably on average, leading to improved performance on decompounding over an otherwise equivalent model using SentencePiece tokenization.
Unveiling Cultural Blind Spots: Analyzing the Limitations of mLLMs in Procedural Text Comprehension
Despite the impressive performance of multilingual large language models (mLLMs) in various natural language processing tasks, their ability to understand procedural texts, particularly those with culture-specific content, remains largely unexplored. Texts describing cultural procedures, including rituals, traditional craftsmanship, and social etiquette, require an inherent understanding of cultural context, presenting a significant challenge for mLLMs. In this work, we introduce CAPTex, a benchmark designed to evaluate mLLMs' ability to process and reason about culturally diverse procedural texts across multiple languages using various methodologies to assess their performance. Our findings indicate that (1) mLLMs face difficulties with culturally contextualized procedural texts, showing notable performance declines in low-resource languages, (2) model performance fluctuates across cultural domains, with some areas presenting greater difficulties, and (3) language models exhibit better performance on multiple-choice tasks within conversational frameworks compared to direct questioning. These results underscore the current limitations of mLLMs in handling culturally nuanced procedural texts and highlight the need for culturally aware benchmarks like CAPTex to enhance their adaptability and comprehension across diverse linguistic and cultural landscapes.
AFRIDOC-MT: Document-level MT Corpus for African Languages
This paper introduces AFRIDOC-MT, a document-level multi-parallel translation dataset covering English and five African languages: Amharic, Hausa, Swahili, Yor\`ub\'a, and Zulu. The dataset comprises 334 health and 271 information technology news documents, all human-translated from English to these languages. We conduct document-level translation benchmark experiments by evaluating neural machine translation (NMT) models and large language models (LLMs) for translations between English and these languages, at both the sentence and pseudo-document levels. These outputs are realigned to form complete documents for evaluation. Our results indicate that NLLB-200 achieved the best average performance among the standard NMT models, while GPT-4o outperformed general-purpose LLMs. Fine-tuning selected models led to substantial performance gains, but models trained on sentences struggled to generalize effectively to longer documents. Furthermore, our analysis reveals that some LLMs exhibit issues such as under-generation, repetition of words or phrases, and off-target translations, especially for African languages.
Towards Systematic Monolingual NLP Surveys: GenA of Greek NLP
Natural Language Processing (NLP) research has traditionally been predominantly focused on English, driven by the availability of resources, the size of the research community, and market demands. Recently, there has been a noticeable shift towards multilingualism in NLP, recognizing the need for inclusivity and effectiveness across diverse languages and cultures. Monolingual surveys have the potential to complement the broader trend towards multilingualism in NLP by providing foundational insights and resources, necessary for effectively addressing the linguistic diversity of global communication. However, monolingual NLP surveys are extremely rare in the literature. This study introduces a generalizable methodology for creating systematic and comprehensive monolingual NLP surveys, aimed at optimizing the process of constructing such surveys and thoroughly addressing a language's NLP support. Our approach integrates a structured search protocol to avoid selection bias and ensure reproducibility, an NLP task taxonomy to organize the surveyed material coherently, and language resources (LRs) taxonomies to identify potential benchmarks and highlight opportunities for improving resource availability (e.g., through better maintenance or licensing). We apply this methodology to Greek NLP (2012-2023), providing a comprehensive overview of its current state and challenges. We discuss the progress of Greek NLP and outline the Greek LRs found, classified by availability and usability, assessing language support per NLP task. The presented systematic literature review of Greek NLP serves as an application of our method that showcases the benefits of monolingual NLP surveys more broadly. Similar applications could be considered for the myriads of languages whose progress in NLP lags behind that of well-supported languages.
Multilingual Models for Check-Worthy Social Media Posts Detection
This work presents an extensive study of transformer-based NLP models for detection of social media posts that contain verifiable factual claims and harmful claims. The study covers various activities, including dataset collection, dataset pre-processing, architecture selection, setup of settings, model training (fine-tuning), model testing, and implementation. The study includes a comprehensive analysis of different models, with a special focus on multilingual models where the same model is capable of processing social media posts in both English and in low-resource languages such as Arabic, Bulgarian, Dutch, Polish, Czech, Slovak. The results obtained from the study were validated against state-of-the-art models, and the comparison demonstrated the robustness of the proposed models. The novelty of this work lies in the development of multi-label multilingual classification models that can simultaneously detect harmful posts and posts that contain verifiable factual claims in an efficient way.
The Bitter Lesson Learned from 2,000+ Multilingual Benchmarks
As large language models (LLMs) continue to advance in linguistic capabilities, robust multilingual evaluation has become essential for promoting equitable technological progress. This position paper examines over 2,000 multilingual (non-English) benchmarks from 148 countries, published between 2021 and 2024, to evaluate past, present, and future practices in multilingual benchmarking. Our findings reveal that, despite significant investments amounting to tens of millions of dollars, English remains significantly overrepresented in these benchmarks. Additionally, most benchmarks rely on original language content rather than translations, with the majority sourced from high-resource countries such as China, India, Germany, the UK, and the USA. Furthermore, a comparison of benchmark performance with human judgments highlights notable disparities. STEM-related tasks exhibit strong correlations with human evaluations (0.70 to 0.85), while traditional NLP tasks like question answering (e.g., XQuAD) show much weaker correlations (0.11 to 0.30). Moreover, translating English benchmarks into other languages proves insufficient, as localized benchmarks demonstrate significantly higher alignment with local human judgments (0.68) than their translated counterparts (0.47). This underscores the importance of creating culturally and linguistically tailored benchmarks rather than relying solely on translations. Through this comprehensive analysis, we highlight six key limitations in current multilingual evaluation practices, propose the guiding principles accordingly for effective multilingual benchmarking, and outline five critical research directions to drive progress in the field. Finally, we call for a global collaborative effort to develop human-aligned benchmarks that prioritize real-world applications.
Segment Any Text: A Universal Approach for Robust, Efficient and Adaptable Sentence Segmentation
Segmenting text into sentences plays an early and crucial role in many NLP systems. This is commonly achieved by using rule-based or statistical methods relying on lexical features such as punctuation. Although some recent works no longer exclusively rely on punctuation, we find that no prior method achieves all of (i) robustness to missing punctuation, (ii) effective adaptability to new domains, and (iii) high efficiency. We introduce a new model - Segment any Text (SaT) - to solve this problem. To enhance robustness, we propose a new pretraining scheme that ensures less reliance on punctuation. To address adaptability, we introduce an extra stage of parameter-efficient fine-tuning, establishing state-of-the-art performance in distinct domains such as verses from lyrics and legal documents. Along the way, we introduce architectural modifications that result in a threefold gain in speed over the previous state of the art and solve spurious reliance on context far in the future. Finally, we introduce a variant of our model with fine-tuning on a diverse, multilingual mixture of sentence-segmented data, acting as a drop-in replacement and enhancement for existing segmentation tools. Overall, our contributions provide a universal approach for segmenting any text. Our method outperforms all baselines - including strong LLMs - across 8 corpora spanning diverse domains and languages, especially in practically relevant situations where text is poorly formatted. Our models and code, including documentation, are available at https://huggingface.co/segment-any-text under the MIT license.
Review of Natural Language Processing in Pharmacology
Natural language processing (NLP) is an area of artificial intelligence that applies information technologies to process the human language, understand it to a certain degree, and use it in various applications. This area has rapidly developed in the last few years and now employs modern variants of deep neural networks to extract relevant patterns from large text corpora. The main objective of this work is to survey the recent use of NLP in the field of pharmacology. As our work shows, NLP is a highly relevant information extraction and processing approach for pharmacology. It has been used extensively, from intelligent searches through thousands of medical documents to finding traces of adversarial drug interactions in social media. We split our coverage into five categories to survey modern NLP methodology, commonly addressed tasks, relevant textual data, knowledge bases, and useful programming libraries. We split each of the five categories into appropriate subcategories, describe their main properties and ideas, and summarize them in a tabular form. The resulting survey presents a comprehensive overview of the area, useful to practitioners and interested observers.
Adaptive Two-Phase Finetuning LLMs for Japanese Legal Text Retrieval
Text Retrieval (TR) involves finding and retrieving text-based content relevant to a user's query from a large repository, with applications in real-world scenarios such as legal document retrieval. While most existing studies focus on English, limited work addresses Japanese contexts. In this paper, we introduce a new dataset specifically designed for Japanese legal contexts and propose a novel two-phase pipeline tailored to this domain. In the first phase, the model learns a broad understanding of global contexts, enhancing its generalization and adaptability to diverse queries. In the second phase, the model is fine-tuned to address complex queries specific to legal scenarios. Extensive experiments are conducted to demonstrate the superior performance of our method, which outperforms existing baselines. Furthermore, our pipeline proves effective in English contexts, surpassing comparable baselines on the MS MARCO dataset. We have made our code publicly available on GitHub, and the model checkpoints are accessible via HuggingFace.
Leveraging Large Language Models to Detect Influence Campaigns in Social Media
Social media influence campaigns pose significant challenges to public discourse and democracy. Traditional detection methods fall short due to the complexity and dynamic nature of social media. Addressing this, we propose a novel detection method using Large Language Models (LLMs) that incorporates both user metadata and network structures. By converting these elements into a text format, our approach effectively processes multilingual content and adapts to the shifting tactics of malicious campaign actors. We validate our model through rigorous testing on multiple datasets, showcasing its superior performance in identifying influence efforts. This research not only offers a powerful tool for detecting campaigns, but also sets the stage for future enhancements to keep up with the fast-paced evolution of social media-based influence tactics.
MultiLoKo: a multilingual local knowledge benchmark for LLMs spanning 31 languages
We present MultiLoKo, a new benchmark for evaluating multilinguality in LLMs covering 31 languages. MultiLoKo consists of three partitions: a main partition consisting of 500 questions per language, separately sourced to be locally relevant to the specific language, and two translated partitions, containing human-authored translations from 30 non-English languages to English and vice versa. For comparison, we also release corresponding machine-authored translations. The data is equally distributed over two splits: a dev split and a blind, out-of-distribution test split. MultiLoKo can be used to study a variety of questions regarding the multilinguality of LLMs as well as meta-questions about multilingual benchmark creation. We compute MultiLoKo scores for 11 base and chat models marketed to be multilingual and study their average performance, their performance parity across languages, how much their ability to answer questions depends on the question language, and which languages are most difficult. None of the models we studied performs well on MultiLoKo, as indicated by low average scores as well as large differences between the best and worst scoring languages. Furthermore, we find a substantial effect of the question language, indicating sub-optimal knowledge transfer between languages. Lastly, we find that using local vs English-translated data can result in differences more than 20 points for the best performing models, drastically change the estimated difficulty of some languages. For using machines instead of human translations, we find a weaker effect on ordering of language difficulty, a larger difference in model rankings, and a substantial drop in estimated performance for all models.
Cross-lingual Argument Mining in the Medical Domain
Nowadays the medical domain is receiving more and more attention in applications involving Artificial Intelligence. Clinicians have to deal with an enormous amount of unstructured textual data to make a conclusion about patients' health in their everyday life. Argument mining helps to provide a structure to such data by detecting argumentative components in the text and classifying the relations between them. However, as it is the case for many tasks in Natural Language Processing in general and in medical text processing in particular, the large majority of the work on computational argumentation has been done only for English. This is also the case with the only dataset available for argumentation in the medical domain, namely, the annotated medical data of abstracts of Randomized Controlled Trials (RCT) from the MEDLINE database. In order to mitigate the lack of annotated data for other languages, we empirically investigate several strategies to perform argument mining and classification in medical texts for a language for which no annotated data is available. This project shows that automatically translating and project annotations from English to a target language (Spanish) is an effective way to generate annotated data without manual intervention. Furthermore, our experiments demonstrate that the translation and projection approach outperforms zero-shot cross-lingual approaches using a large masked multilingual language model. Finally, we show how the automatically generated data in Spanish can also be used to improve results in the original English evaluation setting.
Preparing the Vuk'uzenzele and ZA-gov-multilingual South African multilingual corpora
This paper introduces two multilingual government themed corpora in various South African languages. The corpora were collected by gathering the South African Government newspaper (Vuk'uzenzele), as well as South African government speeches (ZA-gov-multilingual), that are translated into all 11 South African official languages. The corpora can be used for a myriad of downstream NLP tasks. The corpora were created to allow researchers to study the language used in South African government publications, with a focus on understanding how South African government officials communicate with their constituents. In this paper we highlight the process of gathering, cleaning and making available the corpora. We create parallel sentence corpora for Neural Machine Translation (NMT) tasks using Language-Agnostic Sentence Representations (LASER) embeddings. With these aligned sentences we then provide NMT benchmarks for 9 indigenous languages by fine-tuning a massively multilingual pre-trained language model.
SCALE: Scaling up the Complexity for Advanced Language Model Evaluation
Recent strides in Large Language Models (LLMs) have saturated many NLP benchmarks (even professional domain-specific ones), emphasizing the need for novel, more challenging novel ones to properly assess LLM capabilities. In this paper, we introduce a novel NLP benchmark that poses challenges to current LLMs across four key dimensions: processing long documents (up to 50K tokens), utilizing domain specific knowledge (embodied in legal texts), multilingual understanding (covering five languages), and multitasking (comprising legal document to document Information Retrieval, Court View Generation, Leading Decision Summarization, Citation Extraction, and eight challenging Text Classification tasks). Our benchmark comprises diverse legal NLP datasets from the Swiss legal system, allowing for a comprehensive study of the underlying Non-English, inherently multilingual, federal legal system. Despite recent advances, efficiently processing long documents for intense review/analysis tasks remains an open challenge for language models. Also, comprehensive, domain-specific benchmarks requiring high expertise to develop are rare, as are multilingual benchmarks. This scarcity underscores our contribution's value, considering most public models are trained predominantly on English corpora, while other languages remain understudied, particularly for practical domain-specific NLP tasks. Our benchmark allows for testing and advancing the state-of-the-art LLMs. As part of our study, we evaluate several pre-trained multilingual language models on our benchmark to establish strong baselines as a point of reference. Despite the large size of our datasets (tens to hundreds of thousands of examples), existing publicly available models struggle with most tasks, even after in-domain pretraining. We publish all resources (benchmark suite, pre-trained models, code) under a fully permissive open CC BY-SA license.
LlamaLens: Specialized Multilingual LLM for Analyzing News and Social Media Content
Large Language Models (LLMs) have demonstrated remarkable success as general-purpose task solvers across various fields, including NLP, healthcare, finance, and law. However, their capabilities remain limited when addressing domain-specific problems, particularly in downstream NLP tasks. Research has shown that models fine-tuned on instruction-based downstream NLP datasets outperform those that are not fine-tuned. While most efforts in this area have primarily focused on resource-rich languages like English and broad domains, little attention has been given to multilingual settings and specific domains. To address this gap, this study focuses on developing a specialized LLM, LlamaLens, for analyzing news and social media content in a multilingual context. To the best of our knowledge, this is the first attempt to tackle both domain specificity and multilinguality, with a particular focus on news and social media. Our experimental setup includes 19 tasks, represented by 52 datasets covering Arabic, English, and Hindi. We demonstrate that LlamaLens outperforms the current state-of-the-art (SOTA) on 16 testing sets, and achieves comparable performance on 10 sets. We make the models and resources publicly available for the research community.(https://huggingface.co/QCRI)
LangSAMP: Language-Script Aware Multilingual Pretraining
Recent multilingual pretrained language models (mPLMs) often avoid using language embeddings -- learnable vectors assigned to different languages. These embeddings are discarded for two main reasons: (1) mPLMs are expected to have a single, unified parameter set across all languages, and (2) they need to function seamlessly as universal text encoders without requiring language IDs as input. However, this removal increases the burden on token embeddings to encode all language-specific information, which may hinder the model's ability to produce more language-neutral representations. To address this challenge, we propose Language-Script Aware Multilingual Pretraining (LangSAMP), a method that incorporates both language and script embeddings to enhance representation learning while maintaining a simple architecture. Specifically, we integrate these embeddings into the output of the transformer blocks before passing the final representations to the language modeling head for prediction. We apply LangSAMP to the continual pretraining of XLM-R on a highly multilingual corpus covering more than 500 languages. The resulting model consistently outperforms the baseline. Extensive analysis further shows that language/script embeddings encode language/script-specific information, which improves the selection of source languages for crosslingual transfer. We make our code and models publicly available at https://github.com/cisnlp/LangSAMP.