new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Aug 8

ReCo: Region-Controlled Text-to-Image Generation

Recently, large-scale text-to-image (T2I) models have shown impressive performance in generating high-fidelity images, but with limited controllability, e.g., precisely specifying the content in a specific region with a free-form text description. In this paper, we propose an effective technique for such regional control in T2I generation. We augment T2I models' inputs with an extra set of position tokens, which represent the quantized spatial coordinates. Each region is specified by four position tokens to represent the top-left and bottom-right corners, followed by an open-ended natural language regional description. Then, we fine-tune a pre-trained T2I model with such new input interface. Our model, dubbed as ReCo (Region-Controlled T2I), enables the region control for arbitrary objects described by open-ended regional texts rather than by object labels from a constrained category set. Empirically, ReCo achieves better image quality than the T2I model strengthened by positional words (FID: 8.82->7.36, SceneFID: 15.54->6.51 on COCO), together with objects being more accurately placed, amounting to a 20.40% region classification accuracy improvement on COCO. Furthermore, we demonstrate that ReCo can better control the object count, spatial relationship, and region attributes such as color/size, with the free-form regional description. Human evaluation on PaintSkill shows that ReCo is +19.28% and +17.21% more accurate in generating images with correct object count and spatial relationship than the T2I model.

DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Models

Recently, DALL-E, a multimodal transformer language model, and its variants (including diffusion models) have shown high-quality text-to-image generation capabilities. However, despite the interesting image generation results, there has not been a detailed analysis on how to evaluate such models. In this work, we investigate the visual reasoning capabilities and social biases of different text-to-image models, covering both multimodal transformer language models and diffusion models. First, we measure three visual reasoning skills: object recognition, object counting, and spatial relation understanding. For this, we propose PaintSkills, a compositional diagnostic dataset and evaluation toolkit that measures these skills. In our experiments, there exists a large gap between the performance of recent text-to-image models and the upper bound accuracy in object counting and spatial relation understanding skills. Second, we assess gender and skin tone biases by measuring the variance of the gender/skin tone distribution based on automated and human evaluation. We demonstrate that recent text-to-image models learn specific gender/skin tone biases from web image-text pairs. We hope that our work will help guide future progress in improving text-to-image generation models on visual reasoning skills and learning socially unbiased representations. Code and data: https://github.com/j-min/DallEval