Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeCLIP4MC: An RL-Friendly Vision-Language Model for Minecraft
One of the essential missions in the AI research community is to build an autonomous embodied agent that can attain high-level performance across a wide spectrum of tasks. However, acquiring reward/penalty in all open-ended tasks is unrealistic, making the Reinforcement Learning (RL) training procedure impossible. In this paper, we propose a novel cross-modal contrastive learning framework architecture, CLIP4MC, aiming to learn an RL-friendly vision-language model that serves as a reward function for open-ended tasks. Therefore, no further task-specific reward design is needed. Intuitively, it is more reasonable for the model to address the similarity between the video snippet and the language prompt at both the action and entity levels. To this end, a motion encoder is proposed to capture the motion embeddings across different intervals. The correlation scores are then used to construct the auxiliary reward signal for RL agents. Moreover, we construct a neat YouTube dataset based on the large-scale YouTube database provided by MineDojo. Specifically, two rounds of filtering operations guarantee that the dataset covers enough essential information and that the video-text pair is highly correlated. Empirically, we show that the proposed method achieves better performance on RL tasks compared with baselines.
Scaling Offline Model-Based RL via Jointly-Optimized World-Action Model Pretraining
A significant aspiration of offline reinforcement learning (RL) is to develop a generalist agent with high capabilities from large and heterogeneous datasets. However, prior approaches that scale offline RL either rely heavily on expert trajectories or struggle to generalize to diverse unseen tasks. Inspired by the excellent generalization of world model in conditional video generation, we explore the potential of image observation-based world model for scaling offline RL and enhancing generalization on novel tasks. In this paper, we introduce JOWA: Jointly-Optimized World-Action model, an offline model-based RL agent pretrained on multiple Atari games with 6 billion tokens data to learn general-purpose representation and decision-making ability. Our method jointly optimizes a world-action model through a shared transformer backbone, which stabilize temporal difference learning with large models during pretraining. Moreover, we propose a provably efficient and parallelizable planning algorithm to compensate for the Q-value estimation error and thus search out better policies. Experimental results indicate that our largest agent, with 150 million parameters, achieves 78.9% human-level performance on pretrained games using only 10% subsampled offline data, outperforming existing state-of-the-art large-scale offline RL baselines by 31.6% on averange. Furthermore, JOWA scales favorably with model capacity and can sample-efficiently transfer to novel games using only 5k offline fine-tuning data (approximately 4 trajectories) per game, demonstrating superior generalization. We will release codes and model weights at https://github.com/CJReinforce/JOWA
AlphaDrive: Unleashing the Power of VLMs in Autonomous Driving via Reinforcement Learning and Reasoning
OpenAI o1 and DeepSeek R1 achieve or even surpass human expert-level performance in complex domains like mathematics and science, with reinforcement learning (RL) and reasoning playing a crucial role. In autonomous driving, recent end-to-end models have greatly improved planning performance but still struggle with long-tailed problems due to limited common sense and reasoning abilities. Some studies integrate vision-language models (VLMs) into autonomous driving, but they typically rely on pre-trained models with simple supervised fine-tuning (SFT) on driving data, without further exploration of training strategies or optimizations specifically tailored for planning. In this paper, we propose AlphaDrive, a RL and reasoning framework for VLMs in autonomous driving. AlphaDrive introduces four GRPO-based RL rewards tailored for planning and employs a two-stage planning reasoning training strategy that combines SFT with RL. As a result, AlphaDrive significantly improves both planning performance and training efficiency compared to using only SFT or without reasoning. Moreover, we are also excited to discover that, following RL training, AlphaDrive exhibits some emergent multimodal planning capabilities, which is critical for improving driving safety and efficiency. To the best of our knowledge, AlphaDrive is the first to integrate GRPO-based RL with planning reasoning into autonomous driving. Code will be released to facilitate future research.
Thought Cloning: Learning to Think while Acting by Imitating Human Thinking
Language is often considered a key aspect of human thinking, providing us with exceptional abilities to generalize, explore, plan, replan, and adapt to new situations. However, Reinforcement Learning (RL) agents are far from human-level performance in any of these abilities. We hypothesize one reason for such cognitive deficiencies is that they lack the benefits of thinking in language and that we can improve AI agents by training them to think like humans do. We introduce a novel Imitation Learning framework, Thought Cloning, where the idea is to not just clone the behaviors of human demonstrators, but also the thoughts humans have as they perform these behaviors. While we expect Thought Cloning to truly shine at scale on internet-sized datasets of humans thinking out loud while acting (e.g. online videos with transcripts), here we conduct experiments in a domain where the thinking and action data are synthetically generated. Results reveal that Thought Cloning learns much faster than Behavioral Cloning and its performance advantage grows the further out of distribution test tasks are, highlighting its ability to better handle novel situations. Thought Cloning also provides important benefits for AI Safety and Interpretability, and makes it easier to debug and improve AI. Because we can observe the agent's thoughts, we can (1) more easily diagnose why things are going wrong, making it easier to fix the problem, (2) steer the agent by correcting its thinking, or (3) prevent it from doing unsafe things it plans to do. Overall, by training agents how to think as well as behave, Thought Cloning creates safer, more powerful agents.
Mastering Atari Games with Limited Data
Reinforcement learning has achieved great success in many applications. However, sample efficiency remains a key challenge, with prominent methods requiring millions (or even billions) of environment steps to train. Recently, there has been significant progress in sample efficient image-based RL algorithms; however, consistent human-level performance on the Atari game benchmark remains an elusive goal. We propose a sample efficient model-based visual RL algorithm built on MuZero, which we name EfficientZero. Our method achieves 194.3% mean human performance and 109.0% median performance on the Atari 100k benchmark with only two hours of real-time game experience and outperforms the state SAC in some tasks on the DMControl 100k benchmark. This is the first time an algorithm achieves super-human performance on Atari games with such little data. EfficientZero's performance is also close to DQN's performance at 200 million frames while we consume 500 times less data. EfficientZero's low sample complexity and high performance can bring RL closer to real-world applicability. We implement our algorithm in an easy-to-understand manner and it is available at https://github.com/YeWR/EfficientZero. We hope it will accelerate the research of MCTS-based RL algorithms in the wider community.
Solving robust MDPs as a sequence of static RL problems
Designing control policies whose performance level is guaranteed to remain above a given threshold in a span of environments is a critical feature for the adoption of reinforcement learning (RL) in real-world applications. The search for such robust policies is a notoriously difficult problem, related to the so-called dynamic model of transition function uncertainty, where the environment dynamics are allowed to change at each time step. But in practical cases, one is rather interested in robustness to a span of static transition models throughout interaction episodes. The static model is known to be harder to solve than the dynamic one, and seminal algorithms, such as robust value iteration, as well as most recent works on deep robust RL, build upon the dynamic model. In this work, we propose to revisit the static model. We suggest an analysis of why solving the static model under some mild hypotheses is a reasonable endeavor, based on an equivalence with the dynamic model, and formalize the general intuition that robust MDPs can be solved by tackling a series of static problems. We introduce a generic meta-algorithm called IWOCS, which incrementally identifies worst-case transition models so as to guide the search for a robust policy. Discussion on IWOCS sheds light on new ways to decouple policy optimization and adversarial transition functions and opens new perspectives for analysis. We derive a deep RL version of IWOCS and demonstrate it is competitive with state-of-the-art algorithms on classical benchmarks.
Value-Based Deep RL Scales Predictably
Scaling data and compute is critical to the success of machine learning. However, scaling demands predictability: we want methods to not only perform well with more compute or data, but also have their performance be predictable from small-scale runs, without running the large-scale experiment. In this paper, we show that value-based off-policy RL methods are predictable despite community lore regarding their pathological behavior. First, we show that data and compute requirements to attain a given performance level lie on a Pareto frontier, controlled by the updates-to-data (UTD) ratio. By estimating this frontier, we can predict this data requirement when given more compute, and this compute requirement when given more data. Second, we determine the optimal allocation of a total resource budget across data and compute for a given performance and use it to determine hyperparameters that maximize performance for a given budget. Third, this scaling behavior is enabled by first estimating predictable relationships between hyperparameters, which is used to manage effects of overfitting and plasticity loss unique to RL. We validate our approach using three algorithms: SAC, BRO, and PQL on DeepMind Control, OpenAI gym, and IsaacGym, when extrapolating to higher levels of data, compute, budget, or performance.
An Empirical Study on Eliciting and Improving R1-like Reasoning Models
In this report, we present the third technical report on the development of slow-thinking models as part of the STILL project. As the technical pathway becomes clearer, scaling RL training has become a central technique for implementing such reasoning models. We systematically experiment with and document the effects of various factors influencing RL training, conducting experiments on both base models and fine-tuned models. Specifically, we demonstrate that our RL training approach consistently improves the Qwen2.5-32B base models, enhancing both response length and test accuracy. Furthermore, we show that even when a model like DeepSeek-R1-Distill-Qwen-1.5B has already achieved a high performance level, it can be further refined through RL training, reaching an accuracy of 39.33% on AIME 2024. Beyond RL training, we also explore the use of tool manipulation, finding that it significantly boosts the reasoning performance of large reasoning models. This approach achieves a remarkable accuracy of 86.67% with greedy search on AIME 2024, underscoring its effectiveness in enhancing model capabilities. We release our resources at the STILL project website: https://github.com/RUCAIBox/Slow_Thinking_with_LLMs.
T2I-R1: Reinforcing Image Generation with Collaborative Semantic-level and Token-level CoT
Recent advancements in large language models have demonstrated how chain-of-thought (CoT) and reinforcement learning (RL) can improve performance. However, applying such reasoning strategies to the visual generation domain remains largely unexplored. In this paper, we present T2I-R1, a novel reasoning-enhanced text-to-image generation model, powered by RL with a bi-level CoT reasoning process. Specifically, we identify two levels of CoT that can be utilized to enhance different stages of generation: (1) the semantic-level CoT for high-level planning of the prompt and (2) the token-level CoT for low-level pixel processing during patch-by-patch generation. To better coordinate these two levels of CoT, we introduce BiCoT-GRPO with an ensemble of generation rewards, which seamlessly optimizes both generation CoTs within the same training step. By applying our reasoning strategies to the baseline model, Janus-Pro, we achieve superior performance with 13% improvement on T2I-CompBench and 19% improvement on the WISE benchmark, even surpassing the state-of-the-art model FLUX.1. Code is available at: https://github.com/CaraJ7/T2I-R1
Words as Beacons: Guiding RL Agents with High-Level Language Prompts
Sparse reward environments in reinforcement learning (RL) pose significant challenges for exploration, often leading to inefficient or incomplete learning processes. To tackle this issue, this work proposes a teacher-student RL framework that leverages Large Language Models (LLMs) as "teachers" to guide the agent's learning process by decomposing complex tasks into subgoals. Due to their inherent capability to understand RL environments based on a textual description of structure and purpose, LLMs can provide subgoals to accomplish the task defined for the environment in a similar fashion to how a human would do. In doing so, three types of subgoals are proposed: positional targets relative to the agent, object representations, and language-based instructions generated directly by the LLM. More importantly, we show that it is possible to query the LLM only during the training phase, enabling agents to operate within the environment without any LLM intervention. We assess the performance of this proposed framework by evaluating three state-of-the-art open-source LLMs (Llama, DeepSeek, Qwen) eliciting subgoals across various procedurally generated environment of the MiniGrid benchmark. Experimental results demonstrate that this curriculum-based approach accelerates learning and enhances exploration in complex tasks, achieving up to 30 to 200 times faster convergence in training steps compared to recent baselines designed for sparse reward environments.
DUMP: Automated Distribution-Level Curriculum Learning for RL-based LLM Post-training
Recent advances in reinforcement learning (RL)-based post-training have led to notable improvements in large language models (LLMs), particularly in enhancing their reasoning capabilities to handle complex tasks. However, most existing methods treat the training data as a unified whole, overlooking the fact that modern LLM training often involves a mixture of data from diverse distributions-varying in both source and difficulty. This heterogeneity introduces a key challenge: how to adaptively schedule training across distributions to optimize learning efficiency. In this paper, we present a principled curriculum learning framework grounded in the notion of distribution-level learnability. Our core insight is that the magnitude of policy advantages reflects how much a model can still benefit from further training on a given distribution. Based on this, we propose a distribution-level curriculum learning framework for RL-based LLM post-training, which leverages the Upper Confidence Bound (UCB) principle to dynamically adjust sampling probabilities for different distrubutions. This approach prioritizes distributions with either high average advantage (exploitation) or low sample count (exploration), yielding an adaptive and theoretically grounded training schedule. We instantiate our curriculum learning framework with GRPO as the underlying RL algorithm and demonstrate its effectiveness on logic reasoning datasets with multiple difficulties and sources. Our experiments show that our framework significantly improves convergence speed and final performance, highlighting the value of distribution-aware curriculum strategies in LLM post-training. Code: https://github.com/ZhentingWang/DUMP.
Atari-GPT: Investigating the Capabilities of Multimodal Large Language Models as Low-Level Policies for Atari Games
Recent advancements in large language models (LLMs) have expanded their capabilities beyond traditional text-based tasks to multimodal domains, integrating visual, auditory, and textual data. While multimodal LLMs have been extensively explored for high-level planning in domains like robotics and games, their potential as low-level controllers remains largely untapped. This paper explores the application of multimodal LLMs as low-level controllers in the domain of Atari video games, introducing Atari game performance as a new benchmark for evaluating the ability of multimodal LLMs to perform low-level control tasks. Unlike traditional reinforcement learning (RL) and imitation learning (IL) methods that require extensive computational resources as well as reward function specification, these LLMs utilize pre-existing multimodal knowledge to directly engage with game environments. Our study assesses multiple multimodal LLMs performance against traditional RL agents, human players, and random agents, focusing on their ability to understand and interact with complex visual scenes and formulate strategic responses. Additionally, we examine the impact of In-Context Learning (ICL) by incorporating human-demonstrated game-play trajectories to enhance the models contextual understanding. Through this investigation, we aim to determine the extent to which multimodal LLMs can leverage their extensive training to effectively function as low-level controllers, thereby redefining potential applications in dynamic and visually complex environments. Additional results and videos are available at our project webpage: https://sites.google.com/view/atari-gpt/.
FlowReasoner: Reinforcing Query-Level Meta-Agents
This paper proposes a query-level meta-agent named FlowReasoner to automate the design of query-level multi-agent systems, i.e., one system per user query. Our core idea is to incentivize a reasoning-based meta-agent via external execution feedback. Concretely, by distilling DeepSeek R1, we first endow the basic reasoning ability regarding the generation of multi-agent systems to FlowReasoner. Then, we further enhance it via reinforcement learning (RL) with external execution feedback. A multi-purpose reward is designed to guide the RL training from aspects of performance, complexity, and efficiency. In this manner, FlowReasoner is enabled to generate a personalized multi-agent system for each user query via deliberative reasoning. Experiments on both engineering and competition code benchmarks demonstrate the superiority of FlowReasoner. Remarkably, it surpasses o1-mini by 10.52% accuracy across three benchmarks. The code is available at https://github.com/sail-sg/FlowReasoner.
Bigger, Better, Faster: Human-level Atari with human-level efficiency
We introduce a value-based RL agent, which we call BBF, that achieves super-human performance in the Atari 100K benchmark. BBF relies on scaling the neural networks used for value estimation, as well as a number of other design choices that enable this scaling in a sample-efficient manner. We conduct extensive analyses of these design choices and provide insights for future work. We end with a discussion about updating the goalposts for sample-efficient RL research on the ALE. We make our code and data publicly available at https://github.com/google-research/google-research/tree/master/bigger_better_faster.
RL Tango: Reinforcing Generator and Verifier Together for Language Reasoning
Reinforcement learning (RL) has recently emerged as a compelling approach for enhancing the reasoning capabilities of large language models (LLMs), where an LLM generator serves as a policy guided by a verifier (reward model). However, current RL post-training methods for LLMs typically use verifiers that are fixed (rule-based or frozen pretrained) or trained discriminatively via supervised fine-tuning (SFT). Such designs are susceptible to reward hacking and generalize poorly beyond their training distributions. To overcome these limitations, we propose Tango, a novel framework that uses RL to concurrently train both an LLM generator and a verifier in an interleaved manner. A central innovation of Tango is its generative, process-level LLM verifier, which is trained via RL and co-evolves with the generator. Importantly, the verifier is trained solely based on outcome-level verification correctness rewards without requiring explicit process-level annotations. This generative RL-trained verifier exhibits improved robustness and superior generalization compared to deterministic or SFT-trained verifiers, fostering effective mutual reinforcement with the generator. Extensive experiments demonstrate that both components of Tango achieve state-of-the-art results among 7B/8B-scale models: the generator attains best-in-class performance across five competition-level math benchmarks and four challenging out-of-domain reasoning tasks, while the verifier leads on the ProcessBench dataset. Remarkably, both components exhibit particularly substantial improvements on the most difficult mathematical reasoning problems. Code is at: https://github.com/kaiwenzha/rl-tango.
Beyond Exponentially Fast Mixing in Average-Reward Reinforcement Learning via Multi-Level Monte Carlo Actor-Critic
Many existing reinforcement learning (RL) methods employ stochastic gradient iteration on the back end, whose stability hinges upon a hypothesis that the data-generating process mixes exponentially fast with a rate parameter that appears in the step-size selection. Unfortunately, this assumption is violated for large state spaces or settings with sparse rewards, and the mixing time is unknown, making the step size inoperable. In this work, we propose an RL methodology attuned to the mixing time by employing a multi-level Monte Carlo estimator for the critic, the actor, and the average reward embedded within an actor-critic (AC) algorithm. This method, which we call Multi-level Actor-Critic (MAC), is developed especially for infinite-horizon average-reward settings and neither relies on oracle knowledge of the mixing time in its parameter selection nor assumes its exponential decay; it, therefore, is readily applicable to applications with slower mixing times. Nonetheless, it achieves a convergence rate comparable to the state-of-the-art AC algorithms. We experimentally show that these alleviated restrictions on the technical conditions required for stability translate to superior performance in practice for RL problems with sparse rewards.
Graph Reinforcement Learning for Network Control via Bi-Level Optimization
Optimization problems over dynamic networks have been extensively studied and widely used in the past decades to formulate numerous real-world problems. However, (1) traditional optimization-based approaches do not scale to large networks, and (2) the design of good heuristics or approximation algorithms often requires significant manual trial-and-error. In this work, we argue that data-driven strategies can automate this process and learn efficient algorithms without compromising optimality. To do so, we present network control problems through the lens of reinforcement learning and propose a graph network-based framework to handle a broad class of problems. Instead of naively computing actions over high-dimensional graph elements, e.g., edges, we propose a bi-level formulation where we (1) specify a desired next state via RL, and (2) solve a convex program to best achieve it, leading to drastically improved scalability and performance. We further highlight a collection of desirable features to system designers, investigate design decisions, and present experiments on real-world control problems showing the utility, scalability, and flexibility of our framework.
Group-in-Group Policy Optimization for LLM Agent Training
Recent advances in group-based reinforcement learning (RL) have driven frontier large language models (LLMs) in single-turn tasks like mathematical reasoning. However, their scalability to long-horizon LLM agent training remains limited. Unlike static tasks, agent-environment interactions unfold over many steps and often yield sparse or delayed rewards, making credit assignment across individual steps significantly more challenging. In this work, we propose Group-in-Group Policy Optimization (GiGPO), a novel RL algorithm that achieves fine-grained credit assignment for LLM agents while preserving the appealing properties of group-based RL: critic-free, low memory, and stable convergence. GiGPO introduces a two-level structure for estimating relative advantage: (i) At the episode-level, GiGPO computes macro relative advantages based on groups of complete trajectories; (ii) At the step-level, GiGPO introduces an anchor state grouping mechanism that retroactively constructs step-level groups by identifying repeated environment states across trajectories. Actions stemming from the same state are grouped together, enabling micro relative advantage estimation. This hierarchical structure effectively captures both global trajectory quality and local step effectiveness without relying on auxiliary models or additional rollouts. We evaluate GiGPO on two challenging agent benchmarks, ALFWorld and WebShop, using Qwen2.5-1.5B-Instruct and Qwen2.5-7B-Instruct. Crucially, GiGPO delivers fine-grained per-step credit signals and achieves performance gains of > 12\% on ALFWorld and > 9\% on WebShop over the GRPO baseline: all while maintaining the same GPU memory overhead, identical LLM rollout, and incurring little to no additional time cost.
MacroHFT: Memory Augmented Context-aware Reinforcement Learning On High Frequency Trading
High-frequency trading (HFT) that executes algorithmic trading in short time scales, has recently occupied the majority of cryptocurrency market. Besides traditional quantitative trading methods, reinforcement learning (RL) has become another appealing approach for HFT due to its terrific ability of handling high-dimensional financial data and solving sophisticated sequential decision-making problems, e.g., hierarchical reinforcement learning (HRL) has shown its promising performance on second-level HFT by training a router to select only one sub-agent from the agent pool to execute the current transaction. However, existing RL methods for HFT still have some defects: 1) standard RL-based trading agents suffer from the overfitting issue, preventing them from making effective policy adjustments based on financial context; 2) due to the rapid changes in market conditions, investment decisions made by an individual agent are usually one-sided and highly biased, which might lead to significant loss in extreme markets. To tackle these problems, we propose a novel Memory Augmented Context-aware Reinforcement learning method On HFT, a.k.a. MacroHFT, which consists of two training phases: 1) we first train multiple types of sub-agents with the market data decomposed according to various financial indicators, specifically market trend and volatility, where each agent owns a conditional adapter to adjust its trading policy according to market conditions; 2) then we train a hyper-agent to mix the decisions from these sub-agents and output a consistently profitable meta-policy to handle rapid market fluctuations, equipped with a memory mechanism to enhance the capability of decision-making. Extensive experiments on various cryptocurrency markets demonstrate that MacroHFT can achieve state-of-the-art performance on minute-level trading tasks.
Replay across Experiments: A Natural Extension of Off-Policy RL
Replaying data is a principal mechanism underlying the stability and data efficiency of off-policy reinforcement learning (RL). We present an effective yet simple framework to extend the use of replays across multiple experiments, minimally adapting the RL workflow for sizeable improvements in controller performance and research iteration times. At its core, Replay Across Experiments (RaE) involves reusing experience from previous experiments to improve exploration and bootstrap learning while reducing required changes to a minimum in comparison to prior work. We empirically show benefits across a number of RL algorithms and challenging control domains spanning both locomotion and manipulation, including hard exploration tasks from egocentric vision. Through comprehensive ablations, we demonstrate robustness to the quality and amount of data available and various hyperparameter choices. Finally, we discuss how our approach can be applied more broadly across research life cycles and can increase resilience by reloading data across random seeds or hyperparameter variations.
Counterfactual Explanation Policies in RL
As Reinforcement Learning (RL) agents are increasingly employed in diverse decision-making problems using reward preferences, it becomes important to ensure that policies learned by these frameworks in mapping observations to a probability distribution of the possible actions are explainable. However, there is little to no work in the systematic understanding of these complex policies in a contrastive manner, i.e., what minimal changes to the policy would improve/worsen its performance to a desired level. In this work, we present COUNTERPOL, the first framework to analyze RL policies using counterfactual explanations in the form of minimal changes to the policy that lead to the desired outcome. We do so by incorporating counterfactuals in supervised learning in RL with the target outcome regulated using desired return. We establish a theoretical connection between Counterpol and widely used trust region-based policy optimization methods in RL. Extensive empirical analysis shows the efficacy of COUNTERPOL in generating explanations for (un)learning skills while keeping close to the original policy. Our results on five different RL environments with diverse state and action spaces demonstrate the utility of counterfactual explanations, paving the way for new frontiers in designing and developing counterfactual policies.
TAG: A Decentralized Framework for Multi-Agent Hierarchical Reinforcement Learning
Hierarchical organization is fundamental to biological systems and human societies, yet artificial intelligence systems often rely on monolithic architectures that limit adaptability and scalability. Current hierarchical reinforcement learning (HRL) approaches typically restrict hierarchies to two levels or require centralized training, which limits their practical applicability. We introduce TAME Agent Framework (TAG), a framework for constructing fully decentralized hierarchical multi-agent systems.TAG enables hierarchies of arbitrary depth through a novel LevelEnv concept, which abstracts each hierarchy level as the environment for the agents above it. This approach standardizes information flow between levels while preserving loose coupling, allowing for seamless integration of diverse agent types. We demonstrate the effectiveness of TAG by implementing hierarchical architectures that combine different RL agents across multiple levels, achieving improved performance over classical multi-agent RL baselines on standard benchmarks. Our results show that decentralized hierarchical organization enhances both learning speed and final performance, positioning TAG as a promising direction for scalable multi-agent systems.
Deep Reinforcement Learning at the Edge of the Statistical Precipice
Deep reinforcement learning (RL) algorithms are predominantly evaluated by comparing their relative performance on a large suite of tasks. Most published results on deep RL benchmarks compare point estimates of aggregate performance such as mean and median scores across tasks, ignoring the statistical uncertainty implied by the use of a finite number of training runs. Beginning with the Arcade Learning Environment (ALE), the shift towards computationally-demanding benchmarks has led to the practice of evaluating only a small number of runs per task, exacerbating the statistical uncertainty in point estimates. In this paper, we argue that reliable evaluation in the few run deep RL regime cannot ignore the uncertainty in results without running the risk of slowing down progress in the field. We illustrate this point using a case study on the Atari 100k benchmark, where we find substantial discrepancies between conclusions drawn from point estimates alone versus a more thorough statistical analysis. With the aim of increasing the field's confidence in reported results with a handful of runs, we advocate for reporting interval estimates of aggregate performance and propose performance profiles to account for the variability in results, as well as present more robust and efficient aggregate metrics, such as interquartile mean scores, to achieve small uncertainty in results. Using such statistical tools, we scrutinize performance evaluations of existing algorithms on other widely used RL benchmarks including the ALE, Procgen, and the DeepMind Control Suite, again revealing discrepancies in prior comparisons. Our findings call for a change in how we evaluate performance in deep RL, for which we present a more rigorous evaluation methodology, accompanied with an open-source library rliable, to prevent unreliable results from stagnating the field.
Open RL Benchmark: Comprehensive Tracked Experiments for Reinforcement Learning
In many Reinforcement Learning (RL) papers, learning curves are useful indicators to measure the effectiveness of RL algorithms. However, the complete raw data of the learning curves are rarely available. As a result, it is usually necessary to reproduce the experiments from scratch, which can be time-consuming and error-prone. We present Open RL Benchmark, a set of fully tracked RL experiments, including not only the usual data such as episodic return, but also all algorithm-specific and system metrics. Open RL Benchmark is community-driven: anyone can download, use, and contribute to the data. At the time of writing, more than 25,000 runs have been tracked, for a cumulative duration of more than 8 years. Open RL Benchmark covers a wide range of RL libraries and reference implementations. Special care is taken to ensure that each experiment is precisely reproducible by providing not only the full parameters, but also the versions of the dependencies used to generate it. In addition, Open RL Benchmark comes with a command-line interface (CLI) for easy fetching and generating figures to present the results. In this document, we include two case studies to demonstrate the usefulness of Open RL Benchmark in practice. To the best of our knowledge, Open RL Benchmark is the first RL benchmark of its kind, and the authors hope that it will improve and facilitate the work of researchers in the field.
NeoRL-2: Near Real-World Benchmarks for Offline Reinforcement Learning with Extended Realistic Scenarios
Offline reinforcement learning (RL) aims to learn from historical data without requiring (costly) access to the environment. To facilitate offline RL research, we previously introduced NeoRL, which highlighted that datasets from real-world tasks are often conservative and limited. With years of experience applying offline RL to various domains, we have identified additional real-world challenges. These include extremely conservative data distributions produced by deployed control systems, delayed action effects caused by high-latency transitions, external factors arising from the uncontrollable variance of transitions, and global safety constraints that are difficult to evaluate during the decision-making process. These challenges are underrepresented in previous benchmarks but frequently occur in real-world tasks. To address this, we constructed the extended Near Real-World Offline RL Benchmark (NeoRL-2), which consists of 7 datasets from 7 simulated tasks along with their corresponding evaluation simulators. Benchmarking results from state-of-the-art offline RL approaches demonstrate that current methods often struggle to outperform the data-collection behavior policy, highlighting the need for more effective methods. We hope NeoRL-2 will accelerate the development of reinforcement learning algorithms for real-world applications. The benchmark project page is available at https://github.com/polixir/NeoRL2.
D5RL: Diverse Datasets for Data-Driven Deep Reinforcement Learning
Offline reinforcement learning algorithms hold the promise of enabling data-driven RL methods that do not require costly or dangerous real-world exploration and benefit from large pre-collected datasets. This in turn can facilitate real-world applications, as well as a more standardized approach to RL research. Furthermore, offline RL methods can provide effective initializations for online finetuning to overcome challenges with exploration. However, evaluating progress on offline RL algorithms requires effective and challenging benchmarks that capture properties of real-world tasks, provide a range of task difficulties, and cover a range of challenges both in terms of the parameters of the domain (e.g., length of the horizon, sparsity of rewards) and the parameters of the data (e.g., narrow demonstration data or broad exploratory data). While considerable progress in offline RL in recent years has been enabled by simpler benchmark tasks, the most widely used datasets are increasingly saturating in performance and may fail to reflect properties of realistic tasks. We propose a new benchmark for offline RL that focuses on realistic simulations of robotic manipulation and locomotion environments, based on models of real-world robotic systems, and comprising a variety of data sources, including scripted data, play-style data collected by human teleoperators, and other data sources. Our proposed benchmark covers state-based and image-based domains, and supports both offline RL and online fine-tuning evaluation, with some of the tasks specifically designed to require both pre-training and fine-tuning. We hope that our proposed benchmark will facilitate further progress on both offline RL and fine-tuning algorithms. Website with code, examples, tasks, and data is available at https://sites.google.com/view/d5rl/
AReaL: A Large-Scale Asynchronous Reinforcement Learning System for Language Reasoning
Reinforcement learning (RL) has become a trending paradigm for training large language models (LLMs), particularly for reasoning tasks. Effective RL for LLMs requires massive parallelization and poses an urgent need for efficient training systems. Most existing large-scale RL systems for LLMs are synchronous by alternating generation and training in a batch setting, where the rollouts in each training batch are generated by the same (or latest) model. This stabilizes RL training but suffers from severe system-level inefficiency. Generation must wait until the longest output in the batch is completed before model update, resulting in GPU underutilization. We present AReaL, a fully asynchronous RL system that completely decouples generation from training. Rollout workers in AReaL continuously generate new outputs without waiting, while training workers update the model whenever a batch of data is collected. AReaL also incorporates a collection of system-level optimizations, leading to substantially higher GPU utilization. To stabilize RL training, AReaL balances the workload of rollout and training workers to control data staleness, and adopts a staleness-enhanced PPO variant to better handle outdated training samples. Extensive experiments on math and code reasoning benchmarks show that AReaL achieves up to 2.57times training speedup compared to the best synchronous systems with the same number of GPUs and matched or even improved final performance. The code of AReaL is available at https://github.com/inclusionAI/AReaL/.
Beyond Accuracy: Dissecting Mathematical Reasoning for LLMs Under Reinforcement Learning
Reinforcement learning (RL) has become the dominant paradigm for endowing language models with advanced reasoning capabilities. Despite the substantial empirical gains demonstrated by RL-based training methods like GRPO, a granular understanding of their advantages is still lacking. To address this gap, we introduce a fine-grained analytic framework to dissect the impact of RL on reasoning. Our framework specifically investigates key elements that have been hypothesized to benefit from RL training: (1) plan-following and execution, (2) problem decomposition, and (3) improved reasoning and knowledge utilization. Using this framework, we gain insights beyond mere accuracy. For instance, providing models with explicit step-by-step plans surprisingly degrades performance on the most challenging benchmarks, yet RL-tuned models exhibit greater robustness, experiencing markedly smaller performance drops than their base counterparts. This suggests that RL may not primarily enhance the execution of external plans but rather empower models to formulate and follow internal strategies better suited to their reasoning processes. Conversely, we observe that RL enhances the model's capacity to integrate provided knowledge into its reasoning process, leading to performance improvements across diverse tasks. We also study difficulty, showing improved training by developing new ways to exploit hard problems. Our findings lay a foundation for more principled training and evaluation of reasoning models.
Does Reinforcement Learning Really Incentivize Reasoning Capacity in LLMs Beyond the Base Model?
Reinforcement Learning with Verifiable Rewards (RLVR) has recently demonstrated notable success in enhancing the reasoning capabilities of LLMs, particularly in mathematics and programming tasks. It is widely believed that RLVR enables LLMs to continuously self-improve, thus acquiring novel reasoning abilities that exceed corresponding base models' capacity. In this study, however, we critically re-examines this assumption by measuring the pass@k metric with large values of k to explore the reasoning capability boundary of the models across a wide range of model families and benchmarks. Surprisingly, the RL does not, in fact, elicit fundamentally new reasoning patterns. While RL-trained models outperform their base models at smaller values of k (\eg, k=1), base models can achieve a comparable or even higher pass@k score compared to their RL counterparts at large k values. The reasoning paths generated by RL-trained models are already included in the base models' sampling distribution, suggesting that most reasoning abilities manifested in RL-trained models are already obtained by base models. Further analysis shows that RL training boosts the performance by biasing the model's output distribution toward paths that are more likely to yield rewards, therefore sampling correct responses more efficiently. But this also results in a narrower reasoning capability boundary compared to base models. Similar results are observed in visual reasoning tasks trained with RLVR. Moreover, we find that distillation can genuinely introduce new knowledge into the model, different from RLVR. These findings underscore a critical limitation of RLVR in advancing LLM reasoning abilities which requires us to fundamentally rethink the impact of RL training in reasoning LLMs and the need of a better paradigm. Project Page: https://limit-of-RLVR.github.io
Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels
Controlling artificial agents from visual sensory data is an arduous task. Reinforcement learning (RL) algorithms can succeed but require large amounts of interactions between the agent and the environment. To alleviate the issue, unsupervised RL proposes to employ self-supervised interaction and learning, for adapting faster to future tasks. Yet, as shown in the Unsupervised RL Benchmark (URLB; Laskin et al. 2021), whether current unsupervised strategies can improve generalization capabilities is still unclear, especially in visual control settings. In this work, we study the URLB and propose a new method to solve it, using unsupervised model-based RL, for pre-training the agent, and a task-aware fine-tuning strategy combined with a new proposed hybrid planner, Dyna-MPC, to adapt the agent for downstream tasks. On URLB, our method obtains 93.59% overall normalized performance, surpassing previous baselines by a staggering margin. The approach is empirically evaluated through a large-scale empirical study, which we use to validate our design choices and analyze our models. We also show robust performance on the Real-Word RL benchmark, hinting at resiliency to environment perturbations during adaptation. Project website: https://masteringurlb.github.io/
NeoRL: A Near Real-World Benchmark for Offline Reinforcement Learning
Offline reinforcement learning (RL) aims at learning a good policy from a batch of collected data, without extra interactions with the environment during training. However, current offline RL benchmarks commonly have a large reality gap, because they involve large datasets collected by highly exploratory policies, and the trained policy is directly evaluated in the environment. In real-world situations, running a highly exploratory policy is prohibited to ensure system safety, the data is commonly very limited, and a trained policy should be well validated before deployment. In this paper, we present a near real-world offline RL benchmark, named NeoRL, which contains datasets from various domains with controlled sizes, and extra test datasets for policy validation. We evaluate existing offline RL algorithms on NeoRL and argue that the performance of a policy should also be compared with the deterministic version of the behavior policy, instead of the dataset reward. The empirical results demonstrate that the tested offline RL algorithms become less competitive to the deterministic policy on many datasets, and the offline policy evaluation hardly helps. The NeoRL suit can be found at http://polixir.ai/research/neorl. We hope this work will shed some light on future research and draw more attention when deploying RL in real-world systems.
Overcoming Slow Decision Frequencies in Continuous Control: Model-Based Sequence Reinforcement Learning for Model-Free Control
Reinforcement learning (RL) is rapidly reaching and surpassing human-level control capabilities. However, state-of-the-art RL algorithms often require timesteps and reaction times significantly faster than human capabilities, which is impractical in real-world settings and typically necessitates specialized hardware. Such speeds are difficult to achieve in the real world and often requires specialized hardware. We introduce Sequence Reinforcement Learning (SRL), an RL algorithm designed to produce a sequence of actions for a given input state, enabling effective control at lower decision frequencies. SRL addresses the challenges of learning action sequences by employing both a model and an actor-critic architecture operating at different temporal scales. We propose a "temporal recall" mechanism, where the critic uses the model to estimate intermediate states between primitive actions, providing a learning signal for each individual action within the sequence. Once training is complete, the actor can generate action sequences independently of the model, achieving model-free control at a slower frequency. We evaluate SRL on a suite of continuous control tasks, demonstrating that it achieves performance comparable to state-of-the-art algorithms while significantly reducing actor sample complexity. To better assess performance across varying decision frequencies, we introduce the Frequency-Averaged Score (FAS) metric. Our results show that SRL significantly outperforms traditional RL algorithms in terms of FAS, making it particularly suitable for applications requiring variable decision frequencies. Additionally, we compare SRL with model-based online planning, showing that SRL achieves superior FAS while leveraging the same model during training that online planners use for planning.
Reinforcement Learning for Reasoning in Large Language Models with One Training Example
We show that reinforcement learning with verifiable reward using one training example (1-shot RLVR) is effective in incentivizing the math reasoning capabilities of large language models (LLMs). Applying RLVR to the base model Qwen2.5-Math-1.5B, we identify a single example that elevates model performance on MATH500 from 36.0% to 73.6%, and improves the average performance across six common mathematical reasoning benchmarks from 17.6% to 35.7%. This result matches the performance obtained using the 1.2k DeepScaleR subset (MATH500: 73.6%, average: 35.9%), which includes the aforementioned example. Similar substantial improvements are observed across various models (Qwen2.5-Math-7B, Llama3.2-3B-Instruct, DeepSeek-R1-Distill-Qwen-1.5B), RL algorithms (GRPO and PPO), and different math examples (many of which yield approximately 30% or greater improvement on MATH500 when employed as a single training example). In addition, we identify some interesting phenomena during 1-shot RLVR, including cross-domain generalization, increased frequency of self-reflection, and sustained test performance improvement even after the training accuracy has saturated, a phenomenon we term post-saturation generalization. Moreover, we verify that the effectiveness of 1-shot RLVR primarily arises from the policy gradient loss, distinguishing it from the "grokking" phenomenon. We also show the critical role of promoting exploration (e.g., by adding entropy loss with an appropriate coefficient) in 1-shot RLVR training. As a bonus, we observe that applying entropy loss alone, without any outcome reward, significantly enhances Qwen2.5-Math-1.5B's performance on MATH500 by 27.4%. These findings can inspire future work on RLVR data efficiency and encourage a re-examination of both recent progress and the underlying mechanisms in RLVR. Our code, model, and data are open source at https://github.com/ypwang61/One-Shot-RLVR
On Designing Effective RL Reward at Training Time for LLM Reasoning
Reward models have been increasingly critical for improving the reasoning capability of LLMs. Existing research has shown that a well-trained reward model can substantially improve model performances at inference time via search. However, the potential of reward models during RL training time still remains largely under-explored. It is currently unclear whether these reward models can provide additional training signals to enhance the reasoning capabilities of LLMs in RL training that uses sparse success rewards, which verify the correctness of solutions. In this work, we evaluate popular reward models for RL training, including the Outcome-supervised Reward Model (ORM) and the Process-supervised Reward Model (PRM), and train a collection of LLMs for math problems using RL by combining these learned rewards with success rewards. Surprisingly, even though these learned reward models have strong inference-time performances, they may NOT help or even hurt RL training, producing worse performances than LLMs trained with the success reward only. Our analysis reveals that an LLM can receive high rewards from some of these reward models by repeating correct but unnecessary reasoning steps, leading to a severe reward hacking issue. Therefore, we introduce two novel reward refinement techniques, including Clipping and Delta. The key idea is to ensure the accumulative reward of any reasoning trajectory is upper-bounded to keep a learned reward model effective without being exploited. We evaluate our techniques with multiple reward models over a set of 1.5B and 7B LLMs on MATH and GSM8K benchmarks and demonstrate that with a carefully designed reward function, RL training without any additional supervised tuning can improve all the evaluated LLMs, including the state-of-the-art 7B LLM Qwen2.5-Math-7B-Instruct on MATH and GSM8K benchmarks.
SWEET-RL: Training Multi-Turn LLM Agents on Collaborative Reasoning Tasks
Large language model (LLM) agents need to perform multi-turn interactions in real-world tasks. However, existing multi-turn RL algorithms for optimizing LLM agents fail to perform effective credit assignment over multiple turns while leveraging the generalization capabilities of LLMs and it remains unclear how to develop such algorithms. To study this, we first introduce a new benchmark, ColBench, where an LLM agent interacts with a human collaborator over multiple turns to solve realistic tasks in backend programming and frontend design. Building on this benchmark, we propose a novel RL algorithm, SWEET-RL (RL with Step-WisE Evaluation from Training-time information), that uses a carefully designed optimization objective to train a critic model with access to additional training-time information. The critic provides step-level rewards for improving the policy model. Our experiments demonstrate that SWEET-RL achieves a 6% absolute improvement in success and win rates on ColBench compared to other state-of-the-art multi-turn RL algorithms, enabling Llama-3.1-8B to match or exceed the performance of GPT4-o in realistic collaborative content creation.
SRL: Scaling Distributed Reinforcement Learning to Over Ten Thousand Cores
The ever-growing complexity of reinforcement learning (RL) tasks demands a distributed RL system to efficiently generate and process a massive amount of data to train intelligent agents. However, existing open-source libraries suffer from various limitations, which impede their practical use in challenging scenarios where large-scale training is necessary. While industrial systems from OpenAI and DeepMind have achieved successful large-scale RL training, their system architecture and implementation details remain undisclosed to the community. In this paper, we present a novel abstraction on the dataflows of RL training, which unifies practical RL training across diverse applications into a general framework and enables fine-grained optimizations. Following this abstraction, we develop a scalable, efficient, and extensible distributed RL system called ReaLly Scalable RL (SRL). The system architecture of SRL separates major RL computation components and allows massively parallelized training. Moreover, SRL offers user-friendly and extensible interfaces for customized algorithms. Our evaluation shows that SRL outperforms existing academic libraries in both a single machine and a medium-sized cluster. In a large-scale cluster, the novel architecture of SRL leads to up to 3.7x speedup compared to the design choices adopted by the existing libraries. We also conduct a direct benchmark comparison to OpenAI's industrial system, Rapid, in the challenging hide-and-seek environment. SRL reproduces the same solution as reported by OpenAI with up to 5x speedup in wall-clock time. Furthermore, we also examine the performance of SRL in a much harder variant of the hide-and-seek environment and achieve substantial learning speedup by scaling SRL to over 15k CPU cores and 32 A100 GPUs. Notably, SRL is the first in the academic community to perform RL experiments at such a large scale.
RLtools: A Fast, Portable Deep Reinforcement Learning Library for Continuous Control
Deep Reinforcement Learning (RL) can yield capable agents and control policies in several domains but is commonly plagued by prohibitively long training times. Additionally, in the case of continuous control problems, the applicability of learned policies on real-world embedded devices is limited due to the lack of real-time guarantees and portability of existing libraries. To address these challenges, we present RLtools, a dependency-free, header-only, pure C++ library for deep supervised and reinforcement learning. Its novel architecture allows RLtools to be used on a wide variety of platforms, from HPC clusters over workstations and laptops to smartphones, smartwatches, and microcontrollers. Specifically, due to the tight integration of the RL algorithms with simulation environments, RLtools can solve popular RL problems up to 76 times faster than other popular RL frameworks. We also benchmark the inference on a diverse set of microcontrollers and show that in most cases our optimized implementation is by far the fastest. Finally, RLtools enables the first-ever demonstration of training a deep RL algorithm directly on a microcontroller, giving rise to the field of Tiny Reinforcement Learning (TinyRL). The source code as well as documentation and live demos are available through our project page at https://rl.tools.
Improving Language Models with Advantage-based Offline Policy Gradients
Abstract Language Models (LMs) achieve substantial language capabilities when finetuned using Reinforcement Learning with Human Feedback (RLHF). However, RLHF is an unstable and data-hungry process that continually requires new high-quality LM-generated data for finetuning. We introduce Advantage-Leftover Lunch RL (A-LoL), a new class of offline policy gradient algorithms that enable RL training on any pre-existing data. By assuming the entire LM output sequence as a single action, A-LoL allows incorporating sequence-level classifiers or human-designed scoring functions as rewards. Subsequently, by using LM's internal sequence-level value estimate, A-LoL filters negative advantage (low-quality) data points during training, making it resilient to noise. Overall, A-LoL is an easy-to-implement LM training recipe that is sample-efficient and stable. We demonstrate the effectiveness of A-LoL and its variants with a set of four different language generation tasks. We compare against both online RL (PPO) and recent preference-based (DPO, PRO) and reward-based (GOLD) offline RL baselines. On the commonly-used RLHF benchmark, Helpful and Harmless Assistant (HHA), LMs trained with A-LoL methods achieve the highest diversity while also being rated more safe and helpful than baselines according to humans. Additionally, in the remaining three tasks, A-LoL could optimize multiple distinct reward functions even when using noisy or suboptimal training data. We also release our experimental code. https://github.com/abaheti95/LoL-RL
Towards General-Purpose Model-Free Reinforcement Learning
Reinforcement learning (RL) promises a framework for near-universal problem-solving. In practice however, RL algorithms are often tailored to specific benchmarks, relying on carefully tuned hyperparameters and algorithmic choices. Recently, powerful model-based RL methods have shown impressive general results across benchmarks but come at the cost of increased complexity and slow run times, limiting their broader applicability. In this paper, we attempt to find a unifying model-free deep RL algorithm that can address a diverse class of domains and problem settings. To achieve this, we leverage model-based representations that approximately linearize the value function, taking advantage of the denser task objectives used by model-based RL while avoiding the costs associated with planning or simulated trajectories. We evaluate our algorithm, MR.Q, on a variety of common RL benchmarks with a single set of hyperparameters and show a competitive performance against domain-specific and general baselines, providing a concrete step towards building general-purpose model-free deep RL algorithms.
Putting the Value Back in RL: Better Test-Time Scaling by Unifying LLM Reasoners With Verifiers
Prevalent reinforcement learning~(RL) methods for fine-tuning LLM reasoners, such as GRPO or Leave-one-out PPO, abandon the learned value function in favor of empirically estimated returns. This hinders test-time compute scaling that relies on using the value-function for verification. In this work, we propose RL^V that augments any ``value-free'' RL method by jointly training the LLM as both a reasoner and a generative verifier using RL-generated data, adding verification capabilities without significant overhead. Empirically, RL^V boosts MATH accuracy by over 20\% with parallel sampling and enables 8-32times efficient test-time compute scaling compared to the base RL method. RL^V also exhibits strong generalization capabilities for both easy-to-hard and out-of-domain tasks. Furthermore, RL^V achieves 1.2-1.6times higher performance when jointly scaling parallel and sequential test-time compute with a long reasoning R1 model.
Asynchronous RLHF: Faster and More Efficient Off-Policy RL for Language Models
The dominant paradigm for RLHF is online and on-policy RL: synchronously generating from the large language model (LLM) policy, labelling with a reward model, and learning using feedback on the LLM's own outputs. While performant, this paradigm is computationally inefficient. Inspired by classical deep RL literature, we propose separating generation and learning in RLHF. This enables asynchronous generation of new samples while simultaneously training on old samples, leading to faster training and more compute-optimal scaling. However, asynchronous training relies on an underexplored regime, online but off-policy RLHF: learning on samples from previous iterations of our model. To understand the challenges in this regime, we investigate a fundamental question: how much off-policyness can we tolerate for asynchronous training to speed up learning but maintain performance? Among several RLHF algorithms we tested, we find that online DPO is most robust to off-policy data, and robustness increases with the scale of the policy model. We study further compute optimizations for asynchronous RLHF but find that they come at a performance cost, giving rise to a trade-off. Finally, we verify the scalability of asynchronous RLHF by training LLaMA 3.1 8B on an instruction-following task 40% faster than a synchronous run while matching final performance.
SWE-RL: Advancing LLM Reasoning via Reinforcement Learning on Open Software Evolution
The recent DeepSeek-R1 release has demonstrated the immense potential of reinforcement learning (RL) in enhancing the general reasoning capabilities of large language models (LLMs). While DeepSeek-R1 and other follow-up work primarily focus on applying RL to competitive coding and math problems, this paper introduces SWE-RL, the first approach to scale RL-based LLM reasoning for real-world software engineering. Leveraging a lightweight rule-based reward (e.g., the similarity score between ground-truth and LLM-generated solutions), SWE-RL enables LLMs to autonomously recover a developer's reasoning processes and solutions by learning from extensive open-source software evolution data -- the record of a software's entire lifecycle, including its code snapshots, code changes, and events such as issues and pull requests. Trained on top of Llama 3, our resulting reasoning model, Llama3-SWE-RL-70B, achieves a 41.0% solve rate on SWE-bench Verified -- a human-verified collection of real-world GitHub issues. To our knowledge, this is the best performance reported for medium-sized (<100B) LLMs to date, even comparable to leading proprietary LLMs like GPT-4o. Surprisingly, despite performing RL solely on software evolution data, Llama3-SWE-RL has even emerged with generalized reasoning skills. For example, it shows improved results on five out-of-domain tasks, namely, function coding, library use, code reasoning, mathematics, and general language understanding, whereas a supervised-finetuning baseline even leads to performance degradation on average. Overall, SWE-RL opens up a new direction to improve the reasoning capabilities of LLMs through reinforcement learning on massive software engineering data.
Echo Chamber: RL Post-training Amplifies Behaviors Learned in Pretraining
Reinforcement learning (RL)-based fine-tuning has become a crucial step in post-training language models for advanced mathematical reasoning and coding. Following the success of frontier reasoning models, recent work has demonstrated that RL fine-tuning consistently improves performance, even in smaller-scale models; however, the underlying mechanisms driving these improvements are not well-understood. Understanding the effects of RL fine-tuning requires disentangling its interaction with pretraining data composition, hyperparameters, and model scale, but such problems are exacerbated by the lack of transparency regarding the training data used in many existing models. In this work, we present a systematic end-to-end study of RL fine-tuning for mathematical reasoning by training models entirely from scratch on different mixtures of fully open datasets. We investigate the effects of various RL fine-tuning algorithms (PPO, GRPO, and Expert Iteration) across models of different scales. Our study reveals that RL algorithms consistently converge towards a dominant output distribution, amplifying patterns in the pretraining data. We also find that models of different scales trained on the same data mixture will converge to distinct output distributions, suggesting that there are scale-dependent biases in model generalization. Moreover, we find that RL post-training on simpler questions can lead to performance gains on harder ones, indicating that certain reasoning capabilities generalize across tasks. Our findings show that small-scale proxies in controlled settings can elicit interesting insights regarding the role of RL in shaping language model behavior.
Is PRM Necessary? Problem-Solving RL Implicitly Induces PRM Capability in LLMs
The development of reasoning capabilities represents a critical frontier in large language models (LLMs) research, where reinforcement learning (RL) and process reward models (PRMs) have emerged as predominant methodological frameworks. Contrary to conventional wisdom, empirical evidence from DeepSeek-R1 demonstrates that pure RL training focused on mathematical problem-solving can progressively enhance reasoning abilities without PRM integration, challenging the perceived necessity of process supervision. In this study, we conduct a systematic investigation of the relationship between RL training and PRM capabilities. Our findings demonstrate that problem-solving proficiency and process supervision capabilities represent complementary dimensions of reasoning that co-evolve synergistically during pure RL training. In particular, current PRMs underperform simple baselines like majority voting when applied to state-of-the-art models such as DeepSeek-R1 and QwQ-32B. To address this limitation, we propose Self-PRM, an introspective framework in which models autonomously evaluate and rerank their generated solutions through self-reward mechanisms. Although Self-PRM consistently improves the accuracy of the benchmark (particularly with larger sample sizes), analysis exposes persistent challenges: The approach exhibits low precision (<10\%) on difficult problems, frequently misclassifying flawed solutions as valid. These analyses underscore the need for continued RL scaling to improve reward alignment and introspective accuracy. Overall, our findings suggest that PRM may not be essential for enhancing complex reasoning, as pure RL not only improves problem-solving skills but also inherently fosters robust PRM capabilities. We hope these findings provide actionable insights for building more reliable and self-aware complex reasoning models.
LlamaRL: A Distributed Asynchronous Reinforcement Learning Framework for Efficient Large-scale LLM Training
Reinforcement Learning (RL) has become the most effective post-training approach for improving the capabilities of Large Language Models (LLMs). In practice, because of the high demands on latency and memory, it is particularly challenging to develop an efficient RL framework that reliably manages policy models with hundreds to thousands of billions of parameters. In this paper, we present LlamaRL, a fully distributed, asynchronous RL framework optimized for efficient training of large-scale LLMs with various model sizes (8B, 70B, and 405B parameters) on GPU clusters ranging from a handful to thousands of devices. LlamaRL introduces a streamlined, single-controller architecture built entirely on native PyTorch, enabling modularity, ease of use, and seamless scalability to thousands of GPUs. We also provide a theoretical analysis of LlamaRL's efficiency, including a formal proof that its asynchronous design leads to strict RL speed-up. Empirically during the Llama 3 post-training, by leveraging best practices such as colocated model offloading, asynchronous off-policy training, and distributed direct memory access for weight synchronization, LlamaRL achieves significant efficiency gains -- up to 10.7x speed-up compared to DeepSpeed-Chat-like systems on a 405B-parameter policy model. Furthermore, the efficiency advantage continues to grow with increasing model scale, demonstrating the framework's suitability for future large-scale RL training.
AceReason-Nemotron: Advancing Math and Code Reasoning through Reinforcement Learning
Despite recent progress in large-scale reinforcement learning (RL) for reasoning, the training recipe for building high-performing reasoning models remains elusive. Key implementation details of frontier models, such as DeepSeek-R1, including data curation strategies and RL training recipe, are often omitted. Moreover, recent research indicates distillation remains more effective than RL for smaller models. In this work, we demonstrate that large-scale RL can significantly enhance the reasoning capabilities of strong, small- and mid-sized models, achieving results that surpass those of state-of-the-art distillation-based models. We systematically study the RL training process through extensive ablations and propose a simple yet effective approach: first training on math-only prompts, then on code-only prompts. Notably, we find that math-only RL not only significantly enhances the performance of strong distilled models on math benchmarks (e.g., +14.6% / +17.2% on AIME 2025 for the 7B / 14B models), but also code reasoning tasks (e.g., +6.8% / +5.8% on LiveCodeBench for the 7B / 14B models). In addition, extended code-only RL iterations further improve performance on code benchmarks with minimal or no degradation in math results. We develop a robust data curation pipeline to collect challenging prompts with high-quality, verifiable answers and test cases to enable verification-based RL across both domains. Finally, we identify key experimental insights, including curriculum learning with progressively increasing response lengths and the stabilizing effect of on-policy parameter updates. We find that RL not only elicits the foundational reasoning capabilities acquired during pretraining and supervised fine-tuning (e.g., distillation), but also pushes the limits of the model's reasoning ability, enabling it to solve problems that were previously unsolvable.
Automated Reinforcement Learning: An Overview
Reinforcement Learning and recently Deep Reinforcement Learning are popular methods for solving sequential decision making problems modeled as Markov Decision Processes. RL modeling of a problem and selecting algorithms and hyper-parameters require careful considerations as different configurations may entail completely different performances. These considerations are mainly the task of RL experts; however, RL is progressively becoming popular in other fields where the researchers and system designers are not RL experts. Besides, many modeling decisions, such as defining state and action space, size of batches and frequency of batch updating, and number of timesteps are typically made manually. For these reasons, automating different components of RL framework is of great importance and it has attracted much attention in recent years. Automated RL provides a framework in which different components of RL including MDP modeling, algorithm selection and hyper-parameter optimization are modeled and defined automatically. In this article, we explore the literature and present recent work that can be used in automated RL. Moreover, we discuss the challenges, open questions and research directions in AutoRL.
Learning What Reinforcement Learning Can't: Interleaved Online Fine-Tuning for Hardest Questions
Recent advances in large language model (LLM) reasoning have shown that sophisticated behaviors such as planning and self-reflection can emerge through reinforcement learning (RL). However, despite these successes, RL in its current form remains insufficient to induce capabilities that exceed the limitations of the base model, as it is primarily optimized based on existing knowledge of the model rather than facilitating the acquisition of new information. To address this limitation, we employ supervised fine-tuning (SFT) to learn what RL cannot, which enables the incorporation of new knowledge and reasoning patterns by leveraging high-quality demonstration data. We analyze the training dynamics of RL and SFT for LLM reasoning and find that RL excels at maintaining and improving performance on questions within the model's original capabilities, while SFT is more effective at enabling progress on questions beyond the current scope of the model. Motivated by the complementary strengths of RL and SFT, we introduce a novel training approach, ReLIFT (Reinforcement Learning Interleaved with Online Fine-Tuning). In ReLIFT, the model is primarily trained using RL, but when it encounters challenging questions, high-quality solutions are collected for fine-tuning, and the training process alternates between RL and fine-tuning to enhance the model's reasoning abilities. ReLIFT achieves an average improvement of over +5.2 points across five competition-level benchmarks and one out-of-distribution benchmark compared to other zero-RL models. Furthermore, we demonstrate that ReLIFT outperforms both RL and SFT while using only 13\% of the detailed demonstration data, highlighting its scalability. These results provide compelling evidence that ReLIFT overcomes the fundamental limitations of RL and underscores the significant potential.
The Effective Horizon Explains Deep RL Performance in Stochastic Environments
Reinforcement learning (RL) theory has largely focused on proving minimax sample complexity bounds. These require strategic exploration algorithms that use relatively limited function classes for representing the policy or value function. Our goal is to explain why deep RL algorithms often perform well in practice, despite using random exploration and much more expressive function classes like neural networks. Our work arrives at an explanation by showing that many stochastic MDPs can be solved by performing only a few steps of value iteration on the random policy's Q function and then acting greedily. When this is true, we find that it is possible to separate the exploration and learning components of RL, making it much easier to analyze. We introduce a new RL algorithm, SQIRL, that iteratively learns a near-optimal policy by exploring randomly to collect rollouts and then performing a limited number of steps of fitted-Q iteration over those rollouts. Any regression algorithm that satisfies basic in-distribution generalization properties can be used in SQIRL to efficiently solve common MDPs. This can explain why deep RL works, since it is empirically established that neural networks generalize well in-distribution. Furthermore, SQIRL explains why random exploration works well in practice. We leverage SQIRL to derive instance-dependent sample complexity bounds for RL that are exponential only in an "effective horizon" of lookahead and on the complexity of the class used for function approximation. Empirically, we also find that SQIRL performance strongly correlates with PPO and DQN performance in a variety of stochastic environments, supporting that our theoretical analysis is predictive of practical performance. Our code and data are available at https://github.com/cassidylaidlaw/effective-horizon.
Learning from Suboptimal Data in Continuous Control via Auto-Regressive Soft Q-Network
Reinforcement learning (RL) for continuous control often requires large amounts of online interaction data. Value-based RL methods can mitigate this burden by offering relatively high sample efficiency. Some studies further enhance sample efficiency by incorporating offline demonstration data to "kick-start" training, achieving promising results in continuous control. However, they typically compute the Q-function independently for each action dimension, neglecting interdependencies and making it harder to identify optimal actions when learning from suboptimal data, such as non-expert demonstration and online-collected data during the training process. To address these issues, we propose Auto-Regressive Soft Q-learning (ARSQ), a value-based RL algorithm that models Q-values in a coarse-to-fine, auto-regressive manner. First, ARSQ decomposes the continuous action space into discrete spaces in a coarse-to-fine hierarchy, enhancing sample efficiency for fine-grained continuous control tasks. Next, it auto-regressively predicts dimensional action advantages within each decision step, enabling more effective decision-making in continuous control tasks. We evaluate ARSQ on two continuous control benchmarks, RLBench and D4RL, integrating demonstration data into online training. On D4RL, which includes non-expert demonstrations, ARSQ achieves an average 1.62times performance improvement over SOTA value-based baseline. On RLBench, which incorporates expert demonstrations, ARSQ surpasses various baselines, demonstrating its effectiveness in learning from suboptimal online-collected data. Project page is at https://sites.google.com/view/ar-soft-q
Enhancing Efficiency and Exploration in Reinforcement Learning for LLMs
Reasoning large language models (LLMs) excel in complex tasks, which has drawn significant attention to reinforcement learning (RL) for LLMs. However, existing approaches allocate an equal number of rollouts to all questions during the RL process, which is inefficient. This inefficiency stems from the fact that training on simple questions yields limited gains, whereas more rollouts are needed for challenging questions to sample correct answers. Furthermore, while RL improves response precision, it limits the model's exploration ability, potentially resulting in a performance cap below that of the base model prior to RL. To address these issues, we propose a mechanism for dynamically allocating rollout budgets based on the difficulty of the problems, enabling more efficient RL training. Additionally, we introduce an adaptive dynamic temperature adjustment strategy to maintain the entropy at a stable level, thereby encouraging sufficient exploration. This enables LLMs to improve response precision while preserving their exploratory ability to uncover potential correct pathways. The code and data is available on: https://github.com/LiaoMengqi/E3-RL4LLMs
Deep Reinforcement Learning for Robotics: A Survey of Real-World Successes
Reinforcement learning (RL), particularly its combination with deep neural networks referred to as deep RL (DRL), has shown tremendous promise across a wide range of applications, suggesting its potential for enabling the development of sophisticated robotic behaviors. Robotics problems, however, pose fundamental difficulties for the application of RL, stemming from the complexity and cost of interacting with the physical world. This article provides a modern survey of DRL for robotics, with a particular focus on evaluating the real-world successes achieved with DRL in realizing several key robotic competencies. Our analysis aims to identify the key factors underlying those exciting successes, reveal underexplored areas, and provide an overall characterization of the status of DRL in robotics. We highlight several important avenues for future work, emphasizing the need for stable and sample-efficient real-world RL paradigms, holistic approaches for discovering and integrating various competencies to tackle complex long-horizon, open-world tasks, and principled development and evaluation procedures. This survey is designed to offer insights for both RL practitioners and roboticists toward harnessing RL's power to create generally capable real-world robotic systems.
RRLS : Robust Reinforcement Learning Suite
Robust reinforcement learning is the problem of learning control policies that provide optimal worst-case performance against a span of adversarial environments. It is a crucial ingredient for deploying algorithms in real-world scenarios with prevalent environmental uncertainties and has been a long-standing object of attention in the community, without a standardized set of benchmarks. This contribution endeavors to fill this gap. We introduce the Robust Reinforcement Learning Suite (RRLS), a benchmark suite based on Mujoco environments. RRLS provides six continuous control tasks with two types of uncertainty sets for training and evaluation. Our benchmark aims to standardize robust reinforcement learning tasks, facilitating reproducible and comparable experiments, in particular those from recent state-of-the-art contributions, for which we demonstrate the use of RRLS. It is also designed to be easily expandable to new environments. The source code is available at https://github.com/SuReLI/RRLS{https://github.com/SuReLI/RRLS}.
Improving and Benchmarking Offline Reinforcement Learning Algorithms
Recently, Offline Reinforcement Learning (RL) has achieved remarkable progress with the emergence of various algorithms and datasets. However, these methods usually focus on algorithmic advancements, ignoring that many low-level implementation choices considerably influence or even drive the final performance. As a result, it becomes hard to attribute the progress in Offline RL as these choices are not sufficiently discussed and aligned in the literature. In addition, papers focusing on a dataset (e.g., D4RL) often ignore algorithms proposed on another dataset (e.g., RL Unplugged), causing isolation among the algorithms, which might slow down the overall progress. Therefore, this work aims to bridge the gaps caused by low-level choices and datasets. To this end, we empirically investigate 20 implementation choices using three representative algorithms (i.e., CQL, CRR, and IQL) and present a guidebook for choosing implementations. Following the guidebook, we find two variants CRR+ and CQL+ , achieving new state-of-the-art on D4RL. Moreover, we benchmark eight popular offline RL algorithms across datasets under unified training and evaluation framework. The findings are inspiring: the success of a learning paradigm severely depends on the data distribution, and some previous conclusions are biased by the dataset used. Our code is available at https://github.com/sail-sg/offbench.
Beyond Binary Rewards: Training LMs to Reason About Their Uncertainty
When language models (LMs) are trained via reinforcement learning (RL) to generate natural language "reasoning chains", their performance improves on a variety of difficult question answering tasks. Today, almost all successful applications of RL for reasoning use binary reward functions that evaluate the correctness of LM outputs. Because such reward functions do not penalize guessing or low-confidence outputs, they often have the unintended side-effect of degrading calibration and increasing the rate at which LMs generate incorrect responses (or "hallucinate") in other problem domains. This paper describes RLCR (Reinforcement Learning with Calibration Rewards), an approach to training reasoning models that jointly improves accuracy and calibrated confidence estimation. During RLCR, LMs generate both predictions and numerical confidence estimates after reasoning. They are trained to optimize a reward function that augments a binary correctness score with a Brier score -- a scoring rule for confidence estimates that incentivizes calibrated prediction. We first prove that this reward function (or any analogous reward function that uses a bounded, proper scoring rule) yields models whose predictions are both accurate and well-calibrated. We next show that across diverse datasets, RLCR substantially improves calibration with no loss in accuracy, on both in-domain and out-of-domain evaluations -- outperforming both ordinary RL training and classifiers trained to assign post-hoc confidence scores. While ordinary RL hurts calibration, RLCR improves it. Finally, we demonstrate that verbalized confidence can be leveraged at test time to improve accuracy and calibration via confidence-weighted scaling methods. Our results show that explicitly optimizing for calibration can produce more generally reliable reasoning models.
ProRL: Prolonged Reinforcement Learning Expands Reasoning Boundaries in Large Language Models
Recent advances in reasoning-centric language models have highlighted reinforcement learning (RL) as a promising method for aligning models with verifiable rewards. However, it remains contentious whether RL truly expands a model's reasoning capabilities or merely amplifies high-reward outputs already latent in the base model's distribution, and whether continually scaling up RL compute reliably leads to improved reasoning performance. In this work, we challenge prevailing assumptions by demonstrating that prolonged RL (ProRL) training can uncover novel reasoning strategies that are inaccessible to base models, even under extensive sampling. We introduce ProRL, a novel training methodology that incorporates KL divergence control, reference policy resetting, and a diverse suite of tasks. Our empirical analysis reveals that RL-trained models consistently outperform base models across a wide range of pass@k evaluations, including scenarios where base models fail entirely regardless of the number of attempts. We further show that reasoning boundary improvements correlates strongly with task competence of base model and training duration, suggesting that RL can explore and populate new regions of solution space over time. These findings offer new insights into the conditions under which RL meaningfully expands reasoning boundaries in language models and establish a foundation for future work on long-horizon RL for reasoning. We release model weights to support further research: https://huggingface.co/nvidia/Nemotron-Research-Reasoning-Qwen-1.5B
Scalpel vs. Hammer: GRPO Amplifies Existing Capabilities, SFT Replaces Them
Training large language models (LLMs) for reasoning via maths and code datasets has become a major new focus in LLM post-training. Two particularly popular approaches are reinforcement learning (RL) and supervised fine-tuning (SFT), but their training dynamics are poorly understood. We present a comparative analysis of RL and SFT on the same maths problems with the same model and similar hyperparameters. We find that RL yields minor in-domain gains on maths and slight degradation on knowledge-intensive benchmarks like MMLU, while both trends are more pronounced in SFT. We also analyse model parameters across checkpoints, observing that both algorithms modify query and key weights the most. Meanwhile, SFT exhibits greater updates and also affects mid-layer MLPs more, leading us to hypothesise that this may have caused the out-of-domain degradation. We therefore investigate whether freezing parts of the model during training can mitigate the reduced performance on knowledge-intensive benchmarks. However, our results are inconclusive, with benefits on GPQA:Diamond and degradation on other benchmarks. Taken together, our observations provide a preliminary indication for why RL amplifies existing capabilities, while SFT replaces old skills with new ones.
Efficient Online Reinforcement Learning Fine-Tuning Need Not Retain Offline Data
The modern paradigm in machine learning involves pre-training on diverse data, followed by task-specific fine-tuning. In reinforcement learning (RL), this translates to learning via offline RL on a diverse historical dataset, followed by rapid online RL fine-tuning using interaction data. Most RL fine-tuning methods require continued training on offline data for stability and performance. However, this is undesirable because training on diverse offline data is slow and expensive for large datasets, and in principle, also limit the performance improvement possible because of constraints or pessimism on offline data. In this paper, we show that retaining offline data is unnecessary as long as we use a properly-designed online RL approach for fine-tuning offline RL initializations. To build this approach, we start by analyzing the role of retaining offline data in online fine-tuning. We find that continued training on offline data is mostly useful for preventing a sudden divergence in the value function at the onset of fine-tuning, caused by a distribution mismatch between the offline data and online rollouts. This divergence typically results in unlearning and forgetting the benefits of offline pre-training. Our approach, Warm-start RL (WSRL), mitigates the catastrophic forgetting of pre-trained initializations using a very simple idea. WSRL employs a warmup phase that seeds the online RL run with a very small number of rollouts from the pre-trained policy to do fast online RL. The data collected during warmup helps ``recalibrate'' the offline Q-function to the online distribution, allowing us to completely discard offline data without destabilizing the online RL fine-tuning. We show that WSRL is able to fine-tune without retaining any offline data, and is able to learn faster and attains higher performance than existing algorithms irrespective of whether they retain offline data or not.
Reinforcement Learning Finetunes Small Subnetworks in Large Language Models
Reinforcement learning (RL) yields substantial improvements in large language models (LLMs) downstream task performance and alignment with human values. Surprisingly, such large gains result from updating only a small subnetwork comprising just 5 percent to 30 percent of the parameters, with the rest effectively unchanged. We refer to this phenomenon as parameter update sparsity induced by RL. It is observed across all 7 widely used RL algorithms (e.g., PPO, GRPO, DPO) and all 10 LLMs from different families in our experiments. This sparsity is intrinsic and occurs without any explicit sparsity promoting regularizations or architectural constraints. Finetuning the subnetwork alone recovers the test accuracy, and, remarkably, produces a model nearly identical to the one obtained via full finetuning. The subnetworks from different random seeds, training data, and even RL algorithms show substantially greater overlap than expected by chance. Our analysis suggests that this sparsity is not due to updating only a subset of layers, instead, nearly all parameter matrices receive similarly sparse updates. Moreover, the updates to almost all parameter matrices are nearly full-rank, suggesting RL updates a small subset of parameters that nevertheless span almost the full subspaces that the parameter matrices can represent. We conjecture that the this update sparsity can be primarily attributed to training on data that is near the policy distribution, techniques that encourage the policy to remain close to the pretrained model, such as the KL regularization and gradient clipping, have limited impact.
LIMR: Less is More for RL Scaling
In this paper, we ask: what truly determines the effectiveness of RL training data for enhancing language models' reasoning capabilities? While recent advances like o1, Deepseek R1, and Kimi1.5 demonstrate RL's potential, the lack of transparency about training data requirements has hindered systematic progress. Starting directly from base models without distillation, we challenge the assumption that scaling up RL training data inherently improves performance. we demonstrate that a strategically selected subset of just 1,389 samples can outperform the full 8,523-sample dataset. We introduce Learning Impact Measurement (LIM), an automated method to evaluate and prioritize training samples based on their alignment with model learning trajectories, enabling efficient resource utilization and scalable implementation. Our method achieves comparable or even superior performance using only 1,389 samples versus the full 8,523 samples dataset. Notably, while recent data-efficient approaches (e.g., LIMO and s1) show promise with 32B-scale models, we find it significantly underperforms at 7B-scale through supervised fine-tuning (SFT). In contrast, our RL-based LIMR achieves 16.7% higher accuracy on AIME24 and outperforms LIMO and s1 by 13.0% and 22.2% on MATH500. These results fundamentally reshape our understanding of RL scaling in LLMs, demonstrating that precise sample selection, rather than data scale, may be the key to unlocking enhanced reasoning capabilities. For reproducible research and future innovation, we are open-sourcing LIMR, including implementation of LIM, training and evaluation code, curated datasets, and trained models at https://github.com/GAIR-NLP/LIMR.
MoDem: Accelerating Visual Model-Based Reinforcement Learning with Demonstrations
Poor sample efficiency continues to be the primary challenge for deployment of deep Reinforcement Learning (RL) algorithms for real-world applications, and in particular for visuo-motor control. Model-based RL has the potential to be highly sample efficient by concurrently learning a world model and using synthetic rollouts for planning and policy improvement. However, in practice, sample-efficient learning with model-based RL is bottlenecked by the exploration challenge. In this work, we find that leveraging just a handful of demonstrations can dramatically improve the sample-efficiency of model-based RL. Simply appending demonstrations to the interaction dataset, however, does not suffice. We identify key ingredients for leveraging demonstrations in model learning -- policy pretraining, targeted exploration, and oversampling of demonstration data -- which forms the three phases of our model-based RL framework. We empirically study three complex visuo-motor control domains and find that our method is 150%-250% more successful in completing sparse reward tasks compared to prior approaches in the low data regime (100K interaction steps, 5 demonstrations). Code and videos are available at: https://nicklashansen.github.io/modemrl
Towards Revealing the Effectiveness of Small-Scale Fine-tuning in R1-style Reinforcement Learning
R1-style Reinforcement Learning (RL) significantly enhances Large Language Models' reasoning capabilities, yet the mechanism behind rule-based RL remains unclear. We found that small-scale SFT has significant influence on RL but shows poor efficiency. To explain our observations, we propose an analytical framework and compare the efficiency of SFT and RL by measuring sample effect. Hypothetical analysis show that SFT efficiency is limited by training data. Guided by our analysis, we propose Re-distillation, a technique that fine-tunes pretrain model through small-scale distillation from the RL-trained policy. Experiments on Knight & Knave and MATH datasets demonstrate re-distillation's surprising efficiency: re-distilled models match RL performance with far fewer samples and less computation. Empirical verification shows that sample effect is a good indicator of performance improvements. As a result, on K&K dataset, our re-distilled Qwen2.5-1.5B model surpasses DeepSeek-V3-0324 with only 1K SFT samples. On MATH, Qwen2.5-1.5B fine-tuned with re-distilled 500 samples matches its instruct-tuned variant without RL. Our work explains several interesting phenomena in R1-style RL, shedding light on the mechanisms behind its empirical success. Code is available at: https://github.com/on1262/deep-reasoning
Rethinking RL Scaling for Vision Language Models: A Transparent, From-Scratch Framework and Comprehensive Evaluation Scheme
Reinforcement learning (RL) has recently shown strong potential in improving the reasoning capabilities of large language models and is now being actively extended to vision-language models (VLMs). However, existing RL applications in VLMs often rely on heavily engineered frameworks that hinder reproducibility and accessibility, while lacking standardized evaluation protocols, making it difficult to compare results or interpret training dynamics. This work introduces a transparent, from-scratch framework for RL in VLMs, offering a minimal yet functional four-step pipeline validated across multiple models and datasets. In addition, a standardized evaluation scheme is proposed to assess training dynamics and reflective behaviors. Extensive experiments on visual reasoning tasks uncover key empirical findings: response length is sensitive to random seeds, reflection correlates with output length, and RL consistently outperforms supervised fine-tuning (SFT) in generalization, even with high-quality data. These findings, together with the proposed framework, aim to establish a reproducible baseline and support broader engagement in RL-based VLM research.
Teaching Large Language Models to Reason with Reinforcement Learning
Reinforcement Learning from Human Feedback (RLHF) has emerged as a dominant approach for aligning LLM outputs with human preferences. Inspired by the success of RLHF, we study the performance of multiple algorithms that learn from feedback (Expert Iteration, Proximal Policy Optimization (PPO), Return-Conditioned RL) on improving LLM reasoning capabilities. We investigate both sparse and dense rewards provided to the LLM both heuristically and via a learned reward model. We additionally start from multiple model sizes and initializations both with and without supervised fine-tuning (SFT) data. Overall, we find all algorithms perform comparably, with Expert Iteration performing best in most cases. Surprisingly, we find the sample complexity of Expert Iteration is similar to that of PPO, requiring at most on the order of 10^6 samples to converge from a pretrained checkpoint. We investigate why this is the case, concluding that during RL training models fail to explore significantly beyond solutions already produced by SFT models. Additionally, we discuss a trade off between maj@1 and pass@96 metric performance during SFT training and how conversely RL training improves both simultaneously. We then conclude by discussing the implications of our findings for RLHF and the future role of RL in LLM fine-tuning.
Does RLHF Scale? Exploring the Impacts From Data, Model, and Method
This study explores the scaling properties of Reinforcement Learning from Human Feedback (RLHF) in Large Language Models (LLMs). Although RLHF is considered an important step in post-training of LLMs, its scaling potential is still largely unknown. We systematically analyze key components in the RLHF framework--model size, data composition, and inference budget--and their impacts on performance. Our findings show that increasing data diversity and volume improves reward model performance, helping process-supervision models scale better. For policy training, more response samples per prompt boost performance initially but quickly plateau. And larger reward models offer modest gains in policy training. In addition, larger policy models benefit less from RLHF with a fixed reward model. Overall, RLHF scales less efficiently than pretraining, with diminishing returns from additional computational resources. Based on these observations, we propose strategies to optimize RLHF performance within computational limits.
ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL
A broad use case of large language models (LLMs) is in goal-directed decision-making tasks (or "agent" tasks), where an LLM needs to not just generate completions for a given prompt, but rather make intelligent decisions over a multi-turn interaction to accomplish a task (e.g., when interacting with the web, using tools, or providing customer support). Reinforcement learning (RL) provides a general paradigm to address such agent tasks, but current RL methods for LLMs largely focus on optimizing single-turn rewards. By construction, most single-turn RL methods cannot endow LLMs with the ability to intelligently seek information over multiple turns, perform credit assignment, or reason about their past actions -- all of which are critical in agent tasks. This raises the question: how can we design effective and efficient multi-turn RL algorithms for LLMs? In this paper, we develop a framework for building multi-turn RL algorithms for fine-tuning LLMs, that preserves the flexibility of existing single-turn RL methods for LLMs (e.g., proximal policy optimization), while accommodating multiple turns, long horizons, and delayed rewards effectively. To do this, our framework adopts a hierarchical RL approach and runs two RL algorithms in parallel: a high-level off-policy value-based RL algorithm to aggregate reward over utterances, and a low-level RL algorithm that utilizes this high-level value function to train a token policy within each utterance or turn. Our hierarchical framework, Actor-Critic Framework with a Hierarchical Structure (ArCHer), can also give rise to other RL methods. Empirically, we find that ArCHer significantly improves efficiency and performance on agent tasks, attaining a sample efficiency of about 100x over existing methods, while also improving with larger model capacity (upto the 7 billion scale that we tested on).
Reinforcement Learning vs. Distillation: Understanding Accuracy and Capability in LLM Reasoning
Recent studies have shown that reinforcement learning with verifiable rewards (RLVR) enhances overall accuracy but fails to improve capability, while distillation can improve both. In this paper, we investigate the mechanisms behind these phenomena. First, we demonstrate that RLVR does not improve capability because it focuses on improving the accuracy of the less-difficult questions to the detriment of the accuracy of the most difficult questions, thereby leading to no improvement in capability. Second, we find that RLVR does not merely increase the success probability for the less difficult questions, but in our small model settings produces quality responses that were absent in its output distribution before training. In addition, we show these responses are neither noticeably longer nor feature more reflection-related keywords, underscoring the need for more reliable indicators of response quality. Third, we show that while distillation reliably improves accuracy by learning strong reasoning patterns, it only improves capability when new knowledge is introduced. Moreover, when distilling only with reasoning patterns and no new knowledge, the accuracy of the less-difficult questions improves to the detriment of the most difficult questions, similar to RLVR. Together, these findings offer a clearer understanding of how RLVR and distillation shape reasoning behavior in language models.
Hyperparameters in Reinforcement Learning and How To Tune Them
In order to improve reproducibility, deep reinforcement learning (RL) has been adopting better scientific practices such as standardized evaluation metrics and reporting. However, the process of hyperparameter optimization still varies widely across papers, which makes it challenging to compare RL algorithms fairly. In this paper, we show that hyperparameter choices in RL can significantly affect the agent's final performance and sample efficiency, and that the hyperparameter landscape can strongly depend on the tuning seed which may lead to overfitting. We therefore propose adopting established best practices from AutoML, such as the separation of tuning and testing seeds, as well as principled hyperparameter optimization (HPO) across a broad search space. We support this by comparing multiple state-of-the-art HPO tools on a range of RL algorithms and environments to their hand-tuned counterparts, demonstrating that HPO approaches often have higher performance and lower compute overhead. As a result of our findings, we recommend a set of best practices for the RL community, which should result in stronger empirical results with fewer computational costs, better reproducibility, and thus faster progress. In order to encourage the adoption of these practices, we provide plug-and-play implementations of the tuning algorithms used in this paper at https://github.com/facebookresearch/how-to-autorl.
Exploring Data Scaling Trends and Effects in Reinforcement Learning from Human Feedback
Reinforcement Learning from Human Feedback (RLHF) is crucial for aligning large language models with human preferences. While recent research has focused on algorithmic improvements, the importance of prompt-data construction has been overlooked. This paper addresses this gap by exploring data-driven bottlenecks in RLHF performance scaling, particularly reward hacking and decreasing response diversity. We introduce a hybrid reward system combining reasoning task verifiers (RTV) and a generative reward model (GenRM) to mitigate reward hacking. We also propose a novel prompt-selection method, Pre-PPO, to maintain response diversity and enhance learning effectiveness. Additionally, we find that prioritizing mathematical and coding tasks early in RLHF training significantly improves performance. Experiments across two model sizes validate our methods' effectiveness and scalability. Results show that RTV is most resistant to reward hacking, followed by GenRM with ground truth, and then GenRM with SFT Best-of-N responses. Our strategies enable rapid capture of subtle task-specific distinctions, leading to substantial improvements in overall RLHF performance. This work highlights the importance of careful data construction and provides practical methods to overcome performance barriers in RLHF.
AceReason-Nemotron 1.1: Advancing Math and Code Reasoning through SFT and RL Synergy
In this work, we investigate the synergy between supervised fine-tuning (SFT) and reinforcement learning (RL) in developing strong reasoning models. We begin by curating the SFT training data through two scaling strategies: increasing the number of collected prompts and the number of generated responses per prompt. Both approaches yield notable improvements in reasoning performance, with scaling the number of prompts resulting in more substantial gains. We then explore the following questions regarding the synergy between SFT and RL: (i) Does a stronger SFT model consistently lead to better final performance after large-scale RL training? (ii) How can we determine an appropriate sampling temperature during RL training to effectively balance exploration and exploitation for a given SFT initialization? Our findings suggest that (i) holds true, provided effective RL training is conducted, particularly when the sampling temperature is carefully chosen to maintain the temperature-adjusted entropy around 0.3, a setting that strikes a good balance between exploration and exploitation. Notably, the performance gap between initial SFT models narrows significantly throughout the RL process. Leveraging a strong SFT foundation and insights into the synergistic interplay between SFT and RL, our AceReason-Nemotron-1.1 7B model significantly outperforms AceReason-Nemotron-1.0 and achieves new state-of-the-art performance among Qwen2.5-7B-based reasoning models on challenging math and code benchmarks, thereby demonstrating the effectiveness of our post-training recipe. We release the model and data at: https://huggingface.co/nvidia/AceReason-Nemotron-1.1-7B
FastRLAP: A System for Learning High-Speed Driving via Deep RL and Autonomous Practicing
We present a system that enables an autonomous small-scale RC car to drive aggressively from visual observations using reinforcement learning (RL). Our system, FastRLAP (faster lap), trains autonomously in the real world, without human interventions, and without requiring any simulation or expert demonstrations. Our system integrates a number of important components to make this possible: we initialize the representations for the RL policy and value function from a large prior dataset of other robots navigating in other environments (at low speed), which provides a navigation-relevant representation. From here, a sample-efficient online RL method uses a single low-speed user-provided demonstration to determine the desired driving course, extracts a set of navigational checkpoints, and autonomously practices driving through these checkpoints, resetting automatically on collision or failure. Perhaps surprisingly, we find that with appropriate initialization and choice of algorithm, our system can learn to drive over a variety of racing courses with less than 20 minutes of online training. The resulting policies exhibit emergent aggressive driving skills, such as timing braking and acceleration around turns and avoiding areas which impede the robot's motion, approaching the performance of a human driver using a similar first-person interface over the course of training.
Skill-Critic: Refining Learned Skills for Reinforcement Learning
Hierarchical reinforcement learning (RL) can accelerate long-horizon decision-making by temporally abstracting a policy into multiple levels. Promising results in sparse reward environments have been seen with skills, i.e. sequences of primitive actions. Typically, a skill latent space and policy are discovered from offline data, but the resulting low-level policy can be unreliable due to low-coverage demonstrations or distribution shifts. As a solution, we propose fine-tuning the low-level policy in conjunction with high-level skill selection. Our Skill-Critic algorithm optimizes both the low and high-level policies; these policies are also initialized and regularized by the latent space learned from offline demonstrations to guide the joint policy optimization. We validate our approach in multiple sparse RL environments, including a new sparse reward autonomous racing task in Gran Turismo Sport. The experiments show that Skill-Critic's low-level policy fine-tuning and demonstration-guided regularization are essential for optimal performance. Images and videos are available at https://sites.google.com/view/skill-critic. We plan to open source the code with the final version.
Improving Large Language Models via Fine-grained Reinforcement Learning with Minimum Editing Constraint
Reinforcement learning (RL) has been widely used in training large language models~(LLMs) for preventing unexpected outputs, \eg reducing harmfulness and errors. However, existing RL methods mostly adopt the instance-level reward, which is unable to provide fine-grained supervision for complex reasoning tasks, and can not focus on the few key tokens that lead to the incorrectness. To address it, we propose a new RL method named RLMEC that incorporates a generative model as the reward model, which is trained by the erroneous solution rewriting task under the minimum editing constraint, and can produce token-level rewards for RL training. Based on the generative reward model, we design the token-level RL objective for training and an imitation-based regularization for stabilizing RL process. And the both objectives focus on the learning of the key tokens for the erroneous solution, reducing the effect of other unimportant tokens. The experiment results on mathematical tasks and question-answering tasks have demonstrated the effectiveness of our approach. Our code and data are available at https://github.com/RUCAIBox/RLMEC.
Spurious Rewards: Rethinking Training Signals in RLVR
We show that reinforcement learning with verifiable rewards (RLVR) can elicit strong mathematical reasoning in certain models even with spurious rewards that have little, no, or even negative correlation with the correct answer. For example, RLVR improves MATH-500 performance for Qwen2.5-Math-7B in absolute points by 21.4% (random reward), 13.8% (format reward), 24.1% (incorrect label), 26.0% (1-shot RL), and 27.1% (majority voting) -- nearly matching the 29.1% gained with ground truth rewards. However, the spurious rewards that work for Qwen often fail to yield gains with other model families like Llama3 or OLMo2. In particular, we find code reasoning -- thinking in code without actual code execution -- to be a distinctive Qwen2.5-Math behavior that becomes significantly more frequent after RLVR, from 65% to over 90%, even with spurious rewards. Overall, we hypothesize that, given the lack of useful reward signal, RLVR must somehow be surfacing useful reasoning representations learned during pretraining, although the exact mechanism remains a topic for future work. We suggest that future RLVR research should possibly be validated on diverse models rather than a single de facto choice, as we show that it is easy to get significant performance gains on Qwen models even with completely spurious reward signals.
VLA-RL: Towards Masterful and General Robotic Manipulation with Scalable Reinforcement Learning
Recent high-capacity vision-language-action (VLA) models have demonstrated impressive performance on a range of robotic manipulation tasks by imitating human demonstrations. However, exploiting offline data with limited visited states will cause execution failure in out-of-distribution scenarios. Intuitively, an exploration-based method that improves on online collected data at test time could address this limitation. We present VLA-RL, an algorithmic and systematic framework that leverages online reinforcement learning (RL) to improve pretrained auto-regressive VLAs in downstream tasks. Within a unified perspective, we first introduce a trajectory-level RL formulation for auto-regressive VLA training, which models general robotic manipulation trajectory as multi-modal multi-turn conversation. To address the challenge of sparse rewards, we fine-tune a pretrained vision-language model as a robotic process reward model, which is trained on pseudo reward labels annotated on automatically extracted task segments. To scale up, we identify several implementation findings that improve the stability and efficiency including curriculum selection strategy, GPU-balanced vectorized environments, batch decoding, and critic warmup. VLA-RL enables OpenVLA-7B to surpass the strongest finetuned baseline by 4.5% on 40 challenging robotic manipulation tasks in LIBERO, and even matches the performance of advanced commercial models such as pi_0-FAST. Notably, we observe that VLA-RL benefits from increased test-time optimization, indicating an early spark of inference scaling laws in robotics.
Dual RL: Unification and New Methods for Reinforcement and Imitation Learning
The goal of reinforcement learning (RL) is to find a policy that maximizes the expected cumulative return. It has been shown that this objective can be represented as an optimization problem of state-action visitation distribution under linear constraints. The dual problem of this formulation, which we refer to as dual RL, is unconstrained and easier to optimize. In this work, we first cast several state-of-the-art offline RL and offline imitation learning (IL) algorithms as instances of dual RL approaches with shared structures. Such unification allows us to identify the root cause of the shortcomings of prior methods. For offline IL, our analysis shows that prior methods are based on a restrictive coverage assumption that greatly limits their performance in practice. To fix this limitation, we propose a new discriminator-free method ReCOIL that learns to imitate from arbitrary off-policy data to obtain near-expert performance. For offline RL, our analysis frames a recent offline RL method XQL in the dual framework, and we further propose a new method f-DVL that provides alternative choices to the Gumbel regression loss that fixes the known training instability issue of XQL. The performance improvements by both of our proposed methods, ReCOIL and f-DVL, in IL and RL are validated on an extensive suite of simulated robot locomotion and manipulation tasks. Project code and details can be found at this https://hari-sikchi.github.io/dual-rl.
D4RL: Datasets for Deep Data-Driven Reinforcement Learning
The offline reinforcement learning (RL) setting (also known as full batch RL), where a policy is learned from a static dataset, is compelling as progress enables RL methods to take advantage of large, previously-collected datasets, much like how the rise of large datasets has fueled results in supervised learning. However, existing online RL benchmarks are not tailored towards the offline setting and existing offline RL benchmarks are restricted to data generated by partially-trained agents, making progress in offline RL difficult to measure. In this work, we introduce benchmarks specifically designed for the offline setting, guided by key properties of datasets relevant to real-world applications of offline RL. With a focus on dataset collection, examples of such properties include: datasets generated via hand-designed controllers and human demonstrators, multitask datasets where an agent performs different tasks in the same environment, and datasets collected with mixtures of policies. By moving beyond simple benchmark tasks and data collected by partially-trained RL agents, we reveal important and unappreciated deficiencies of existing algorithms. To facilitate research, we have released our benchmark tasks and datasets with a comprehensive evaluation of existing algorithms, an evaluation protocol, and open-source examples. This serves as a common starting point for the community to identify shortcomings in existing offline RL methods and a collaborative route for progress in this emerging area.
Unleashing the Reasoning Potential of Pre-trained LLMs by Critique Fine-Tuning on One Problem
We have witnessed that strong LLMs like Qwen-Math, MiMo, and Phi-4 possess immense reasoning potential inherited from the pre-training stage. With reinforcement learning (RL), these models can improve dramatically on reasoning tasks. Recent studies have shown that even RL on a single problem can unleash these models' reasoning capabilities. However, RL is not only expensive but also unstable. Even one-shot RL requires hundreds of GPU hours. This raises a critical question: Is there a more efficient way to unleash the reasoning potential of these powerful base LLMs? In this work, we demonstrate that Critique Fine-Tuning (CFT) on only one problem can effectively unleash the reasoning potential of LLMs. Our method constructs critique data by collecting diverse model-generated solutions to a single problem and using teacher LLMs to provide detailed critiques. We fine-tune Qwen and Llama family models, ranging from 1.5B to 14B parameters, on the CFT data and observe significant performance gains across diverse reasoning tasks. For example, with just 5 GPU hours of training, Qwen-Math-7B-CFT show an average improvement of 15% on six math benchmarks and 16% on three logic reasoning benchmarks. These results are comparable to or even surpass the results from RL with 20x less compute. Ablation studies reveal the robustness of one-shot CFT across different prompt problems. These results highlight one-shot CFT as a simple, general, and compute-efficient approach to unleashing the reasoning capabilities of modern LLMs.
Reasoning or Memorization? Unreliable Results of Reinforcement Learning Due to Data Contamination
The reasoning capabilities of large language models (LLMs) have been a longstanding focus of research. Recent works have further enhanced these capabilities using reinforcement learning (RL), with many new methods claiming significant improvements with minimal or no external supervision. Surprisingly, some studies even suggest that random or incorrect reward signals can enhance reasoning performance. However, these breakthroughs are mostly reported on the Qwen2.5 model family and evaluated on well-known benchmarks such as MATH-500, AMC, and AIME, while failing to achieve similar gains on other models like Llama, which warrants further investigation. Our analysis shows that although Qwen2.5 achieves strong mathematical reasoning performance, its pretraining on large-scale web corpora makes it vulnerable to data contamination in popular benchmarks. As a result, results derived from these benchmarks may be unreliable. To address this, we introduce a generator that produces fully synthetic arithmetic problems of arbitrary length and difficulty, yielding a clean dataset we call RandomCalculation. Using these leakage-free datasets, we show that only accurate reward signals consistently improve performance, while noisy or incorrect signals do not. We advocate for evaluating RL methods on uncontaminated benchmarks and across diverse model families to ensure trustworthy conclusions.
SPA-RL: Reinforcing LLM Agents via Stepwise Progress Attribution
Reinforcement learning (RL) holds significant promise for training LLM agents to handle complex, goal-oriented tasks that require multi-step interactions with external environments. However, a critical challenge when applying RL to these agentic tasks arises from delayed rewards: feedback signals are typically available only after the entire task is completed. This makes it non-trivial to assign delayed rewards to earlier actions, providing insufficient guidance regarding environmental constraints and hindering agent training. In this work, we draw on the insight that the ultimate completion of a task emerges from the cumulative progress an agent makes across individual steps. We propose Stepwise Progress Attribution (SPA), a general reward redistribution framework that decomposes the final reward into stepwise contributions, each reflecting its incremental progress toward overall task completion. To achieve this, we train a progress estimator that accumulates stepwise contributions over a trajectory to match the task completion. During policy optimization, we combine the estimated per-step contribution with a grounding signal for actions executed in the environment as the fine-grained, intermediate reward for effective agent training. Extensive experiments on common agent benchmarks (including Webshop, ALFWorld, and VirtualHome) demonstrate that SPA consistently outperforms the state-of-the-art method in both success rate (+2.5\% on average) and grounding accuracy (+1.9\% on average). Further analyses demonstrate that our method remarkably provides more effective intermediate rewards for RL training. Our code is available at https://github.com/WangHanLinHenry/SPA-RL-Agent.
CLS-RL: Image Classification with Rule-Based Reinforcement Learning
Classification is a core task in machine learning. Recent research has shown that although Multimodal Large Language Models (MLLMs) are initially poor at image classification, fine-tuning them with an adequate amount of data can significantly enhance their performance, making them comparable to SOTA classification models. However, acquiring large-scale labeled data is expensive. In this paper, we explore few-shot MLLM classification fine-tuning. We found that SFT can cause severe overfitting issues and may even degrade performance over the zero-shot approach. To address this challenge, inspired by the recent successes in rule-based reinforcement learning, we propose CLS-RL, which uses verifiable signals as reward to fine-tune MLLMs. We discovered that CLS-RL outperforms SFT in most datasets and has a much higher average accuracy on both base-to-new and few-shot learning setting. Moreover, we observed a free-lunch phenomenon for CLS-RL; when models are fine-tuned on a particular dataset, their performance on other distinct datasets may also improve over zero-shot models, even if those datasets differ in distribution and class names. This suggests that RL-based methods effectively teach models the fundamentals of classification. Lastly, inspired by recent works in inference time thinking, we re-examine the `thinking process' during fine-tuning, a critical aspect of RL-based methods, in the context of visual classification. We question whether such tasks require extensive thinking process during fine-tuning, proposing that this may actually detract from performance. Based on this premise, we introduce the No-Thinking-CLS-RL method, which minimizes thinking processes during training by setting an equality accuracy reward. Our findings indicate that, with much less fine-tuning time, No-Thinking-CLS-RL method achieves superior in-domain performance and generalization capabilities than CLS-RL.
Efficient Online Reinforcement Learning with Offline Data
Sample efficiency and exploration remain major challenges in online reinforcement learning (RL). A powerful approach that can be applied to address these issues is the inclusion of offline data, such as prior trajectories from a human expert or a sub-optimal exploration policy. Previous methods have relied on extensive modifications and additional complexity to ensure the effective use of this data. Instead, we ask: can we simply apply existing off-policy methods to leverage offline data when learning online? In this work, we demonstrate that the answer is yes; however, a set of minimal but important changes to existing off-policy RL algorithms are required to achieve reliable performance. We extensively ablate these design choices, demonstrating the key factors that most affect performance, and arrive at a set of recommendations that practitioners can readily apply, whether their data comprise a small number of expert demonstrations or large volumes of sub-optimal trajectories. We see that correct application of these simple recommendations can provide a 2.5times improvement over existing approaches across a diverse set of competitive benchmarks, with no additional computational overhead. We have released our code at https://github.com/ikostrikov/rlpd.
How to Evaluate Reward Models for RLHF
We introduce a new benchmark for reward models that quantifies their ability to produce strong language models through RLHF (Reinforcement Learning from Human Feedback). The gold-standard approach is to run a full RLHF training pipeline and directly probe downstream LLM performance. However, this process is prohibitively expensive. To address this, we build a predictive model of downstream LLM performance by evaluating the reward model on proxy tasks. These proxy tasks consist of a large-scale human preference and a verifiable correctness preference dataset, in which we measure 12 metrics across 12 domains. To investigate which reward model metrics are most correlated to gold-standard RLHF outcomes, we launch an end-to-end RLHF experiment on a large-scale crowdsourced human preference platform to view real reward model downstream performance as ground truth. Ultimately, we compile our data and findings into Preference Proxy Evaluations (PPE), the first reward model benchmark explicitly linked to post-RLHF real-world human preference performance, which we open-source for public use and further development. Our code and evaluations can be found at https://github.com/lmarena/PPE .
AdaStop: sequential testing for efficient and reliable comparisons of Deep RL Agents
The reproducibility of many experimental results in Deep Reinforcement Learning (RL) is under question. To solve this reproducibility crisis, we propose a theoretically sound methodology to compare multiple Deep RL algorithms. The performance of one execution of a Deep RL algorithm is random so that independent executions are needed to assess it precisely. When comparing several RL algorithms, a major question is how many executions must be made and how can we assure that the results of such a comparison is theoretically sound. Researchers in Deep RL often use less than 5 independent executions to compare algorithms: we claim that this is not enough in general. Moreover, when comparing several algorithms at once, the error of each comparison accumulates and must be taken into account with a multiple tests procedure to preserve low error guarantees. To address this problem in a statistically sound way, we introduce AdaStop, a new statistical test based on multiple group sequential tests. When comparing algorithms, AdaStop adapts the number of executions to stop as early as possible while ensuring that we have enough information to distinguish algorithms that perform better than the others in a statistical significant way. We prove both theoretically and empirically that AdaStop has a low probability of making an error (Family-Wise Error). Finally, we illustrate the effectiveness of AdaStop in multiple use-cases, including toy examples and difficult cases such as Mujoco environments.
CaRL: Learning Scalable Planning Policies with Simple Rewards
We investigate reinforcement learning (RL) for privileged planning in autonomous driving. State-of-the-art approaches for this task are rule-based, but these methods do not scale to the long tail. RL, on the other hand, is scalable and does not suffer from compounding errors like imitation learning. Contemporary RL approaches for driving use complex shaped rewards that sum multiple individual rewards, \eg~progress, position, or orientation rewards. We show that PPO fails to optimize a popular version of these rewards when the mini-batch size is increased, which limits the scalability of these approaches. Instead, we propose a new reward design based primarily on optimizing a single intuitive reward term: route completion. Infractions are penalized by terminating the episode or multiplicatively reducing route completion. We find that PPO scales well with higher mini-batch sizes when trained with our simple reward, even improving performance. Training with large mini-batch sizes enables efficient scaling via distributed data parallelism. We scale PPO to 300M samples in CARLA and 500M samples in nuPlan with a single 8-GPU node. The resulting model achieves 64 DS on the CARLA longest6 v2 benchmark, outperforming other RL methods with more complex rewards by a large margin. Requiring only minimal adaptations from its use in CARLA, the same method is the best learning-based approach on nuPlan. It scores 91.3 in non-reactive and 90.6 in reactive traffic on the Val14 benchmark while being an order of magnitude faster than prior work.
Behavior Injection: Preparing Language Models for Reinforcement Learning
Reinforcement fine-tuning (RFT) has emerged as a powerful post-training technique to incentivize the reasoning ability of large language models (LLMs). However, LLMs can respond very inconsistently to RFT: some show substantial performance gains, while others plateau or even degrade. To understand this divergence, we analyze the per-step influence of the RL objective and identify two key conditions for effective post-training: (1) RL-informative rollout accuracy, and (2) strong data co-influence, which quantifies how much the training data affects performance on other samples. Guided by these insights, we propose behavior injection, a task-agnostic data-augmentation scheme applied prior to RL. Behavior injection enriches the supervised finetuning (SFT) data by seeding exploratory and exploitative behaviors, effectively making the model more RL-ready. We evaluate our method across two reasoning benchmarks with multiple base models. The results demonstrate that our theoretically motivated augmentation can significantly increases the performance gain from RFT over the pre-RL model.
Reinforcement Learning from Reflective Feedback (RLRF): Aligning and Improving LLMs via Fine-Grained Self-Reflection
Despite the promise of RLHF in aligning LLMs with human preferences, it often leads to superficial alignment, prioritizing stylistic changes over improving downstream performance of LLMs. Underspecified preferences could obscure directions to align the models. Lacking exploration restricts identification of desirable outputs to improve the models. To overcome these challenges, we propose a novel framework: Reinforcement Learning from Reflective Feedback (RLRF), which leverages fine-grained feedback based on detailed criteria to improve the core capabilities of LLMs. RLRF employs a self-reflection mechanism to systematically explore and refine LLM responses, then fine-tuning the models via a RL algorithm along with promising responses. Our experiments across Just-Eval, Factuality, and Mathematical Reasoning demonstrate the efficacy and transformative potential of RLRF beyond superficial surface-level adjustment.
Sample Efficient Reward Augmentation in offline-to-online Reinforcement Learning
Offline-to-online RL can make full use of pre-collected offline datasets to initialize policies, resulting in higher sample efficiency and better performance compared to only using online algorithms alone for policy training. However, direct fine-tuning of the pre-trained policy tends to result in sub-optimal performance. A primary reason is that conservative offline RL methods diminish the agent's capability of exploration, thereby impacting online fine-tuning performance. To encourage agent's exploration during online fine-tuning and enhance the overall online fine-tuning performance, we propose a generalized reward augmentation method called Sample Efficient Reward Augmentation (SERA). Specifically, SERA encourages agent to explore by computing Q conditioned entropy as intrinsic reward. The advantage of SERA is that it can extensively utilize offline pre-trained Q to encourage agent uniformly coverage of state space while considering the imbalance between the distributions of high-value and low-value states. Additionally, SERA can be effortlessly plugged into various RL algorithms to improve online fine-tuning and ensure sustained asymptotic improvement. Moreover, extensive experimental results demonstrate that when conducting offline-to-online problems, SERA consistently and effectively enhances the performance of various offline algorithms.
Skill-Enhanced Reinforcement Learning Acceleration from Demonstrations
Learning from Demonstration (LfD) aims to facilitate rapid Reinforcement Learning (RL) by leveraging expert demonstrations to pre-train the RL agent. However, the limited availability of expert demonstration data often hinders its ability to effectively aid downstream RL learning. To address this problem, we propose a novel two-stage method dubbed as Skill-enhanced Reinforcement Learning Acceleration (SeRLA). SeRLA introduces a skill-level adversarial Positive-Unlabeled (PU) learning model to extract useful skill prior knowledge by enabling learning from both limited expert data and general low-cost demonstration data in the offline prior learning stage. Subsequently, it deploys a skill-based soft actor-critic algorithm to leverage this acquired prior knowledge in the downstream online RL stage for efficient training of a skill policy network. Moreover, we develop a simple skill-level data enhancement technique to further alleviate data sparsity and improve both skill prior learning and downstream skill policy training. Our experimental results on multiple standard RL environments show the proposed SeRLA method achieves state-of-the-art performance on accelerating reinforcement learning on downstream tasks, especially in the early learning phase.
DeepRetrieval: Hacking Real Search Engines and Retrievers with Large Language Models via Reinforcement Learning
Information retrieval systems are crucial for enabling effective access to large document collections. Recent approaches have leveraged Large Language Models (LLMs) to enhance retrieval performance through query augmentation, but often rely on expensive supervised learning or distillation techniques that require significant computational resources and hand-labeled data. We introduce DeepRetrieval, a reinforcement learning (RL) approach that trains LLMs for query generation through trial and error without supervised data (reference query). Using retrieval metrics as rewards, our system generates queries that maximize retrieval performance. DeepRetrieval outperforms leading methods on literature search with 65.07% (vs. previous SOTA 24.68%) recall for publication search and 63.18% (vs. previous SOTA 32.11%) recall for trial search using real-world search engines. DeepRetrieval also dominates in evidence-seeking retrieval, classic information retrieval and SQL database search. With only 3B parameters, it outperforms industry-leading models like GPT-4o and Claude-3.5-Sonnet on 11/13 datasets. These results demonstrate that our RL approach offers a more efficient and effective paradigm for information retrieval. Our data and code are available at: https://github.com/pat-jj/DeepRetrieval.
Enhancing LLMs for Physics Problem-Solving using Reinforcement Learning with Human-AI Feedback
Large Language Models (LLMs) have demonstrated strong capabilities in text-based tasks but struggle with the complex reasoning required for physics problems, particularly in advanced arithmetic and conceptual understanding. While some research has explored ways to enhance LLMs in physics education using techniques such as prompt engineering and Retrieval Augmentation Generation (RAG), not enough effort has been made in addressing their limitations in physics reasoning. This paper presents a novel approach to improving LLM performance on physics questions using Reinforcement Learning with Human and Artificial Intelligence Feedback (RLHAIF). We evaluate several reinforcement learning methods, including Proximal Policy Optimization (PPO), Direct Preference Optimization (DPO), and Remax optimization. These methods are chosen to investigate RL policy performance with different settings on the PhyQA dataset, which includes challenging physics problems from high school textbooks. Our RLHAIF model, tested on leading LLMs like LLaMA2 and Mistral, achieved superior results, notably with the MISTRAL-PPO model, demonstrating marked improvements in reasoning and accuracy. It achieved high scores, with a 58.67 METEOR score and a 0.74 Reasoning score, making it a strong example for future physics reasoning research in this area.
GHPO: Adaptive Guidance for Stable and Efficient LLM Reinforcement Learning
Reinforcement Learning with Verifiable Rewards (RLVR) has recently emerged as a powerful paradigm for facilitating the self-improvement of large language models (LLMs), particularly in the domain of complex reasoning tasks. However, prevailing on-policy RL methods often contend with significant training instability and inefficiency. This is primarily due to a capacity-difficulty mismatch, where the complexity of training data frequently outpaces the model's current capabilities, leading to critically sparse reward signals and stalled learning progress. This challenge is particularly acute for smaller, more resource-efficient LLMs. To overcome this, we introduce the Guided Hybrid Policy Optimization (GHPO), a novel difficulty-aware reinforcement learning framework. GHPO dynamically calibrates task difficulty by employing adaptive prompt refinement to provide targeted guidance. This unique approach adaptively balances direct imitation learning for problems currently beyond the model's reach with exploration-based reinforcement learning for more manageable tasks, effectively creating a smooth and optimized learning curriculum. Extensive experiments demonstrate that GHPO achieves an average performance gain of approximately 5% across six challenging mathematics benchmarks, consistently outperforming strong on-policy reinforcement learning and curriculum learning baselines. Further analysis confirms that our framework significantly enhances both training stability and final reasoning performance, thus offering a scalable and efficient solution for developing powerful and robust reasoning models.
Reinforcement Learning Teachers of Test Time Scaling
Training reasoning language models (LMs) with reinforcement learning (RL) for one-hot correctness inherently relies on the LM being able to explore and solve its task with some chance at initialization. Furthermore, a key use case of reasoning LMs is to act as teachers for distilling new students and cold-starting future RL iterations rather than being deployed themselves. From these considerations, we introduce a new framework that avoids RL's exploration challenge by training a new class of Reinforcement-Learned Teachers (RLTs) focused on yielding the most effective downstream distillation. RLTs are prompted with both the question and solution to each problem, and tasked to simply "connect-the-dots" with detailed explanations tailored for their students. We train RLTs with dense rewards obtained by feeding each explanation to the student and testing its understanding of the problem's solution. In practice, the raw outputs of a 7B RLT provide higher final performance on competition and graduate-level tasks than existing distillation and cold-starting pipelines that collect and postprocess the reasoning traces of orders of magnitude larger LMs. Furthermore, RLTs maintain their effectiveness when training larger students and when applied zero-shot to out-of-distribution tasks, unlocking new levels of efficiency and re-usability for the RL reasoning framework.
Finetuning Offline World Models in the Real World
Reinforcement Learning (RL) is notoriously data-inefficient, which makes training on a real robot difficult. While model-based RL algorithms (world models) improve data-efficiency to some extent, they still require hours or days of interaction to learn skills. Recently, offline RL has been proposed as a framework for training RL policies on pre-existing datasets without any online interaction. However, constraining an algorithm to a fixed dataset induces a state-action distribution shift between training and inference, and limits its applicability to new tasks. In this work, we seek to get the best of both worlds: we consider the problem of pretraining a world model with offline data collected on a real robot, and then finetuning the model on online data collected by planning with the learned model. To mitigate extrapolation errors during online interaction, we propose to regularize the planner at test-time by balancing estimated returns and (epistemic) model uncertainty. We evaluate our method on a variety of visuo-motor control tasks in simulation and on a real robot, and find that our method enables few-shot finetuning to seen and unseen tasks even when offline data is limited. Videos, code, and data are available at https://yunhaifeng.com/FOWM .
Semi-Supervised Offline Reinforcement Learning with Action-Free Trajectories
Natural agents can effectively learn from multiple data sources that differ in size, quality, and types of measurements. We study this heterogeneity in the context of offline reinforcement learning (RL) by introducing a new, practically motivated semi-supervised setting. Here, an agent has access to two sets of trajectories: labelled trajectories containing state, action and reward triplets at every timestep, along with unlabelled trajectories that contain only state and reward information. For this setting, we develop and study a simple meta-algorithmic pipeline that learns an inverse dynamics model on the labelled data to obtain proxy-labels for the unlabelled data, followed by the use of any offline RL algorithm on the true and proxy-labelled trajectories. Empirically, we find this simple pipeline to be highly successful -- on several D4RL benchmarks~fu2020d4rl, certain offline RL algorithms can match the performance of variants trained on a fully labelled dataset even when we label only 10\% of trajectories which are highly suboptimal. To strengthen our understanding, we perform a large-scale controlled empirical study investigating the interplay of data-centric properties of the labelled and unlabelled datasets, with algorithmic design choices (e.g., choice of inverse dynamics, offline RL algorithm) to identify general trends and best practices for training RL agents on semi-supervised offline datasets.
Video-RTS: Rethinking Reinforcement Learning and Test-Time Scaling for Efficient and Enhanced Video Reasoning
Despite advances in reinforcement learning (RL)-based video reasoning with large language models (LLMs), data collection and finetuning remain significant challenges. These methods often rely on large-scale supervised fine-tuning (SFT) with extensive video data and long Chain-of-Thought (CoT) annotations, making them costly and hard to scale. To address this, we present Video-RTS, a new approach to improve video reasoning capability with drastically improved data efficiency by combining data-efficient RL with a video-adaptive test-time scaling (TTS) strategy. Based on observations about the data scaling of RL samples, we skip the resource-intensive SFT step and employ efficient pure-RL training with output-based rewards, requiring no additional annotations or extensive fine-tuning. Furthermore, to utilize computational resources more efficiently, we introduce a sparse-to-dense video TTS strategy that improves inference by iteratively adding frames based on output consistency. We validate our approach on multiple video reasoning benchmarks, showing that Video-RTS surpasses existing video reasoning models by an average of 2.4% in accuracy using only 3.6% training samples. For example, Video-RTS achieves a 4.2% improvement on Video-Holmes, a recent and challenging video reasoning benchmark, and a 2.6% improvement on MMVU. Notably, our pure RL training and adaptive video TTS offer complementary strengths, enabling Video-RTS's strong reasoning performance.
Critique-GRPO: Advancing LLM Reasoning with Natural Language and Numerical Feedback
Recent advances in reinforcement learning (RL) with numerical feedback, such as scalar rewards, have significantly enhanced the complex reasoning capabilities of large language models (LLMs). Despite this success, we identify three key challenges encountered by RL with solely numerical feedback: performance plateaus, limited effectiveness of self-reflection, and persistent failures. We then demonstrate that RL-finetuned models, even after exhibiting performance plateaus, can generate correct refinements on persistently failed problems by leveraging natural language feedback in the form of critiques. Building on this insight, we propose Critique-GRPO, an online RL framework that integrates both natural language and numerical feedback for effective policy optimization. Critique-GRPO enables LLMs to learn from initial responses and critique-guided refinements simultaneously while maintaining exploration. Extensive experiments using Qwen2.5-7B-Base and Qwen3-8B-Base show that Critique-GRPO consistently outperforms supervised learning-based and RL-based fine-tuning approaches across eight challenging mathematical, STEM, and general reasoning tasks, improving average pass@1 scores by approximately 4.5% and 5%, respectively. Notably, Critique-GRPO surpasses a strong baseline that incorporates expert demonstrations within online RL. Further analysis reveals two critical insights about policy exploration: (1) higher entropy does not always guarantee efficient learning from exploration, and (2) longer responses do not necessarily lead to more effective exploration.
VerIF: Verification Engineering for Reinforcement Learning in Instruction Following
Reinforcement learning with verifiable rewards (RLVR) has become a key technique for enhancing large language models (LLMs), with verification engineering playing a central role. However, best practices for RL in instruction following remain underexplored. In this work, we explore the verification challenge in RL for instruction following and propose VerIF, a verification method that combines rule-based code verification with LLM-based verification from a large reasoning model (e.g., QwQ-32B). To support this approach, we construct a high-quality instruction-following dataset, VerInstruct, containing approximately 22,000 instances with associated verification signals. We apply RL training with VerIF to two models, achieving significant improvements across several representative instruction-following benchmarks. The trained models reach state-of-the-art performance among models of comparable size and generalize well to unseen constraints. We further observe that their general capabilities remain unaffected, suggesting that RL with VerIF can be integrated into existing RL recipes to enhance overall model performance. We have released our datasets, codes, and models to facilitate future research at https://github.com/THU-KEG/VerIF.
Optimal Transport for Offline Imitation Learning
With the advent of large datasets, offline reinforcement learning (RL) is a promising framework for learning good decision-making policies without the need to interact with the real environment. However, offline RL requires the dataset to be reward-annotated, which presents practical challenges when reward engineering is difficult or when obtaining reward annotations is labor-intensive. In this paper, we introduce Optimal Transport Reward labeling (OTR), an algorithm that assigns rewards to offline trajectories, with a few high-quality demonstrations. OTR's key idea is to use optimal transport to compute an optimal alignment between an unlabeled trajectory in the dataset and an expert demonstration to obtain a similarity measure that can be interpreted as a reward, which can then be used by an offline RL algorithm to learn the policy. OTR is easy to implement and computationally efficient. On D4RL benchmarks, we show that OTR with a single demonstration can consistently match the performance of offline RL with ground-truth rewards.
SynthRL: Scaling Visual Reasoning with Verifiable Data Synthesis
Vision-language models (VLMs) trained via reinforcement learning with verifiable reward (RLVR) have shown notable progress in scaling test-time compute effectively. In this work, we investigate how synthesized RL data can further improve RLVR. To this end, we propose SynthRL-a scalable and guaranteed pipeline for automatic data scaling in reasoning-oriented RL training. SynthRL comprises three key stages: (1) selecting seed questions with appropriate distribution, (2) augmenting them into more challenging variants while preserving the original answers, and (3) a guaranteed verification stage that ensures near-perfect correctness and difficulty enhancement. Our empirical experiments demonstrate SynthRL's scalability and effectiveness. When applied to the MMK12 dataset, SynthRL synthesizes over 3.3K additional verifiable, challenging questions from approximately 8K seed samples. Models trained with our synthesized data achieve consistent gains across five out-of-domain visual math reasoning benchmarks, with a significant improvement over baseline models trained on seed data alone. Notably, detailed analysis reveals that the gains are more pronounced on the most challenging evaluation samples, highlighting SynthRL's effectiveness in eliciting deeper and more complex reasoning patterns.
ImagineBench: Evaluating Reinforcement Learning with Large Language Model Rollouts
A central challenge in reinforcement learning (RL) is its dependence on extensive real-world interaction data to learn task-specific policies. While recent work demonstrates that large language models (LLMs) can mitigate this limitation by generating synthetic experience (noted as imaginary rollouts) for mastering novel tasks, progress in this emerging field is hindered due to the lack of a standard benchmark. To bridge this gap, we introduce ImagineBench, the first comprehensive benchmark for evaluating offline RL algorithms that leverage both real rollouts and LLM-imaginary rollouts. The key features of ImagineBench include: (1) datasets comprising environment-collected and LLM-imaginary rollouts; (2) diverse domains of environments covering locomotion, robotic manipulation, and navigation tasks; and (3) natural language task instructions with varying complexity levels to facilitate language-conditioned policy learning. Through systematic evaluation of state-of-the-art offline RL algorithms, we observe that simply applying existing offline RL algorithms leads to suboptimal performance on unseen tasks, achieving 35.44% success rate in hard tasks in contrast to 64.37% of method training on real rollouts for hard tasks. This result highlights the need for algorithm advancements to better leverage LLM-imaginary rollouts. Additionally, we identify key opportunities for future research: including better utilization of imaginary rollouts, fast online adaptation and continual learning, and extension to multi-modal tasks. Our code is publicly available at https://github.com/LAMDA-RL/ImagineBench.
Aha Moment Revisited: Are VLMs Truly Capable of Self Verification in Inference-time Scaling?
Recent advances in large language models (LLMs) have demonstrated that inference-time computation techniques, such as decoding-time scaling and self-refinement, can significantly enhance reasoning capabilities without relying on external knowledge. A key driver of this success is the emergence of self-correction and self-verification behaviors, often elicited through reinforcement learning (RL). In this paper, we investigate whether these inference-time techniques extend effectively to vision-language models (VLMs), particularly those trained with RL. We find that while decoding strategies such as majority voting and best-of-N selection with self-verification all improve VLM reasoning performance, generation-reliant methods such as the former achieve significantly higher gains versus verification-reliant methods such as the latter. Additionally, the self-correction behavior often associated with RL-tuned models, such as aha moment, does not lead to measurable gains. We show via extensive experimentation within the inference-time scaling framework to identify a key root cause: RL-trained VLMs still lack robust self-verification capabilities across both visual and textual modalities.
Improving Vision-Language-Action Model with Online Reinforcement Learning
Recent studies have successfully integrated large vision-language models (VLMs) into low-level robotic control by supervised fine-tuning (SFT) with expert robotic datasets, resulting in what we term vision-language-action (VLA) models. Although the VLA models are powerful, how to improve these large models during interaction with environments remains an open question. In this paper, we explore how to further improve these VLA models via Reinforcement Learning (RL), a commonly used fine-tuning technique for large models. However, we find that directly applying online RL to large VLA models presents significant challenges, including training instability that severely impacts the performance of large models, and computing burdens that exceed the capabilities of most local machines. To address these challenges, we propose iRe-VLA framework, which iterates between Reinforcement Learning and Supervised Learning to effectively improve VLA models, leveraging the exploratory benefits of RL while maintaining the stability of supervised learning. Experiments in two simulated benchmarks and a real-world manipulation suite validate the effectiveness of our method.
Action-Quantized Offline Reinforcement Learning for Robotic Skill Learning
The offline reinforcement learning (RL) paradigm provides a general recipe to convert static behavior datasets into policies that can perform better than the policy that collected the data. While policy constraints, conservatism, and other methods for mitigating distributional shifts have made offline reinforcement learning more effective, the continuous action setting often necessitates various approximations for applying these techniques. Many of these challenges are greatly alleviated in discrete action settings, where offline RL constraints and regularizers can often be computed more precisely or even exactly. In this paper, we propose an adaptive scheme for action quantization. We use a VQ-VAE to learn state-conditioned action quantization, avoiding the exponential blowup that comes with na\"ive discretization of the action space. We show that several state-of-the-art offline RL methods such as IQL, CQL, and BRAC improve in performance on benchmarks when combined with our proposed discretization scheme. We further validate our approach on a set of challenging long-horizon complex robotic manipulation tasks in the Robomimic environment, where our discretized offline RL algorithms are able to improve upon their continuous counterparts by 2-3x. Our project page is at https://saqrl.github.io/
ESRL: Efficient Sampling-based Reinforcement Learning for Sequence Generation
Applying Reinforcement Learning (RL) to sequence generation models enables the direct optimization of long-term rewards (e.g., BLEU and human feedback), but typically requires large-scale sampling over a space of action sequences. This is a computational challenge as presented by the practice of sequence generation problems, such as machine translation, where we often deal with a large action space (e.g., a vocabulary) and a long action sequence (e.g., a translation). In this work, we introduce two-stage sampling and dynamic sampling approaches to improve the sampling efficiency during training sequence generation models via RL. We experiment with our approaches on the traditional sequence generation tasks, including machine translation and abstractive summarization. Furthermore, we evaluate our approaches in RL from human feedback (RLHF) through training a large language model using the reward model. Experimental results show that the efficient sampling-based RL, referred to as ESRL, can outperform all baselines in terms of both training efficiency and memory consumption. Notably, ESRL yields consistent performance gains over the strong REINFORCE, minimum risk training, and proximal policy optimization methods.
RLOR: A Flexible Framework of Deep Reinforcement Learning for Operation Research
Reinforcement learning has been applied in operation research and has shown promise in solving large combinatorial optimization problems. However, existing works focus on developing neural network architectures for certain problems. These works lack the flexibility to incorporate recent advances in reinforcement learning, as well as the flexibility of customizing model architectures for operation research problems. In this work, we analyze the end-to-end autoregressive models for vehicle routing problems and show that these models can benefit from the recent advances in reinforcement learning with a careful re-implementation of the model architecture. In particular, we re-implemented the Attention Model and trained it with Proximal Policy Optimization (PPO) in CleanRL, showing at least 8 times speed up in training time. We hereby introduce RLOR, a flexible framework for Deep Reinforcement Learning for Operation Research. We believe that a flexible framework is key to developing deep reinforcement learning models for operation research problems. The code of our work is publicly available at https://github.com/cpwan/RLOR.
Reinforcement Learning for Reasoning in Small LLMs: What Works and What Doesn't
Enhancing the reasoning capabilities of large language models (LLMs) typically relies on massive computational resources and extensive datasets, limiting accessibility for resource-constrained settings. Our study investigates the potential of reinforcement learning (RL) to improve reasoning in small LLMs, focusing on a 1.5-billion-parameter model, DeepSeek-R1-Distill-Qwen-1.5B, under strict constraints: training on 4 NVIDIA A40 GPUs (48 GB VRAM each) within 24 hours. Adapting the Group Relative Policy Optimization (GRPO) algorithm and curating a compact, high-quality mathematical reasoning dataset, we conducted three experiments to explore model behavior and performance. Our results demonstrate rapid reasoning gains - e.g., AMC23 accuracy rising from 63% to 80% and AIME24 reaching 46.7%, surpassing o1-preview - using only 7,000 samples and a $42 training cost, compared to thousands of dollars for baseline models. However, challenges such as optimization instability and length constraints emerged with prolonged training. These findings highlight the efficacy of RL-based fine-tuning for small LLMs, offering a cost-effective alternative to large-scale approaches. We release our code and datasets as open-source resources, providing insights into trade-offs and laying a foundation for scalable, reasoning-capable LLMs in resource-limited environments. All are available at https://github.com/knoveleng/open-rs.
ReMax: A Simple, Effective, and Efficient Reinforcement Learning Method for Aligning Large Language Models
Alignment is crucial for training large language models. The predominant strategy is Reinforcement Learning from Human Feedback (RLHF), with Proximal Policy Optimization (PPO) as the de-facto algorithm. Yet, PPO is known to struggle with computational inefficiency, a challenge that this paper aims to address. We identify three important properties of RLHF tasks: fast simulation, deterministic transitions, and trajectory-level rewards, which are not leveraged in PPO. Based on these properties, we develop ReMax, a new algorithm tailored for RLHF. The design of ReMax builds on the celebrated algorithm REINFORCE but is enhanced with a new variance-reduction technique. ReMax offers threefold advantages over PPO: first, it is simple to implement with just 6 lines of code. It further eliminates more than 4 hyper-parameters in PPO, which are laborious to tune. Second, ReMax reduces memory usage by about 50%. To illustrate, PPO runs out of memory when fine-tuning a Llama2-7B model on A100-80GB GPUs, whereas ReMax can support the training. Even though memory-efficient techniques (e.g., ZeRO and offload) are employed for PPO to afford training, ReMax can utilize a larger batch size to increase throughput. Third, in terms of wall-clock time, PPO is about twice as slow as ReMax per iteration. Importantly, these improvements do not sacrifice task performance. We hypothesize that these advantages can be maintained in larger-scale models.
R1-Reward: Training Multimodal Reward Model Through Stable Reinforcement Learning
Multimodal Reward Models (MRMs) play a crucial role in enhancing the performance of Multimodal Large Language Models (MLLMs). While recent advancements have primarily focused on improving the model structure and training data of MRMs, there has been limited exploration into the effectiveness of long-term reasoning capabilities for reward modeling and how to activate these capabilities in MRMs. In this paper, we explore how Reinforcement Learning (RL) can be used to improve reward modeling. Specifically, we reformulate the reward modeling problem as a rule-based RL task. However, we observe that directly applying existing RL algorithms, such as Reinforce++, to reward modeling often leads to training instability or even collapse due to the inherent limitations of these algorithms. To address this issue, we propose the StableReinforce algorithm, which refines the training loss, advantage estimation strategy, and reward design of existing RL methods. These refinements result in more stable training dynamics and superior performance. To facilitate MRM training, we collect 200K preference data from diverse datasets. Our reward model, R1-Reward, trained using the StableReinforce algorithm on this dataset, significantly improves performance on multimodal reward modeling benchmarks. Compared to previous SOTA models, R1-Reward achieves a 8.4% improvement on the VL Reward-Bench and a 14.3% improvement on the Multimodal Reward Bench. Moreover, with more inference compute, R1-Reward's performance is further enhanced, highlighting the potential of RL algorithms in optimizing MRMs.
Towards a Reinforcement Learning Environment Toolbox for Intelligent Electric Motor Control
Electric motors are used in many applications and their efficiency is strongly dependent on their control. Among others, PI approaches or model predictive control methods are well-known in the scientific literature and industrial practice. A novel approach is to use reinforcement learning (RL) to have an agent learn electric drive control from scratch merely by interacting with a suitable control environment. RL achieved remarkable results with super-human performance in many games (e.g. Atari classics or Go) and also becomes more popular in control tasks like cartpole or swinging pendulum benchmarks. In this work, the open-source Python package gym-electric-motor (GEM) is developed for ease of training of RL-agents for electric motor control. Furthermore, this package can be used to compare the trained agents with other state-of-the-art control approaches. It is based on the OpenAI Gym framework that provides a widely used interface for the evaluation of RL-agents. The initial package version covers different DC motor variants and the prevalent permanent magnet synchronous motor as well as different power electronic converters and a mechanical load model. Due to the modular setup of the proposed toolbox, additional motor, load, and power electronic devices can be easily extended in the future. Furthermore, different secondary effects like controller interlocking time or noise are considered. An intelligent controller example based on the deep deterministic policy gradient algorithm which controls a series DC motor is presented and compared to a cascaded PI-controller as a baseline for future research. Fellow researchers are encouraged to use the framework in their RL investigations or to contribute to the functional scope (e.g. further motor types) of the package.
PERL: Parameter Efficient Reinforcement Learning from Human Feedback
Reinforcement Learning from Human Feedback (RLHF) has proven to be a strong method to align Pretrained Large Language Models (LLMs) with human preferences. But training models with RLHF is computationally expensive, and an overall complex process. In this work, we study RLHF where the underlying models are trained using the parameter efficient method of Low-Rank Adaptation (LoRA) introduced by Hu et al. [2021]. We investigate the setup of "Parameter Efficient Reinforcement Learning" (PERL), in which we perform reward model training and reinforcement learning using LoRA. We compare PERL to conventional fine-tuning (full-tuning) across various configurations for 7 benchmarks, including 2 novel datasets, of reward modeling and reinforcement learning. We find that PERL performs on par with the conventional RLHF setting, while training faster, and with less memory. This enables the high performance of RLHF, while reducing the computational burden that limits its adoption as an alignment technique for Large Language Models. We also release 2 novel thumbs up/down preference datasets: "Taskmaster Coffee", and "Taskmaster Ticketing" to promote research around RLHF.
ReZero: Enhancing LLM search ability by trying one-more-time
Retrieval-Augmented Generation (RAG) improves Large Language Model (LLM) performance on knowledge-intensive tasks but depends heavily on initial search query quality. Current methods, often using Reinforcement Learning (RL), typically focus on query formulation or reasoning over results, without explicitly encouraging persistence after a failed search. We introduce ReZero (Retry-Zero), a novel RL framework that directly rewards the act of retrying a search query following an initial unsuccessful attempt. This incentivizes the LLM to explore alternative queries rather than prematurely halting. ReZero demonstrates significant improvement, achieving 46.88% accuracy compared to a 25% baseline. By rewarding persistence, ReZero enhances LLM robustness in complex information-seeking scenarios where initial queries may prove insufficient.
Stabilizing RLHF through Advantage Model and Selective Rehearsal
Large Language Models (LLMs) have revolutionized natural language processing, yet aligning these models with human values and preferences using RLHF remains a significant challenge. This challenge is characterized by various instabilities, such as reward hacking and catastrophic forgetting. In this technical report, we propose two innovations to stabilize RLHF training: 1) Advantage Model, which directly models advantage score i.e., extra reward compared to the expected rewards and regulates score distributions across tasks to prevent reward hacking. 2) Selective Rehearsal, which mitigates catastrophic forgetting by strategically selecting data for PPO training and knowledge rehearsing. Our experimental analysis on public and proprietary datasets reveals that the proposed methods not only increase stability in RLHF training but also achieve higher reward scores and win rates.
EnvPool: A Highly Parallel Reinforcement Learning Environment Execution Engine
There has been significant progress in developing reinforcement learning (RL) training systems. Past works such as IMPALA, Apex, Seed RL, Sample Factory, and others, aim to improve the system's overall throughput. In this paper, we aim to address a common bottleneck in the RL training system, i.e., parallel environment execution, which is often the slowest part of the whole system but receives little attention. With a curated design for paralleling RL environments, we have improved the RL environment simulation speed across different hardware setups, ranging from a laptop and a modest workstation, to a high-end machine such as NVIDIA DGX-A100. On a high-end machine, EnvPool achieves one million frames per second for the environment execution on Atari environments and three million frames per second on MuJoCo environments. When running EnvPool on a laptop, the speed is 2.8x that of the Python subprocess. Moreover, great compatibility with existing RL training libraries has been demonstrated in the open-sourced community, including CleanRL, rl_games, DeepMind Acme, etc. Finally, EnvPool allows researchers to iterate their ideas at a much faster pace and has great potential to become the de facto RL environment execution engine. Example runs show that it only takes five minutes to train agents to play Atari Pong and MuJoCo Ant on a laptop. EnvPool is open-sourced at https://github.com/sail-sg/envpool.
The Surprising Effectiveness of Negative Reinforcement in LLM Reasoning
Reinforcement learning with verifiable rewards (RLVR) is a promising approach for training language models (LMs) on reasoning tasks that elicit emergent long chains of thought (CoTs). Unlike supervised learning, it updates the model using both correct and incorrect samples via policy gradients. To better understand its mechanism, we decompose the learning signal into reinforcing correct responses and penalizing incorrect ones, referred to as Positive and Negative Sample Reinforcement (PSR and NSR), respectively. We train Qwen2.5-Math-7B and Qwen3-4B on a mathematical reasoning dataset and uncover a surprising result: training with only negative samples -- without reinforcing correct responses -- can be highly effective: it consistently improves performance over the base model across the entire Pass@k spectrum (k up to 256), often matching or surpassing PPO and GRPO. In contrast, reinforcing only correct responses improves Pass@1 but degrades performance at higher k, due to reduced diversity. These inference-scaling trends highlight that solely penalizing incorrect responses may contribute more to performance than previously recognized. Through gradient analysis, we show that NSR works by suppressing incorrect generations and redistributing probability mass toward other plausible candidates, guided by the model's prior beliefs. It refines the model's existing knowledge rather than introducing entirely new behaviors. Building on this insight, we propose a simple variant of the RL objective that upweights NSR, and show that it consistently improves overall Pass@k performance on MATH, AIME 2025, and AMC23. Our code is available at https://github.com/TianHongZXY/RLVR-Decomposed.
Snapshot Reinforcement Learning: Leveraging Prior Trajectories for Efficiency
Deep reinforcement learning (DRL) algorithms require substantial samples and computational resources to achieve higher performance, which restricts their practical application and poses challenges for further development. Given the constraint of limited resources, it is essential to leverage existing computational work (e.g., learned policies, samples) to enhance sample efficiency and reduce the computational resource consumption of DRL algorithms. Previous works to leverage existing computational work require intrusive modifications to existing algorithms and models, designed specifically for specific algorithms, lacking flexibility and universality. In this paper, we present the Snapshot Reinforcement Learning (SnapshotRL) framework, which enhances sample efficiency by simply altering environments, without making any modifications to algorithms and models. By allowing student agents to choose states in teacher trajectories as the initial state to sample, SnapshotRL can effectively utilize teacher trajectories to assist student agents in training, allowing student agents to explore a larger state space at the early training phase. We propose a simple and effective SnapshotRL baseline algorithm, S3RL, which integrates well with existing DRL algorithms. Our experiments demonstrate that integrating S3RL with TD3, SAC, and PPO algorithms on the MuJoCo benchmark significantly improves sample efficiency and average return, without extra samples and additional computational resources.
Offline Reinforcement Learning from Datasets with Structured Non-Stationarity
Current Reinforcement Learning (RL) is often limited by the large amount of data needed to learn a successful policy. Offline RL aims to solve this issue by using transitions collected by a different behavior policy. We address a novel Offline RL problem setting in which, while collecting the dataset, the transition and reward functions gradually change between episodes but stay constant within each episode. We propose a method based on Contrastive Predictive Coding that identifies this non-stationarity in the offline dataset, accounts for it when training a policy, and predicts it during evaluation. We analyze our proposed method and show that it performs well in simple continuous control tasks and challenging, high-dimensional locomotion tasks. We show that our method often achieves the oracle performance and performs better than baselines.
Bayesian Reparameterization of Reward-Conditioned Reinforcement Learning with Energy-based Models
Recently, reward-conditioned reinforcement learning (RCRL) has gained popularity due to its simplicity, flexibility, and off-policy nature. However, we will show that current RCRL approaches are fundamentally limited and fail to address two critical challenges of RCRL -- improving generalization on high reward-to-go (RTG) inputs, and avoiding out-of-distribution (OOD) RTG queries during testing time. To address these challenges when training vanilla RCRL architectures, we propose Bayesian Reparameterized RCRL (BR-RCRL), a novel set of inductive biases for RCRL inspired by Bayes' theorem. BR-RCRL removes a core obstacle preventing vanilla RCRL from generalizing on high RTG inputs -- a tendency that the model treats different RTG inputs as independent values, which we term ``RTG Independence". BR-RCRL also allows us to design an accompanying adaptive inference method, which maximizes total returns while avoiding OOD queries that yield unpredictable behaviors in vanilla RCRL methods. We show that BR-RCRL achieves state-of-the-art performance on the Gym-Mujoco and Atari offline RL benchmarks, improving upon vanilla RCRL by up to 11%.
R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement Learning
Existing Large Reasoning Models (LRMs) have shown the potential of reinforcement learning (RL) to enhance the complex reasoning capabilities of Large Language Models~(LLMs). While they achieve remarkable performance on challenging tasks such as mathematics and coding, they often rely on their internal knowledge to solve problems, which can be inadequate for time-sensitive or knowledge-intensive questions, leading to inaccuracies and hallucinations. To address this, we propose R1-Searcher, a novel two-stage outcome-based RL approach designed to enhance the search capabilities of LLMs. This method allows LLMs to autonomously invoke external search systems to access additional knowledge during the reasoning process. Our framework relies exclusively on RL, without requiring process rewards or distillation for a cold start. % effectively generalizing to out-of-domain datasets and supporting both Base and Instruct models. Our experiments demonstrate that our method significantly outperforms previous strong RAG methods, even when compared to the closed-source GPT-4o-mini.
What Can RL Bring to VLA Generalization? An Empirical Study
Large Vision-Language Action (VLA) models have shown significant potential for embodied AI. However, their predominant training via supervised fine-tuning (SFT) limits generalization due to susceptibility to compounding errors under distribution shifts. Reinforcement learning (RL) offers a path to overcome these limitations by optimizing for task objectives via trial-and-error, yet a systematic understanding of its specific generalization benefits for VLAs compared to SFT is lacking. To address this, our study introduces a comprehensive benchmark for evaluating VLA generalization and systematically investigates the impact of RL fine-tuning across diverse visual, semantic, and execution dimensions. Our extensive experiments reveal that RL fine-tuning, particularly with PPO, significantly enhances generalization in semantic understanding and execution robustness over SFT, while maintaining comparable visual robustness. We identify PPO as a more effective RL algorithm for VLAs than LLM-derived methods like DPO and GRPO. We also develop a simple recipe for efficient PPO training on VLAs, and demonstrate its practical utility for improving VLA generalization. The project page is at https://rlvla.github.io
Fine-Grained Reward Optimization for Machine Translation using Error Severity Mappings
Reinforcement learning (RL) has been proven to be an effective and robust method for training neural machine translation systems, especially when paired with powerful reward models that accurately assess translation quality. However, most research has focused on RL methods that use sentence-level feedback, leading to inefficient learning signals due to the reward sparsity problem -- the model receives a single score for the entire sentence. To address this, we propose a novel approach that leverages fine-grained, token-level quality assessments along with error severity levels using RL methods. Specifically, we use xCOMET, a state-of-the-art quality estimation system, as our token-level reward model. We conduct experiments on small and large translation datasets with standard encoder-decoder and large language models-based machine translation systems, comparing the impact of sentence-level versus fine-grained reward signals on translation quality. Our results show that training with token-level rewards improves translation quality across language pairs over baselines according to both automatic and human evaluation. Furthermore, token-level reward optimization improves training stability, evidenced by a steady increase in mean rewards over training epochs.
AsyncFlow: An Asynchronous Streaming RL Framework for Efficient LLM Post-Training
Reinforcement learning (RL) has become a pivotal technology in the post-training phase of large language models (LLMs). Traditional task-colocated RL frameworks suffer from significant scalability bottlenecks, while task-separated RL frameworks face challenges in complex dataflows and the corresponding resource idling and workload imbalance. Moreover, most existing frameworks are tightly coupled with LLM training or inference engines, making it difficult to support custom-designed engines. To address these challenges, we propose AsyncFlow, an asynchronous streaming RL framework for efficient post-training. Specifically, we introduce a distributed data storage and transfer module that provides a unified data management and fine-grained scheduling capability in a fully streamed manner. This architecture inherently facilitates automated pipeline overlapping among RL tasks and dynamic load balancing. Moreover, we propose a producer-consumer-based asynchronous workflow engineered to minimize computational idleness by strategically deferring parameter update process within staleness thresholds. Finally, the core capability of AsynFlow is architecturally decoupled from underlying training and inference engines and encapsulated by service-oriented user interfaces, offering a modular and customizable user experience. Extensive experiments demonstrate an average of 1.59 throughput improvement compared with state-of-the-art baseline. The presented architecture in this work provides actionable insights for next-generation RL training system designs.
Learning for Edge-Weighted Online Bipartite Matching with Robustness Guarantees
Many problems, such as online ad display, can be formulated as online bipartite matching. The crucial challenge lies in the nature of sequentially-revealed online item information, based on which we make irreversible matching decisions at each step. While numerous expert online algorithms have been proposed with bounded worst-case competitive ratios, they may not offer satisfactory performance in average cases. On the other hand, reinforcement learning (RL) has been applied to improve the average performance, but it lacks robustness and can perform arbitrarily poorly. In this paper, we propose a novel RL-based approach to edge-weighted online bipartite matching with robustness guarantees (LOMAR), achieving both good average-case and worst-case performance. The key novelty of LOMAR is a new online switching operation which, based on a judicious condition to hedge against future uncertainties, decides whether to follow the expert's decision or the RL decision for each online item. We prove that for any rhoin[0,1], LOMAR is rho-competitive against any given expert online algorithm. To improve the average performance, we train the RL policy by explicitly considering the online switching operation. Finally, we run empirical experiments to demonstrate the advantages of LOMAR compared to existing baselines. Our code is available at: https://github.com/Ren-Research/LOMAR
Conservative World Models
Zero-shot reinforcement learning (RL) promises to provide agents that can perform any task in an environment after an offline pre-training phase. Forward-backward (FB) representations represent remarkable progress towards this ideal, achieving 85% of the performance of task-specific agents in this setting. However, such performance is contingent on access to large and diverse datasets for pre-training, which cannot be expected for most real problems. Here, we explore how FB performance degrades when trained on small datasets that lack diversity, and mitigate it with conservatism, a well-established feature of performant offline RL algorithms. We evaluate our family of methods across various datasets, domains and tasks, reaching 150% of vanilla FB performance in aggregate. Somewhat surprisingly, conservative FB algorithms also outperform the task-specific baseline, despite lacking access to reward labels and being required to maintain policies for all tasks. Conservative FB algorithms perform no worse than FB on full datasets, and so present little downside over their predecessor. Our code is available open-source via https://enjeeneer.io/projects/conservative-world-models/.
Blending Imitation and Reinforcement Learning for Robust Policy Improvement
While reinforcement learning (RL) has shown promising performance, its sample complexity continues to be a substantial hurdle, restricting its broader application across a variety of domains. Imitation learning (IL) utilizes oracles to improve sample efficiency, yet it is often constrained by the quality of the oracles deployed. which actively interleaves between IL and RL based on an online estimate of their performance. RPI draws on the strengths of IL, using oracle queries to facilitate exploration, an aspect that is notably challenging in sparse-reward RL, particularly during the early stages of learning. As learning unfolds, RPI gradually transitions to RL, effectively treating the learned policy as an improved oracle. This algorithm is capable of learning from and improving upon a diverse set of black-box oracles. Integral to RPI are Robust Active Policy Selection (RAPS) and Robust Policy Gradient (RPG), both of which reason over whether to perform state-wise imitation from the oracles or learn from its own value function when the learner's performance surpasses that of the oracles in a specific state. Empirical evaluations and theoretical analysis validate that RPI excels in comparison to existing state-of-the-art methodologies, demonstrating superior performance across various benchmark domains.
Harnessing Mixed Offline Reinforcement Learning Datasets via Trajectory Weighting
Most offline reinforcement learning (RL) algorithms return a target policy maximizing a trade-off between (1) the expected performance gain over the behavior policy that collected the dataset, and (2) the risk stemming from the out-of-distribution-ness of the induced state-action occupancy. It follows that the performance of the target policy is strongly related to the performance of the behavior policy and, thus, the trajectory return distribution of the dataset. We show that in mixed datasets consisting of mostly low-return trajectories and minor high-return trajectories, state-of-the-art offline RL algorithms are overly restrained by low-return trajectories and fail to exploit high-performing trajectories to the fullest. To overcome this issue, we show that, in deterministic MDPs with stochastic initial states, the dataset sampling can be re-weighted to induce an artificial dataset whose behavior policy has a higher return. This re-weighted sampling strategy may be combined with any offline RL algorithm. We further analyze that the opportunity for performance improvement over the behavior policy correlates with the positive-sided variance of the returns of the trajectories in the dataset. We empirically show that while CQL, IQL, and TD3+BC achieve only a part of this potential policy improvement, these same algorithms combined with our reweighted sampling strategy fully exploit the dataset. Furthermore, we empirically demonstrate that, despite its theoretical limitation, the approach may still be efficient in stochastic environments. The code is available at https://github.com/Improbable-AI/harness-offline-rl.
KDRL: Post-Training Reasoning LLMs via Unified Knowledge Distillation and Reinforcement Learning
Recent advances in large language model (LLM) post-training have leveraged two distinct paradigms to enhance reasoning capabilities: reinforcement learning (RL) and knowledge distillation (KD). While RL enables the emergence of complex reasoning behaviors, it often suffers from low sample efficiency when the initial policy struggles to explore high-reward trajectories. Conversely, KD improves learning efficiency via mimicking the teacher model but tends to generalize poorly to out-of-domain scenarios. In this work, we present KDRL, a unified post-training framework that jointly optimizes a reasoning model through teacher supervision (KD) and self-exploration (RL). Specifically, KDRL leverages policy gradient optimization to simultaneously minimize the reverse Kullback-Leibler divergence (RKL) between the student and teacher distributions while maximizing the expected rule-based rewards. We first formulate a unified objective that integrates GRPO and KD, and systematically explore how different KL approximations, KL coefficients, and reward-guided KD strategies affect the overall post-training dynamics and performance. Empirical results on multiple reasoning benchmarks demonstrate that KDRL outperforms GRPO and various KD baselines while achieving a favorable balance between performance and reasoning token efficiency. These findings indicate that integrating KD and RL serves as an effective and efficient strategy to train reasoning LLMs.
TeaMs-RL: Teaching LLMs to Generate Better Instruction Datasets via Reinforcement Learning
The development of Large Language Models (LLMs) often confronts challenges stemming from the heavy reliance on human annotators in the reinforcement learning with human feedback (RLHF) framework, or the frequent and costly external queries tied to the self-instruct paradigm. In this work, we pivot to Reinforcement Learning (RL) -- but with a twist. Diverging from the typical RLHF, which refines LLMs following instruction data training, we use RL to directly generate the foundational instruction dataset that alone suffices for fine-tuning. Our method, TeaMs-RL, uses a suite of textual operations and rules, prioritizing the diversification of training datasets. It facilitates the generation of high-quality data without excessive reliance on external advanced models, paving the way for a single fine-tuning step and negating the need for subsequent RLHF stages. Our findings highlight key advantages of our approach: reduced need for human involvement and fewer model queries (only 5.73% of the strong baseline's total), along with enhanced capabilities of LLMs in crafting and comprehending complex instructions compared to strong baselines, and substantially improved model privacy protection. Code is available at the link: https://github.com/SafeRL-Lab/TeaMs-RL
Zero-Shot Reinforcement Learning Under Partial Observability
Recent work has shown that, under certain assumptions, zero-shot reinforcement learning (RL) methods can generalise to any unseen task in an environment after reward-free pre-training. Access to Markov states is one such assumption, yet, in many real-world applications, the Markov state is only partially observable. Here, we explore how the performance of standard zero-shot RL methods degrades when subjected to partially observability, and show that, as in single-task RL, memory-based architectures are an effective remedy. We evaluate our memory-based zero-shot RL methods in domains where the states, rewards and a change in dynamics are partially observed, and show improved performance over memory-free baselines. Our code is open-sourced via: https://enjeeneer.io/projects/bfms-with-memory/.
MAMBA: an Effective World Model Approach for Meta-Reinforcement Learning
Meta-reinforcement learning (meta-RL) is a promising framework for tackling challenging domains requiring efficient exploration. Existing meta-RL algorithms are characterized by low sample efficiency, and mostly focus on low-dimensional task distributions. In parallel, model-based RL methods have been successful in solving partially observable MDPs, of which meta-RL is a special case. In this work, we leverage this success and propose a new model-based approach to meta-RL, based on elements from existing state-of-the-art model-based and meta-RL methods. We demonstrate the effectiveness of our approach on common meta-RL benchmark domains, attaining greater return with better sample efficiency (up to 15times) while requiring very little hyperparameter tuning. In addition, we validate our approach on a slate of more challenging, higher-dimensional domains, taking a step towards real-world generalizing agents.
A Benchmark Environment for Offline Reinforcement Learning in Racing Games
Offline Reinforcement Learning (ORL) is a promising approach to reduce the high sample complexity of traditional Reinforcement Learning (RL) by eliminating the need for continuous environmental interactions. ORL exploits a dataset of pre-collected transitions and thus expands the range of application of RL to tasks in which the excessive environment queries increase training time and decrease efficiency, such as in modern AAA games. This paper introduces OfflineMania a novel environment for ORL research. It is inspired by the iconic TrackMania series and developed using the Unity 3D game engine. The environment simulates a single-agent racing game in which the objective is to complete the track through optimal navigation. We provide a variety of datasets to assess ORL performance. These datasets, created from policies of varying ability and in different sizes, aim to offer a challenging testbed for algorithm development and evaluation. We further establish a set of baselines for a range of Online RL, ORL, and hybrid Offline to Online RL approaches using our environment.
Towards Robust Offline Reinforcement Learning under Diverse Data Corruption
Offline reinforcement learning (RL) presents a promising approach for learning reinforced policies from offline datasets without the need for costly or unsafe interactions with the environment. However, datasets collected by humans in real-world environments are often noisy and may even be maliciously corrupted, which can significantly degrade the performance of offline RL. In this work, we first investigate the performance of current offline RL algorithms under comprehensive data corruption, including states, actions, rewards, and dynamics. Our extensive experiments reveal that implicit Q-learning (IQL) demonstrates remarkable resilience to data corruption among various offline RL algorithms. Furthermore, we conduct both empirical and theoretical analyses to understand IQL's robust performance, identifying its supervised policy learning scheme as the key factor. Despite its relative robustness, IQL still suffers from heavy-tail targets of Q functions under dynamics corruption. To tackle this challenge, we draw inspiration from robust statistics to employ the Huber loss to handle the heavy-tailedness and utilize quantile estimators to balance penalization for corrupted data and learning stability. By incorporating these simple yet effective modifications into IQL, we propose a more robust offline RL approach named Robust IQL (RIQL). Extensive experiments demonstrate that RIQL exhibits highly robust performance when subjected to diverse data corruption scenarios.
Reinforcement Learning in the Era of LLMs: What is Essential? What is needed? An RL Perspective on RLHF, Prompting, and Beyond
Recent advancements in Large Language Models (LLMs) have garnered wide attention and led to successful products such as ChatGPT and GPT-4. Their proficiency in adhering to instructions and delivering harmless, helpful, and honest (3H) responses can largely be attributed to the technique of Reinforcement Learning from Human Feedback (RLHF). In this paper, we aim to link the research in conventional RL to RL techniques used in LLM research. Demystify this technique by discussing why, when, and how RL excels. Furthermore, we explore potential future avenues that could either benefit from or contribute to RLHF research. Highlighted Takeaways: 1. RLHF is Online Inverse RL with Offline Demonstration Data. 2. RLHF > SFT because Imitation Learning (and Inverse RL) > Behavior Cloning (BC) by alleviating the problem of compounding error. 3. The RM step in RLHF generates a proxy of the expensive human feedback, such an insight can be generalized to other LLM tasks such as prompting evaluation and optimization where feedback is also expensive. 4. The policy learning in RLHF is more challenging than conventional problems studied in IRL due to their high action dimensionality and feedback sparsity. 5. The main superiority of PPO over off-policy value-based methods is its stability gained from (almost) on-policy data and conservative policy updates.
Trajectory Balance with Asynchrony: Decoupling Exploration and Learning for Fast, Scalable LLM Post-Training
Reinforcement learning (RL) is a critical component of large language model (LLM) post-training. However, existing on-policy algorithms used for post-training are inherently incompatible with the use of experience replay buffers, which can be populated scalably by distributed off-policy actors to enhance exploration as compute increases. We propose efficiently obtaining this benefit of replay buffers via Trajectory Balance with Asynchrony (TBA), a massively scalable LLM RL system. In contrast to existing approaches, TBA uses a larger fraction of compute on search, constantly generating off-policy data for a central replay buffer. A training node simultaneously samples data from this buffer based on reward or recency to update the policy using Trajectory Balance (TB), a diversity-seeking RL objective introduced for GFlowNets. TBA offers three key advantages: (1) decoupled training and search, speeding up training wall-clock time by 4x or more; (2) improved diversity through large-scale off-policy sampling; and (3) scalable search for sparse reward settings. On mathematical reasoning, preference-tuning, and automated red-teaming (diverse and representative post-training tasks), TBA produces speed and performance improvements over strong baselines.
RL4CO: an Extensive Reinforcement Learning for Combinatorial Optimization Benchmark
We introduce RL4CO, an extensive reinforcement learning (RL) for combinatorial optimization (CO) benchmark. RL4CO employs state-of-the-art software libraries as well as best practices in implementation, such as modularity and configuration management, to be efficient and easily modifiable by researchers for adaptations of neural network architecture, environments, and algorithms. Contrary to the existing focus on specific tasks like the traveling salesman problem (TSP) for performance assessment, we underline the importance of scalability and generalization capabilities for diverse optimization tasks. We also systematically benchmark sample efficiency, zero-shot generalization, and adaptability to changes in data distributions of various models. Our experiments show that some recent state-of-the-art methods fall behind their predecessors when evaluated using these new metrics, suggesting the necessity for a more balanced view of the performance of neural CO solvers. We hope RL4CO will encourage the exploration of novel solutions to complex real-world tasks, allowing to compare with existing methods through a standardized interface that decouples the science from the software engineering. We make our library publicly available at https://github.com/kaist-silab/rl4co.
Sample-Efficient Automated Deep Reinforcement Learning
Despite significant progress in challenging problems across various domains, applying state-of-the-art deep reinforcement learning (RL) algorithms remains challenging due to their sensitivity to the choice of hyperparameters. This sensitivity can partly be attributed to the non-stationarity of the RL problem, potentially requiring different hyperparameter settings at various stages of the learning process. Additionally, in the RL setting, hyperparameter optimization (HPO) requires a large number of environment interactions, hindering the transfer of the successes in RL to real-world applications. In this work, we tackle the issues of sample-efficient and dynamic HPO in RL. We propose a population-based automated RL (AutoRL) framework to meta-optimize arbitrary off-policy RL algorithms. In this framework, we optimize the hyperparameters and also the neural architecture while simultaneously training the agent. By sharing the collected experience across the population, we substantially increase the sample efficiency of the meta-optimization. We demonstrate the capabilities of our sample-efficient AutoRL approach in a case study with the popular TD3 algorithm in the MuJoCo benchmark suite, where we reduce the number of environment interactions needed for meta-optimization by up to an order of magnitude compared to population-based training.
Online Difficulty Filtering for Reasoning Oriented Reinforcement Learning
Reasoning-Oriented Reinforcement Learning (RORL) enhances the reasoning ability of Large Language Models (LLMs). However, due to the sparsity of rewards in RORL, effective training is highly dependent on the selection of problems of appropriate difficulty. Although curriculum learning attempts to address this by adjusting difficulty, it often relies on static schedules, and even recent online filtering methods lack theoretical grounding and a systematic understanding of their effectiveness. In this work, we theoretically and empirically show that curating the batch with the problems that the training model achieves intermediate accuracy on the fly can maximize the effectiveness of RORL training, namely balanced online difficulty filtering. We first derive that the lower bound of the KL divergence between the initial and the optimal policy can be expressed with the variance of the sampled accuracy. Building on those insights, we show that balanced filtering can maximize the lower bound, leading to better performance. Experimental results across five challenging math reasoning benchmarks show that balanced online filtering yields an additional 10% in AIME and 4% improvements in average over plain GRPO. Moreover, further analysis shows the gains in sample efficiency and training time efficiency, exceeding the maximum reward of plain GRPO within 60% training time and the volume of the training set.
ODIN: Disentangled Reward Mitigates Hacking in RLHF
In this work, we study the issue of reward hacking on the response length, a challenge emerging in Reinforcement Learning from Human Feedback (RLHF) on LLMs. A well-formatted, verbose but less helpful response from the LLMs can often deceive LLMs or even human evaluators to achieve high scores. The same issue also holds for some reward models in RL. To address the challenges in both training and evaluation, we establish a more reliable evaluation protocol for comparing different training configurations, which inspects the trade-off between LLM evaluation score and response length obtained by varying training hyperparameters. Based on this evaluation, we conduct large-scale studies, where the results shed insights into the efficacy of hyperparameters and tricks used in RL on mitigating length bias. We further propose to improve the reward model by jointly training two linear heads on shared feature representations to predict the rewards, one trained to correlate with length, and the other trained to decorrelate with length and therefore focus more on the actual content. We then discard the length head in RL to prevent reward hacking on length. Experiments demonstrate that our approach almost eliminates the reward correlation with length, and improves the obtained policy by a significant margin.
Precise and Dexterous Robotic Manipulation via Human-in-the-Loop Reinforcement Learning
Reinforcement learning (RL) holds great promise for enabling autonomous acquisition of complex robotic manipulation skills, but realizing this potential in real-world settings has been challenging. We present a human-in-the-loop vision-based RL system that demonstrates impressive performance on a diverse set of dexterous manipulation tasks, including dynamic manipulation, precision assembly, and dual-arm coordination. Our approach integrates demonstrations and human corrections, efficient RL algorithms, and other system-level design choices to learn policies that achieve near-perfect success rates and fast cycle times within just 1 to 2.5 hours of training. We show that our method significantly outperforms imitation learning baselines and prior RL approaches, with an average 2x improvement in success rate and 1.8x faster execution. Through extensive experiments and analysis, we provide insights into the effectiveness of our approach, demonstrating how it learns robust, adaptive policies for both reactive and predictive control strategies. Our results suggest that RL can indeed learn a wide range of complex vision-based manipulation policies directly in the real world within practical training times. We hope this work will inspire a new generation of learned robotic manipulation techniques, benefiting both industrial applications and research advancements. Videos and code are available at our project website https://hil-serl.github.io/.
Magistral
We introduce Magistral, Mistral's first reasoning model and our own scalable reinforcement learning (RL) pipeline. Instead of relying on existing implementations and RL traces distilled from prior models, we follow a ground up approach, relying solely on our own models and infrastructure. Notably, we demonstrate a stack that enabled us to explore the limits of pure RL training of LLMs, present a simple method to force the reasoning language of the model, and show that RL on text data alone maintains most of the initial checkpoint's capabilities. We find that RL on text maintains or improves multimodal understanding, instruction following and function calling. We present Magistral Medium, trained for reasoning on top of Mistral Medium 3 with RL alone, and we open-source Magistral Small (Apache 2.0) which further includes cold-start data from Magistral Medium.
Reinforcement Learning with Fast and Forgetful Memory
Nearly all real world tasks are inherently partially observable, necessitating the use of memory in Reinforcement Learning (RL). Most model-free approaches summarize the trajectory into a latent Markov state using memory models borrowed from Supervised Learning (SL), even though RL tends to exhibit different training and efficiency characteristics. Addressing this discrepancy, we introduce Fast and Forgetful Memory, an algorithm-agnostic memory model designed specifically for RL. Our approach constrains the model search space via strong structural priors inspired by computational psychology. It is a drop-in replacement for recurrent neural networks (RNNs) in recurrent RL algorithms, achieving greater reward than RNNs across various recurrent benchmarks and algorithms without changing any hyperparameters. Moreover, Fast and Forgetful Memory exhibits training speeds two orders of magnitude faster than RNNs, attributed to its logarithmic time and linear space complexity. Our implementation is available at https://github.com/proroklab/ffm.
Open the Black Box: Step-based Policy Updates for Temporally-Correlated Episodic Reinforcement Learning
Current advancements in reinforcement learning (RL) have predominantly focused on learning step-based policies that generate actions for each perceived state. While these methods efficiently leverage step information from environmental interaction, they often ignore the temporal correlation between actions, resulting in inefficient exploration and unsmooth trajectories that are challenging to implement on real hardware. Episodic RL (ERL) seeks to overcome these challenges by exploring in parameters space that capture the correlation of actions. However, these approaches typically compromise data efficiency, as they treat trajectories as opaque black boxes. In this work, we introduce a novel ERL algorithm, Temporally-Correlated Episodic RL (TCE), which effectively utilizes step information in episodic policy updates, opening the 'black box' in existing ERL methods while retaining the smooth and consistent exploration in parameter space. TCE synergistically combines the advantages of step-based and episodic RL, achieving comparable performance to recent ERL methods while maintaining data efficiency akin to state-of-the-art (SoTA) step-based RL.
ARLBench: Flexible and Efficient Benchmarking for Hyperparameter Optimization in Reinforcement Learning
Hyperparameters are a critical factor in reliably training well-performing reinforcement learning (RL) agents. Unfortunately, developing and evaluating automated approaches for tuning such hyperparameters is both costly and time-consuming. As a result, such approaches are often only evaluated on a single domain or algorithm, making comparisons difficult and limiting insights into their generalizability. We propose ARLBench, a benchmark for hyperparameter optimization (HPO) in RL that allows comparisons of diverse HPO approaches while being highly efficient in evaluation. To enable research into HPO in RL, even in settings with low compute resources, we select a representative subset of HPO tasks spanning a variety of algorithm and environment combinations. This selection allows for generating a performance profile of an automated RL (AutoRL) method using only a fraction of the compute previously necessary, enabling a broader range of researchers to work on HPO in RL. With the extensive and large-scale dataset on hyperparameter landscapes that our selection is based on, ARLBench is an efficient, flexible, and future-oriented foundation for research on AutoRL. Both the benchmark and the dataset are available at https://github.com/automl/arlbench.
Learn to Reason Efficiently with Adaptive Length-based Reward Shaping
Large Reasoning Models (LRMs) have shown remarkable capabilities in solving complex problems through reinforcement learning (RL), particularly by generating long reasoning traces. However, these extended outputs often exhibit substantial redundancy, which limits the efficiency of LRMs. In this paper, we investigate RL-based approaches to promote reasoning efficiency. Specifically, we first present a unified framework that formulates various efficient reasoning methods through the lens of length-based reward shaping. Building on this perspective, we propose a novel Length-bAsed StEp Reward shaping method (LASER), which employs a step function as the reward, controlled by a target length. LASER surpasses previous methods, achieving a superior Pareto-optimal balance between performance and efficiency. Next, we further extend LASER based on two key intuitions: (1) The reasoning behavior of the model evolves during training, necessitating reward specifications that are also adaptive and dynamic; (2) Rather than uniformly encouraging shorter or longer chains of thought (CoT), we posit that length-based reward shaping should be difficulty-aware i.e., it should penalize lengthy CoTs more for easy queries. This approach is expected to facilitate a combination of fast and slow thinking, leading to a better overall tradeoff. The resulting method is termed LASER-D (Dynamic and Difficulty-aware). Experiments on DeepSeek-R1-Distill-Qwen-1.5B, DeepSeek-R1-Distill-Qwen-7B, and DeepSeek-R1-Distill-Qwen-32B show that our approach significantly enhances both reasoning performance and response length efficiency. For instance, LASER-D and its variant achieve a +6.1 improvement on AIME2024 while reducing token usage by 63%. Further analysis reveals our RL-based compression produces more concise reasoning patterns with less redundant "self-reflections". Resources are at https://github.com/hkust-nlp/Laser.
Leverage the Average: an Analysis of KL Regularization in RL
Recent Reinforcement Learning (RL) algorithms making use of Kullback-Leibler (KL) regularization as a core component have shown outstanding performance. Yet, only little is understood theoretically about why KL regularization helps, so far. We study KL regularization within an approximate value iteration scheme and show that it implicitly averages q-values. Leveraging this insight, we provide a very strong performance bound, the very first to combine two desirable aspects: a linear dependency to the horizon (instead of quadratic) and an error propagation term involving an averaging effect of the estimation errors (instead of an accumulation effect). We also study the more general case of an additional entropy regularizer. The resulting abstract scheme encompasses many existing RL algorithms. Some of our assumptions do not hold with neural networks, so we complement this theoretical analysis with an extensive empirical study.
RM-R1: Reward Modeling as Reasoning
Reward modeling is essential for aligning large language models (LLMs) with human preferences, especially through reinforcement learning from human feedback (RLHF). To provide accurate reward signals, a reward model (RM) should stimulate deep thinking and conduct interpretable reasoning before assigning a score or a judgment. However, existing RMs either produce opaque scalar scores or directly generate the prediction of a preferred answer, making them struggle to integrate natural language critiques, thus lacking interpretability. Inspired by recent advances of long chain-of-thought (CoT) on reasoning-intensive tasks, we hypothesize and validate that integrating reasoning capabilities into reward modeling significantly enhances RM's interpretability and performance. In this work, we introduce a new class of generative reward models -- Reasoning Reward Models (ReasRMs) -- which formulate reward modeling as a reasoning task. We propose a reasoning-oriented training pipeline and train a family of ReasRMs, RM-R1. The training consists of two key stages: (1) distillation of high-quality reasoning chains and (2) reinforcement learning with verifiable rewards. RM-R1 improves LLM rollouts by self-generating reasoning traces or chat-specific rubrics and evaluating candidate responses against them. Empirically, our models achieve state-of-the-art or near state-of-the-art performance of generative RMs across multiple comprehensive reward model benchmarks, outperforming much larger open-weight models (e.g., Llama3.1-405B) and proprietary ones (e.g., GPT-4o) by up to 13.8%. Beyond final performance, we perform thorough empirical analysis to understand the key ingredients of successful ReasRM training. To facilitate future research, we release six ReasRM models along with code and data at https://github.com/RM-R1-UIUC/RM-R1.
Gradient Boosting Reinforcement Learning
Neural networks (NN) achieve remarkable results in various tasks, but lack key characteristics: interpretability, support for categorical features, and lightweight implementations suitable for edge devices. While ongoing efforts aim to address these challenges, Gradient Boosting Trees (GBT) inherently meet these requirements. As a result, GBTs have become the go-to method for supervised learning tasks in many real-world applications and competitions. However, their application in online learning scenarios, notably in reinforcement learning (RL), has been limited. In this work, we bridge this gap by introducing Gradient-Boosting RL (GBRL), a framework that extends the advantages of GBT to the RL domain. Using the GBRL framework, we implement various actor-critic algorithms and compare their performance with their NN counterparts. Inspired by shared backbones in NN we introduce a tree-sharing approach for policy and value functions with distinct learning rates, enhancing learning efficiency over millions of interactions. GBRL achieves competitive performance across a diverse array of tasks, excelling in domains with structured or categorical features. Additionally, we present a high-performance, GPU-accelerated implementation that integrates seamlessly with widely-used RL libraries (available at https://github.com/NVlabs/gbrl). GBRL expands the toolkit for RL practitioners, demonstrating the viability and promise of GBT within the RL paradigm, particularly in domains characterized by structured or categorical features.
Libra: Assessing and Improving Reward Model by Learning to Think
Reinforcement learning (RL) has significantly improved the reasoning ability of large language models. However, current reward models underperform in challenging reasoning scenarios and predominant RL training paradigms rely on rule-based or reference-based rewards, which impose two critical limitations: 1) the dependence on finely annotated reference answer to attain rewards; and 2) the requirement for constrained output format. These limitations fundamentally hinder further RL data scaling and sustained enhancement of model reasoning performance. To address these limitations, we propose a comprehensive framework for evaluating and improving the performance of reward models in complex reasoning scenarios. We first present a reasoning-oriented benchmark (Libra Bench), systematically constructed from a diverse collection of challenging mathematical problems and advanced reasoning models, to address the limitations of existing reward model benchmarks in reasoning scenarios. We further introduce a novel approach for improving the generative reward model via learning-to-think methodologies. Based on the proposed approach, we develop Libra-RM series, a collection of generative reward models with reasoning capabilities that achieve state-of-the-art results on various benchmarks. Comprehensive downstream experiments are conducted and the experimental results demonstrate the correlation between our Libra Bench and downstream application, and the potential of Libra-RM to further improve reasoning models with unlabeled data.
Robust Subtask Learning for Compositional Generalization
Compositional reinforcement learning is a promising approach for training policies to perform complex long-horizon tasks. Typically, a high-level task is decomposed into a sequence of subtasks and a separate policy is trained to perform each subtask. In this paper, we focus on the problem of training subtask policies in a way that they can be used to perform any task; here, a task is given by a sequence of subtasks. We aim to maximize the worst-case performance over all tasks as opposed to the average-case performance. We formulate the problem as a two agent zero-sum game in which the adversary picks the sequence of subtasks. We propose two RL algorithms to solve this game: one is an adaptation of existing multi-agent RL algorithms to our setting and the other is an asynchronous version which enables parallel training of subtask policies. We evaluate our approach on two multi-task environments with continuous states and actions and demonstrate that our algorithms outperform state-of-the-art baselines.
Inference-Time Scaling for Generalist Reward Modeling
Reinforcement learning (RL) has been widely adopted in post-training for large language models (LLMs) at scale. Recently, the incentivization of reasoning capabilities in LLMs from RL indicates that proper learning methods could enable effective inference-time scalability. A key challenge of RL is to obtain accurate reward signals for LLMs in various domains beyond verifiable questions or artificial rules. In this work, we investigate how to improve reward modeling (RM) with more inference compute for general queries, i.e. the inference-time scalability of generalist RM, and further, how to improve the effectiveness of performance-compute scaling with proper learning methods. For the RM approach, we adopt pointwise generative reward modeling (GRM) to enable flexibility for different input types and potential for inference-time scaling. For the learning method, we propose Self-Principled Critique Tuning (SPCT) to foster scalable reward generation behaviors in GRMs through online RL, to generate principles adaptively and critiques accurately, resulting in DeepSeek-GRM models. Furthermore, for effective inference-time scaling, we use parallel sampling to expand compute usage, and introduce a meta RM to guide voting process for better scaling performance. Empirically, we show that SPCT significantly improves the quality and scalability of GRMs, outperforming existing methods and models in various RM benchmarks without severe biases, and could achieve better performance compared to training-time scaling. DeepSeek-GRM still meets challenges in some tasks, which we believe can be addressed by future efforts in generalist reward systems. The models will be released and open-sourced.
HybridFlow: A Flexible and Efficient RLHF Framework
Reinforcement Learning from Human Feedback (RLHF) is widely used in Large Language Model (LLM) alignment. Traditional RL can be modeled as a dataflow, where each node represents computation of a neural network (NN) and each edge denotes data dependencies between the NNs. RLHF complicates the dataflow by expanding each node into a distributed LLM training or generation program, and each edge into a many-to-many multicast. Traditional RL frameworks execute the dataflow using a single controller to instruct both intra-node computation and inter-node communication, which can be inefficient in RLHF due to large control dispatch overhead for distributed intra-node computation. Existing RLHF systems adopt a multi-controller paradigm, which can be inflexible due to nesting distributed computation and data communication. We propose HybridFlow, which combines single-controller and multi-controller paradigms in a hybrid manner to enable flexible representation and efficient execution of the RLHF dataflow. We carefully design a set of hierarchical APIs that decouple and encapsulate computation and data dependencies in the complex RLHF dataflow, allowing efficient operation orchestration to implement RLHF algorithms and flexible mapping of the computation onto various devices. We further design a 3D-HybridEngine for efficient actor model resharding between training and generation phases, with zero memory redundancy and significantly reduced communication overhead. Our experimental results demonstrate 1.53times~20.57times throughput improvement when running various RLHF algorithms using HybridFlow, as compared with state-of-the-art baselines. HybridFlow source code will be available at https://github.com/volcengine/verl.
Table-R1: Inference-Time Scaling for Table Reasoning
In this work, we present the first study to explore inference-time scaling on table reasoning tasks. We develop and evaluate two post-training strategies to enable inference-time scaling: distillation from frontier model reasoning traces and reinforcement learning with verifiable rewards (RLVR). For distillation, we introduce a large-scale dataset of reasoning traces generated by DeepSeek-R1, which we use to fine-tune LLMs into the Table-R1-SFT model. For RLVR, we propose task-specific verifiable reward functions and apply the GRPO algorithm to obtain the Table-R1-Zero model. We evaluate our Table-R1-series models across diverse table reasoning tasks, including short-form QA, fact verification, and free-form QA. Notably, the Table-R1-Zero model matches or exceeds the performance of GPT-4.1 and DeepSeek-R1, while using only a 7B-parameter LLM. It also demonstrates strong generalization to out-of-domain datasets. Extensive ablation and qualitative analyses reveal the benefits of instruction tuning, model architecture choices, and cross-task generalization, as well as emergence of essential table reasoning skills during RL training.
Semi-Offline Reinforcement Learning for Optimized Text Generation
In reinforcement learning (RL), there are two major settings for interacting with the environment: online and offline. Online methods explore the environment at significant time cost, and offline methods efficiently obtain reward signals by sacrificing exploration capability. We propose semi-offline RL, a novel paradigm that smoothly transits from offline to online settings, balances exploration capability and training cost, and provides a theoretical foundation for comparing different RL settings. Based on the semi-offline formulation, we present the RL setting that is optimal in terms of optimization cost, asymptotic error, and overfitting error bound. Extensive experiments show that our semi-offline approach is efficient and yields comparable or often better performance compared with state-of-the-art methods.
TreeRL: LLM Reinforcement Learning with On-Policy Tree Search
Reinforcement learning (RL) with tree search has demonstrated superior performance in traditional reasoning tasks. Compared to conventional independent chain sampling strategies with outcome supervision, tree search enables better exploration of the reasoning space and provides dense, on-policy process rewards during RL training but remains under-explored in On-Policy LLM RL. We propose TreeRL, a reinforcement learning framework that directly incorporates on-policy tree search for RL training. Our approach includes intermediate supervision and eliminates the need for a separate reward model training. Existing approaches typically train a separate process reward model, which can suffer from distribution mismatch and reward hacking. We also introduce a cost-effective tree search approach that achieves higher search efficiency under the same generation token budget by strategically branching from high-uncertainty intermediate steps rather than using random branching. Experiments on challenging math and code reasoning benchmarks demonstrate that TreeRL achieves superior performance compared to traditional ChainRL, highlighting the potential of tree search for LLM. TreeRL is open-sourced at https://github.com/THUDM/TreeRL.
Breaking the Barrier: Enhanced Utility and Robustness in Smoothed DRL Agents
Robustness remains a paramount concern in deep reinforcement learning (DRL), with randomized smoothing emerging as a key technique for enhancing this attribute. However, a notable gap exists in the performance of current smoothed DRL agents, often characterized by significantly low clean rewards and weak robustness. In response to this challenge, our study introduces innovative algorithms aimed at training effective smoothed robust DRL agents. We propose S-DQN and S-PPO, novel approaches that demonstrate remarkable improvements in clean rewards, empirical robustness, and robustness guarantee across standard RL benchmarks. Notably, our S-DQN and S-PPO agents not only significantly outperform existing smoothed agents by an average factor of 2.16times under the strongest attack, but also surpass previous robustly-trained agents by an average factor of 2.13times. This represents a significant leap forward in the field. Furthermore, we introduce Smoothed Attack, which is 1.89times more effective in decreasing the rewards of smoothed agents than existing adversarial attacks.
Optimizing Test-Time Compute via Meta Reinforcement Fine-Tuning
Training models to effectively use test-time compute is crucial for improving the reasoning performance of LLMs. Current methods mostly do so via fine-tuning on search traces or running RL with 0/1 outcome reward, but do these approaches efficiently utilize test-time compute? Would these approaches continue to scale as the budget improves? In this paper, we try to answer these questions. We formalize the problem of optimizing test-time compute as a meta-reinforcement learning (RL) problem, which provides a principled perspective on spending test-time compute. This perspective enables us to view the long output stream from the LLM as consisting of several episodes run at test time and leads us to use a notion of cumulative regret over output tokens as a way to measure the efficacy of test-time compute. Akin to how RL algorithms can best tradeoff exploration and exploitation over training, minimizing cumulative regret would also provide the best balance between exploration and exploitation in the token stream. While we show that state-of-the-art models do not minimize regret, one can do so by maximizing a dense reward bonus in conjunction with the outcome 0/1 reward RL. This bonus is the ''progress'' made by each subsequent block in the output stream, quantified by the change in the likelihood of eventual success. Using these insights, we develop Meta Reinforcement Fine-Tuning, or MRT, a new class of fine-tuning methods for optimizing test-time compute. MRT leads to a 2-3x relative gain in performance and roughly a 1.5x gain in token efficiency for math reasoning compared to outcome-reward RL.
Offline Reinforcement Learning as One Big Sequence Modeling Problem
Reinforcement learning (RL) is typically concerned with estimating stationary policies or single-step models, leveraging the Markov property to factorize problems in time. However, we can also view RL as a generic sequence modeling problem, with the goal being to produce a sequence of actions that leads to a sequence of high rewards. Viewed in this way, it is tempting to consider whether high-capacity sequence prediction models that work well in other domains, such as natural-language processing, can also provide effective solutions to the RL problem. To this end, we explore how RL can be tackled with the tools of sequence modeling, using a Transformer architecture to model distributions over trajectories and repurposing beam search as a planning algorithm. Framing RL as sequence modeling problem simplifies a range of design decisions, allowing us to dispense with many of the components common in offline RL algorithms. We demonstrate the flexibility of this approach across long-horizon dynamics prediction, imitation learning, goal-conditioned RL, and offline RL. Further, we show that this approach can be combined with existing model-free algorithms to yield a state-of-the-art planner in sparse-reward, long-horizon tasks.
Streaming Deep Reinforcement Learning Finally Works
Natural intelligence processes experience as a continuous stream, sensing, acting, and learning moment-by-moment in real time. Streaming learning, the modus operandi of classic reinforcement learning (RL) algorithms like Q-learning and TD, mimics natural learning by using the most recent sample without storing it. This approach is also ideal for resource-constrained, communication-limited, and privacy-sensitive applications. However, in deep RL, learners almost always use batch updates and replay buffers, making them computationally expensive and incompatible with streaming learning. Although the prevalence of batch deep RL is often attributed to its sample efficiency, a more critical reason for the absence of streaming deep RL is its frequent instability and failure to learn, which we refer to as stream barrier. This paper introduces the stream-x algorithms, the first class of deep RL algorithms to overcome stream barrier for both prediction and control and match sample efficiency of batch RL. Through experiments in Mujoco Gym, DM Control Suite, and Atari Games, we demonstrate stream barrier in existing algorithms and successful stable learning with our stream-x algorithms: stream Q, stream AC, and stream TD, achieving the best model-free performance in DM Control Dog environments. A set of common techniques underlies the stream-x algorithms, enabling their success with a single set of hyperparameters and allowing for easy extension to other algorithms, thereby reviving streaming RL.
Accelerating RL for LLM Reasoning with Optimal Advantage Regression
Reinforcement learning (RL) has emerged as a powerful tool for fine-tuning large language models (LLMs) to improve complex reasoning abilities. However, state-of-the-art policy optimization methods often suffer from high computational overhead and memory consumption, primarily due to the need for multiple generations per prompt and the reliance on critic networks or advantage estimates of the current policy. In this paper, we propose A*-PO, a novel two-stage policy optimization framework that directly approximates the optimal advantage function and enables efficient training of LLMs for reasoning tasks. In the first stage, we leverage offline sampling from a reference policy to estimate the optimal value function V*, eliminating the need for costly online value estimation. In the second stage, we perform on-policy updates using a simple least-squares regression loss with only a single generation per prompt. Theoretically, we establish performance guarantees and prove that the KL-regularized RL objective can be optimized without requiring complex exploration strategies. Empirically, A*-PO achieves competitive performance across a wide range of mathematical reasoning benchmarks, while reducing training time by up to 2times and peak memory usage by over 30% compared to PPO, GRPO, and REBEL. Implementation of A*-PO can be found at https://github.com/ZhaolinGao/A-PO.
Efficient Online RFT with Plug-and-Play LLM Judges: Unlocking State-of-the-Art Performance
Reward-model training is the cost bottleneck in modern Reinforcement Learning Human Feedback (RLHF) pipelines, often requiring tens of billions of parameters and an offline preference-tuning phase. In the proposed method, a frozen, instruction-tuned 7B LLM is augmented with only a one line JSON rubric and a rank-16 LoRA adapter (affecting just 0.8% of the model's parameters), enabling it to serve as a complete substitute for the previously used heavyweight evaluation models. The plug-and-play judge achieves 96.2% accuracy on RewardBench, outperforming specialized reward networks ranging from 27B to 70B parameters. Additionally, it allows a 7B actor to outperform the top 70B DPO baseline, which scores 61.8%, by achieving 92% exact match accuracy on GSM-8K utilizing online PPO. Thorough ablations indicate that (i) six in context demonstrations deliver the majority of the zero-to-few-shot improvements (+2pp), and (ii) the LoRA effectively addresses the remaining disparity, particularly in the safety and adversarial Chat-Hard segments. The proposed model introduces HH-Rationales, a subset of 10,000 pairs from Anthropic HH-RLHF, to examine interpretability, accompanied by human generated justifications. GPT-4 scoring indicates that our LoRA judge attains approximately = 9/10 in similarity to human explanations, while zero-shot judges score around =5/10. These results indicate that the combination of prompt engineering and tiny LoRA produces a cost effective, transparent, and easily adjustable reward function, removing the offline phase while achieving new state-of-the-art outcomes for both static evaluation and online RLHF.
Human-Robot Gym: Benchmarking Reinforcement Learning in Human-Robot Collaboration
Deep reinforcement learning (RL) has shown promising results in robot motion planning with first attempts in human-robot collaboration (HRC). However, a fair comparison of RL approaches in HRC under the constraint of guaranteed safety is yet to be made. We, therefore, present human-robot gym, a benchmark for safe RL in HRC. Our benchmark provides eight challenging, realistic HRC tasks in a modular simulation framework. Most importantly, human-robot gym includes a safety shield that provably guarantees human safety. We are, thereby, the first to provide a benchmark to train RL agents that adhere to the safety specifications of real-world HRC. This bridges a critical gap between theoretic RL research and its real-world deployment. Our evaluation of six environments led to three key results: (a) the diverse nature of the tasks offered by human-robot gym creates a challenging benchmark for state-of-the-art RL methods, (b) incorporating expert knowledge in the RL training in the form of an action-based reward can outperform the expert, and (c) our agents negligibly overfit to training data.
Lucy-SKG: Learning to Play Rocket League Efficiently Using Deep Reinforcement Learning
A successful tactic that is followed by the scientific community for advancing AI is to treat games as problems, which has been proven to lead to various breakthroughs. We adapt this strategy in order to study Rocket League, a widely popular but rather under-explored 3D multiplayer video game with a distinct physics engine and complex dynamics that pose a significant challenge in developing efficient and high-performance game-playing agents. In this paper, we present Lucy-SKG, a Reinforcement Learning-based model that learned how to play Rocket League in a sample-efficient manner, outperforming by a notable margin the two highest-ranking bots in this game, namely Necto (2022 bot champion) and its successor Nexto, thus becoming a state-of-the-art agent. Our contributions include: a) the development of a reward analysis and visualization library, b) novel parameterizable reward shape functions that capture the utility of complex reward types via our proposed Kinesthetic Reward Combination (KRC) technique, and c) design of auxiliary neural architectures for training on reward prediction and state representation tasks in an on-policy fashion for enhanced efficiency in learning speed and performance. By performing thorough ablation studies for each component of Lucy-SKG, we showed their independent effectiveness in overall performance. In doing so, we demonstrate the prospects and challenges of using sample-efficient Reinforcement Learning techniques for controlling complex dynamical systems under competitive team-based multiplayer conditions.
MOORL: A Framework for Integrating Offline-Online Reinforcement Learning
Sample efficiency and exploration remain critical challenges in Deep Reinforcement Learning (DRL), particularly in complex domains. Offline RL, which enables agents to learn optimal policies from static, pre-collected datasets, has emerged as a promising alternative. However, offline RL is constrained by issues such as out-of-distribution (OOD) actions that limit policy performance and generalization. To overcome these limitations, we propose Meta Offline-Online Reinforcement Learning (MOORL), a hybrid framework that unifies offline and online RL for efficient and scalable learning. While previous hybrid methods rely on extensive design components and added computational complexity to utilize offline data effectively, MOORL introduces a meta-policy that seamlessly adapts across offline and online trajectories. This enables the agent to leverage offline data for robust initialization while utilizing online interactions to drive efficient exploration. Our theoretical analysis demonstrates that the hybrid approach enhances exploration by effectively combining the complementary strengths of offline and online data. Furthermore, we demonstrate that MOORL learns a stable Q-function without added complexity. Extensive experiments on 28 tasks from the D4RL and V-D4RL benchmarks validate its effectiveness, showing consistent improvements over state-of-the-art offline and hybrid RL baselines. With minimal computational overhead, MOORL achieves strong performance, underscoring its potential for practical applications in real-world scenarios.
Afterburner: Reinforcement Learning Facilitates Self-Improving Code Efficiency Optimization
Large Language Models (LLMs) generate functionally correct solutions but often fall short in code efficiency, a critical bottleneck for real-world deployment. In this paper, we introduce a novel test-time iterative optimization framework to address this, employing a closed-loop system where LLMs iteratively refine code based on empirical performance feedback from an execution sandbox. We explore three training strategies: Supervised Fine-Tuning (SFT), Direct Preference Optimization (DPO), and Group Relative Policy Optimization~(GRPO). Experiments on our Venus dataset and the APPS benchmark show that SFT and DPO rapidly saturate in efficiency gains. In contrast, GRPO, using reinforcement learning (RL) with execution feedback, continuously optimizes code performance, significantly boosting both pass@1 (from 47% to 62%) and the likelihood of outperforming human submissions in efficiency (from 31% to 45%). Our work demonstrates effective test-time code efficiency improvement and critically reveals the power of RL in teaching LLMs to truly self-improve code efficiency.
Checklists Are Better Than Reward Models For Aligning Language Models
Language models must be adapted to understand and follow user instructions. Reinforcement learning is widely used to facilitate this -- typically using fixed criteria such as "helpfulness" and "harmfulness". In our work, we instead propose using flexible, instruction-specific criteria as a means of broadening the impact that reinforcement learning can have in eliciting instruction following. We propose "Reinforcement Learning from Checklist Feedback" (RLCF). From instructions, we extract checklists and evaluate how well responses satisfy each item - using both AI judges and specialized verifier programs - then combine these scores to compute rewards for RL. We compare RLCF with other alignment methods applied to a strong instruction following model (Qwen2.5-7B-Instruct) on five widely-studied benchmarks -- RLCF is the only method to improve performance on every benchmark, including a 4-point boost in hard satisfaction rate on FollowBench, a 6-point increase on InFoBench, and a 3-point rise in win rate on Arena-Hard. These results establish checklist feedback as a key tool for improving language models' support of queries that express a multitude of needs.
Can One Domain Help Others? A Data-Centric Study on Multi-Domain Reasoning via Reinforcement Learning
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a powerful paradigm for enhancing the reasoning capabilities of LLMs. Existing research has predominantly concentrated on isolated reasoning domains such as mathematical problem-solving, coding tasks, or logical reasoning. However, real world reasoning scenarios inherently demand an integrated application of multiple cognitive skills. Despite this, the interplay among these reasoning skills under reinforcement learning remains poorly understood. To bridge this gap, we present a systematic investigation of multi-domain reasoning within the RLVR framework, explicitly focusing on three primary domains: mathematical reasoning, code generation, and logical puzzle solving. We conduct a comprehensive study comprising four key components: (1) Leveraging the GRPO algorithm and the Qwen-2.5-7B model family, our study thoroughly evaluates the models' in-domain improvements and cross-domain generalization capabilities when trained on single-domain datasets. (2) Additionally, we examine the intricate interactions including mutual enhancements and conflicts that emerge during combined cross-domain training. (3) To further understand the influence of SFT on RL, we also analyze and compare performance differences between base and instruct models under identical RL configurations. (4) Furthermore, we delve into critical RL training details, systematically exploring the impacts of curriculum learning strategies, variations in reward design, and language-specific factors. Through extensive experiments, our results offer significant insights into the dynamics governing domain interactions, revealing key factors influencing both specialized and generalizable reasoning performance. These findings provide valuable guidance for optimizing RL methodologies to foster comprehensive, multi-domain reasoning capabilities in LLMs.
An Open-Loop Baseline for Reinforcement Learning Locomotion Tasks
In search of a simple baseline for Deep Reinforcement Learning in locomotion tasks, we propose a model-free open-loop strategy. By leveraging prior knowledge and the elegance of simple oscillators to generate periodic joint motions, it achieves respectable performance in five different locomotion environments, with a number of tunable parameters that is a tiny fraction of the thousands typically required by DRL algorithms. We conduct two additional experiments using open-loop oscillators to identify current shortcomings of these algorithms. Our results show that, compared to the baseline, DRL is more prone to performance degradation when exposed to sensor noise or failure. Furthermore, we demonstrate a successful transfer from simulation to reality using an elastic quadruped, where RL fails without randomization or reward engineering. Overall, the proposed baseline and associated experiments highlight the existing limitations of DRL for robotic applications, provide insights on how to address them, and encourage reflection on the costs of complexity and generality.
Reinforcement Learning Enhanced LLMs: A Survey
This paper surveys research in the rapidly growing field of enhancing large language models (LLMs) with reinforcement learning (RL), a technique that enables LLMs to improve their performance by receiving feedback in the form of rewards based on the quality of their outputs, allowing them to generate more accurate, coherent, and contextually appropriate responses. In this work, we make a systematic review of the most up-to-date state of knowledge on RL-enhanced LLMs, attempting to consolidate and analyze the rapidly growing research in this field, helping researchers understand the current challenges and advancements. Specifically, we (1) detail the basics of RL; (2) introduce popular RL-enhanced LLMs; (3) review researches on two widely-used reward model-based RL techniques: Reinforcement Learning from Human Feedback (RLHF) and Reinforcement Learning from AI Feedback (RLAIF); and (4) explore Direct Preference Optimization (DPO), a set of methods that bypass the reward model to directly use human preference data for aligning LLM outputs with human expectations. We will also point out current challenges and deficiencies of existing methods and suggest some avenues for further improvements. Project page of this work can be found at: https://github.com/ShuheWang1998/Reinforcement-Learning-Enhanced-LLMs-A-Survey.
Reinforcement Learning for Aligning Large Language Models Agents with Interactive Environments: Quantifying and Mitigating Prompt Overfitting
Reinforcement learning (RL) is a promising approach for aligning large language models (LLMs) knowledge with sequential decision-making tasks. However, few studies have thoroughly investigated the impact on LLM agents capabilities of fine-tuning them with RL in a specific environment. In this paper, we propose a novel framework to analyze the sensitivity of LLMs to prompt formulations following RL training in a textual environment. Our findings reveal that the performance of LLMs degrades when faced with prompt formulations different from those used during the RL training phase. Besides, we analyze the source of this sensitivity by examining the model's internal representations and salient tokens. Finally, we propose to use a contrastive loss to mitigate this sensitivity and improve the robustness and generalization capabilities of LLMs.
SERL: A Software Suite for Sample-Efficient Robotic Reinforcement Learning
In recent years, significant progress has been made in the field of robotic reinforcement learning (RL), enabling methods that handle complex image observations, train in the real world, and incorporate auxiliary data, such as demonstrations and prior experience. However, despite these advances, robotic RL remains hard to use. It is acknowledged among practitioners that the particular implementation details of these algorithms are often just as important (if not more so) for performance as the choice of algorithm. We posit that a significant challenge to widespread adoption of robotic RL, as well as further development of robotic RL methods, is the comparative inaccessibility of such methods. To address this challenge, we developed a carefully implemented library containing a sample efficient off-policy deep RL method, together with methods for computing rewards and resetting the environment, a high-quality controller for a widely-adopted robot, and a number of challenging example tasks. We provide this library as a resource for the community, describe its design choices, and present experimental results. Perhaps surprisingly, we find that our implementation can achieve very efficient learning, acquiring policies for PCB board assembly, cable routing, and object relocation between 25 to 50 minutes of training per policy on average, improving over state-of-the-art results reported for similar tasks in the literature. These policies achieve perfect or near-perfect success rates, extreme robustness even under perturbations, and exhibit emergent recovery and correction behaviors. We hope that these promising results and our high-quality open-source implementation will provide a tool for the robotics community to facilitate further developments in robotic RL. Our code, documentation, and videos can be found at https://serl-robot.github.io/
TTRL: Test-Time Reinforcement Learning
This paper investigates Reinforcement Learning (RL) on data without explicit labels for reasoning tasks in Large Language Models (LLMs). The core challenge of the problem is reward estimation during inference while not having access to ground-truth information. While this setting appears elusive, we find that common practices in Test-Time Scaling (TTS), such as majority voting, yield surprisingly effective rewards suitable for driving RL training. In this work, we introduce Test-Time Reinforcement Learning (TTRL), a novel method for training LLMs using RL on unlabeled data. TTRL enables self-evolution of LLMs by utilizing the priors in the pre-trained models. Our experiments demonstrate that TTRL consistently improves performance across a variety of tasks and models. Notably, TTRL boosts the pass@1 performance of Qwen-2.5-Math-7B by approximately 159% on the AIME 2024 with only unlabeled test data. Furthermore, although TTRL is only supervised by the Maj@N metric, TTRL has demonstrated performance to consistently surpass the upper limit of the initial model, and approach the performance of models trained directly on test data with ground-truth labels. Our experimental findings validate the general effectiveness of TTRL across various tasks, and highlight TTRL's potential for broader tasks and domains. GitHub: https://github.com/PRIME-RL/TTRL
Confidence Is All You Need: Few-Shot RL Fine-Tuning of Language Models
Large language models (LLMs) excel at reasoning, yet post-training remains critical for aligning their behavior with task goals. Existing reinforcement learning (RL) methods often depend on costly human annotations or external reward models. We propose Reinforcement Learning via Self-Confidence (RLSC), which uses the model's own confidence as reward signals-eliminating the need for labels, preference models, or reward engineering. Applied to Qwen2.5-Math-7B with only 16 samples per question and 10 or 20 training steps, RLSC improves accuracy by +13.4% on AIME2024, +21.2% on MATH500, +21.7% on Minerva Math, +20.8% on Olympiadbench, and +9.7% on AMC23. RLSC provides a simple, scalable post-training method for inference models, requiring only a small number of samples and unlabelled supervision.
Learning from Reward-Free Offline Data: A Case for Planning with Latent Dynamics Models
A long-standing goal in AI is to build agents that can solve a variety of tasks across different environments, including previously unseen ones. Two dominant approaches tackle this challenge: (i) reinforcement learning (RL), which learns policies through trial and error, and (ii) optimal control, which plans actions using a learned or known dynamics model. However, their relative strengths and weaknesses remain underexplored in the setting where agents must learn from offline trajectories without reward annotations. In this work, we systematically analyze the performance of different RL and control-based methods under datasets of varying quality. On the RL side, we consider goal-conditioned and zero-shot approaches. On the control side, we train a latent dynamics model using the Joint Embedding Predictive Architecture (JEPA) and use it for planning. We study how dataset properties-such as data diversity, trajectory quality, and environment variability-affect the performance of these approaches. Our results show that model-free RL excels when abundant, high-quality data is available, while model-based planning excels in generalization to novel environment layouts, trajectory stitching, and data-efficiency. Notably, planning with a latent dynamics model emerges as a promising approach for zero-shot generalization from suboptimal data.
The Alignment Ceiling: Objective Mismatch in Reinforcement Learning from Human Feedback
Reinforcement learning from human feedback (RLHF) has emerged as a powerful technique to make large language models (LLMs) more capable in complex settings. RLHF proceeds as collecting human preference data, training a reward model on said data, and optimizing a base ML model with respect to said reward for extrinsic evaluation metrics (e.g. MMLU, GSM8k). RLHF relies on many assumptions about how the various pieces fit together, such as a reward model capturing human preferences and an RL optimizer extracting the right signal from a reward model. As the RLHF process involves many distinct design decisions, it is easy to assume that multiple processes are correlated and therefore numerically linked. This apparent correlation is often not true, where reward models are easily overoptimized or RL optimizers can reduce performance on tasks not modeled in the data. Notable manifestations of models trained with imperfect RLHF systems are those that are prone to refusing basic requests for safety reasons or appearing lazy in generations. As chat model evaluation becomes increasingly nuanced, the reliance on a perceived link between reward model training, RL scores, and downstream performance drives these issues, which we describe as an objective mismatch. In this paper, we illustrate the causes of this issue, reviewing relevant literature from model-based reinforcement learning, and argue for solutions. By solving objective mismatch in RLHF, the ML models of the future will be more precisely aligned to user instructions for both safety and helpfulness.
R-Search: Empowering LLM Reasoning with Search via Multi-Reward Reinforcement Learning
Large language models (LLMs) have notably progressed in multi-step and long-chain reasoning. However, extending their reasoning capabilities to encompass deep interactions with search remains a non-trivial challenge, as models often fail to identify optimal reasoning-search interaction trajectories, resulting in suboptimal responses. We propose R-Search, a novel reinforcement learning framework for Reasoning-Search integration, designed to enable LLMs to autonomously execute multi-step reasoning with deep search interaction, and learn optimal reasoning search interaction trajectories via multi-reward signals, improving response quality in complex logic- and knowledge-intensive tasks. R-Search guides the LLM to dynamically decide when to retrieve or reason, while globally integrating key evidence to enhance deep knowledge interaction between reasoning and search. During RL training, R-Search provides multi-stage, multi-type rewards to jointly optimize the reasoning-search trajectory. Experiments on seven datasets show that R-Search outperforms advanced RAG baselines by up to 32.2% (in-domain) and 25.1% (out-of-domain). The code and data are available at https://github.com/QingFei1/R-Search.
RLEP: Reinforcement Learning with Experience Replay for LLM Reasoning
Reinforcement learning (RL) for large language models is an energy-intensive endeavor: training can be unstable, and the policy may gradually drift away from its pretrained weights. We present RLEP\, -- \,Reinforcement Learning with Experience rePlay\, -- \,a two-phase framework that first collects verified trajectories and then replays them during subsequent training. At every update step, the policy is optimized on mini-batches that blend newly generated rollouts with these replayed successes. By replaying high-quality examples, RLEP steers the model away from fruitless exploration, focuses learning on promising reasoning paths, and delivers both faster convergence and stronger final performance. On the Qwen2.5-Math-7B base model, RLEP reaches baseline peak accuracy with substantially fewer updates and ultimately surpasses it, improving accuracy on AIME-2024 from 38.2% to 39.9%, on AIME-2025 from 19.8% to 22.3%, and on AMC-2023 from 77.0% to 82.2%. Our code, datasets, and checkpoints are publicly available at https://github.com/Kwai-Klear/RLEP to facilitate reproducibility and further research.
A Survey on Model-based Reinforcement Learning
Reinforcement learning (RL) solves sequential decision-making problems via a trial-and-error process interacting with the environment. While RL achieves outstanding success in playing complex video games that allow huge trial-and-error, making errors is always undesired in the real world. To improve the sample efficiency and thus reduce the errors, model-based reinforcement learning (MBRL) is believed to be a promising direction, which builds environment models in which the trial-and-errors can take place without real costs. In this survey, we take a review of MBRL with a focus on the recent progress in deep RL. For non-tabular environments, there is always a generalization error between the learned environment model and the real environment. As such, it is of great importance to analyze the discrepancy between policy training in the environment model and that in the real environment, which in turn guides the algorithm design for better model learning, model usage, and policy training. Besides, we also discuss the recent advances of model-based techniques in other forms of RL, including offline RL, goal-conditioned RL, multi-agent RL, and meta-RL. Moreover, we discuss the applicability and advantages of MBRL in real-world tasks. Finally, we end this survey by discussing the promising prospects for the future development of MBRL. We think that MBRL has great potential and advantages in real-world applications that were overlooked, and we hope this survey could attract more research on MBRL.
Mastering Memory Tasks with World Models
Current model-based reinforcement learning (MBRL) agents struggle with long-term dependencies. This limits their ability to effectively solve tasks involving extended time gaps between actions and outcomes, or tasks demanding the recalling of distant observations to inform current actions. To improve temporal coherence, we integrate a new family of state space models (SSMs) in world models of MBRL agents to present a new method, Recall to Imagine (R2I). This integration aims to enhance both long-term memory and long-horizon credit assignment. Through a diverse set of illustrative tasks, we systematically demonstrate that R2I not only establishes a new state-of-the-art for challenging memory and credit assignment RL tasks, such as BSuite and POPGym, but also showcases superhuman performance in the complex memory domain of Memory Maze. At the same time, it upholds comparable performance in classic RL tasks, such as Atari and DMC, suggesting the generality of our method. We also show that R2I is faster than the state-of-the-art MBRL method, DreamerV3, resulting in faster wall-time convergence.
EfficientZero V2: Mastering Discrete and Continuous Control with Limited Data
Sample efficiency remains a crucial challenge in applying Reinforcement Learning (RL) to real-world tasks. While recent algorithms have made significant strides in improving sample efficiency, none have achieved consistently superior performance across diverse domains. In this paper, we introduce EfficientZero V2, a general framework designed for sample-efficient RL algorithms. We have expanded the performance of EfficientZero to multiple domains, encompassing both continuous and discrete actions, as well as visual and low-dimensional inputs. With a series of improvements we propose, EfficientZero V2 outperforms the current state-of-the-art (SOTA) by a significant margin in diverse tasks under the limited data setting. EfficientZero V2 exhibits a notable advancement over the prevailing general algorithm, DreamerV3, achieving superior outcomes in 50 of 66 evaluated tasks across diverse benchmarks, such as Atari 100k, Proprio Control, and Vision Control.
Exploring the Limit of Outcome Reward for Learning Mathematical Reasoning
Reasoning abilities, especially those for solving complex math problems, are crucial components of general intelligence. Recent advances by proprietary companies, such as o-series models of OpenAI, have made remarkable progress on reasoning tasks. However, the complete technical details remain unrevealed, and the techniques that are believed certainly to be adopted are only reinforcement learning (RL) and the long chain of thoughts. This paper proposes a new RL framework, termed OREAL, to pursue the performance limit that can be achieved through Outcome REwArd-based reinforcement Learning for mathematical reasoning tasks, where only binary outcome rewards are easily accessible. We theoretically prove that behavior cloning on positive trajectories from best-of-N (BoN) sampling is sufficient to learn the KL-regularized optimal policy in binary feedback environments. This formulation further implies that the rewards of negative samples should be reshaped to ensure the gradient consistency between positive and negative samples. To alleviate the long-existing difficulties brought by sparse rewards in RL, which are even exacerbated by the partial correctness of the long chain of thought for reasoning tasks, we further apply a token-level reward model to sample important tokens in reasoning trajectories for learning. With OREAL, for the first time, a 7B model can obtain 94.0 pass@1 accuracy on MATH-500 through RL, being on par with 32B models. OREAL-32B also surpasses previous 32B models trained by distillation with 95.0 pass@1 accuracy on MATH-500. Our investigation also indicates the importance of initial policy models and training queries for RL. Code, models, and data will be released to benefit future researchhttps://github.com/InternLM/OREAL.
Learning to Fly in Seconds
Learning-based methods, particularly Reinforcement Learning (RL), hold great promise for streamlining deployment, enhancing performance, and achieving generalization in the control of autonomous multirotor aerial vehicles. Deep RL has been able to control complex systems with impressive fidelity and agility in simulation but the simulation-to-reality transfer often brings a hard-to-bridge reality gap. Moreover, RL is commonly plagued by prohibitively long training times. In this work, we propose a novel asymmetric actor-critic-based architecture coupled with a highly reliable RL-based training paradigm for end-to-end quadrotor control. We show how curriculum learning and a highly optimized simulator enhance sample complexity and lead to fast training times. To precisely discuss the challenges related to low-level/end-to-end multirotor control, we also introduce a taxonomy that classifies the existing levels of control abstractions as well as non-linearities and domain parameters. Our framework enables Simulation-to-Reality (Sim2Real) transfer for direct RPM control after only 18 seconds of training on a consumer-grade laptop as well as its deployment on microcontrollers to control a multirotor under real-time guarantees. Finally, our solution exhibits competitive performance in trajectory tracking, as demonstrated through various experimental comparisons with existing state-of-the-art control solutions using a real Crazyflie nano quadrotor. We open source the code including a very fast multirotor dynamics simulator that can simulate about 5 months of flight per second on a laptop GPU. The fast training times and deployment to a cheap, off-the-shelf quadrotor lower the barriers to entry and help democratize the research and development of these systems.
Reasoning-SQL: Reinforcement Learning with SQL Tailored Partial Rewards for Reasoning-Enhanced Text-to-SQL
Text-to-SQL is a challenging task involving multiple reasoning-intensive subtasks, including natural language understanding, database schema comprehension, and precise SQL query formulation. Existing approaches often rely on handcrafted reasoning paths with inductive biases that can limit their overall effectiveness. Motivated by the recent success of reasoning-enhanced models such as DeepSeek R1 and OpenAI o1, which effectively leverage reward-driven self-exploration to enhance reasoning capabilities and generalization, we propose a novel set of partial rewards tailored specifically for the Text-to-SQL task. Our reward set includes schema-linking, AI feedback, n-gram similarity, and syntax check, explicitly designed to address the reward sparsity issue prevalent in reinforcement learning (RL). Leveraging group relative policy optimization (GRPO), our approach explicitly encourages large language models (LLMs) to develop intrinsic reasoning skills necessary for accurate SQL query generation. With models of different sizes, we demonstrate that RL-only training with our proposed rewards consistently achieves higher accuracy and superior generalization compared to supervised fine-tuning (SFT). Remarkably, our RL-trained 14B-parameter model significantly outperforms larger proprietary models, e.g. o3-mini by 4% and Gemini-1.5-Pro-002 by 3% on the BIRD benchmark. These highlight the efficacy of our proposed RL-training framework with partial rewards for enhancing both accuracy and reasoning capabilities in Text-to-SQL tasks.
R1-Searcher++: Incentivizing the Dynamic Knowledge Acquisition of LLMs via Reinforcement Learning
Large Language Models (LLMs) are powerful but prone to hallucinations due to static knowledge. Retrieval-Augmented Generation (RAG) helps by injecting external information, but current methods often are costly, generalize poorly, or ignore the internal knowledge of the model. In this paper, we introduce R1-Searcher++, a novel framework designed to train LLMs to adaptively leverage both internal and external knowledge sources. R1-Searcher++ employs a two-stage training strategy: an initial SFT Cold-start phase for preliminary format learning, followed by RL for Dynamic Knowledge Acquisition. The RL stage uses outcome-supervision to encourage exploration, incorporates a reward mechanism for internal knowledge utilization, and integrates a memorization mechanism to continuously assimilate retrieved information, thereby enriching the model's internal knowledge. By leveraging internal knowledge and external search engine, the model continuously improves its capabilities, enabling efficient retrieval-augmented reasoning. Our experiments demonstrate that R1-Searcher++ outperforms previous RAG and reasoning methods and achieves efficient retrieval. The code is available at https://github.com/RUCAIBox/R1-Searcher-plus.
Enhancing Code LLMs with Reinforcement Learning in Code Generation: A Survey
With the rapid evolution of large language models (LLM), reinforcement learning (RL) has emerged as a pivotal technique for code generation and optimization in various domains. This paper presents a systematic survey of the application of RL in code optimization and generation, highlighting its role in enhancing compiler optimization, resource allocation, and the development of frameworks and tools. Subsequent sections first delve into the intricate processes of compiler optimization, where RL algorithms are leveraged to improve efficiency and resource utilization. The discussion then progresses to the function of RL in resource allocation, emphasizing register allocation and system optimization. We also explore the burgeoning role of frameworks and tools in code generation, examining how RL can be integrated to bolster their capabilities. This survey aims to serve as a comprehensive resource for researchers and practitioners interested in harnessing the power of RL to advance code generation and optimization techniques.
Challenges in Ensuring AI Safety in DeepSeek-R1 Models: The Shortcomings of Reinforcement Learning Strategies
Large Language Models (LLMs) have achieved remarkable progress in reasoning, alignment, and task-specific performance. However, ensuring harmlessness in these systems remains a critical challenge, particularly in advanced models like DeepSeek-R1. This paper examines the limitations of Reinforcement Learning (RL) as the primary approach for reducing harmful outputs in DeepSeek-R1 and compares it with Supervised Fine-Tuning (SFT). While RL improves reasoning capabilities, it faces challenges such as reward hacking, generalization failures, language mixing, and high computational costs. We propose hybrid training approaches combining RL and SFT to achieve robust harmlessness reduction. Usage recommendations and future directions for deploying DeepSeek-R1 responsibly are also presented.
VerifyBench: Benchmarking Reference-based Reward Systems for Large Language Models
Large reasoning models such as OpenAI o1 and DeepSeek-R1 have achieved remarkable performance in the domain of reasoning. A key component of their training is the incorporation of verifiable rewards within reinforcement learning (RL). However, existing reward benchmarks do not evaluate reference-based reward systems, leaving researchers with limited understanding of the accuracy of verifiers used in RL. In this paper, we introduce two benchmarks, VerifyBench and VerifyBench-Hard, designed to assess the performance of reference-based reward systems. These benchmarks are constructed through meticulous data collection and curation, followed by careful human annotation to ensure high quality. Current models still show considerable room for improvement on both VerifyBench and VerifyBench-Hard, especially smaller-scale models. Furthermore, we conduct a thorough and comprehensive analysis of evaluation results, offering insights for understanding and developing reference-based reward systems. Our proposed benchmarks serve as effective tools for guiding the development of verifier accuracy and the reasoning capabilities of models trained via RL in reasoning tasks.
Improving Multi-Step Reasoning Abilities of Large Language Models with Direct Advantage Policy Optimization
The role of reinforcement learning (RL) in enhancing the reasoning of large language models (LLMs) is becoming increasingly significant. Despite the success of RL in many scenarios, there are still many challenges in improving the reasoning of LLMs. One challenge is the sparse reward, which makes optimization difficult for RL and necessitates a large amount of data samples. Another challenge stems from the inherent instability of RL, particularly when using Actor-Critic (AC) methods to derive optimal policies, which often leads to unstable training processes. To address these issues, we introduce Direct Advantage Policy Optimization (DAPO), an novel step-level offline RL algorithm. Unlike standard alignment that rely solely outcome rewards to optimize policies (such as DPO), DAPO employs a critic function to predict the reasoning accuracy at each step, thereby generating dense signals to refine the generation strategy. Additionally, the Actor and Critic components in DAPO are trained independently, avoiding the co-training instability observed in standard AC algorithms like PPO. We train DAPO on mathematical and code query datasets and then evaluate its performance on multiple benchmarks. Our results show that DAPO can effectively enhance the mathematical and code capabilities on both SFT models and RL models, demonstrating the effectiveness of DAPO.
Concise Reasoning via Reinforcement Learning
Despite significant advancements in large language models (LLMs), a major drawback of reasoning models is their enormous token usage, which increases computational cost, resource requirements, and response time. In this work, we revisit the core principles of reinforcement learning (RL) and, through mathematical analysis, demonstrate that the tendency to generate lengthy responses arises inherently from RL-based optimization during training. This finding questions the prevailing assumption that longer responses inherently improve reasoning accuracy. Instead, we uncover a natural correlation between conciseness and accuracy that has been largely overlooked. Moreover, we show that introducing a secondary phase of RL post-training, using a small set of problems and limited resources, can significantly reduce a model's chain of thought while maintaining or even enhancing accuracy. Finally, we validate our conclusions through extensive experimental results.
VLM-R1: A Stable and Generalizable R1-style Large Vision-Language Model
Recently DeepSeek R1 has shown that reinforcement learning (RL) can substantially improve the reasoning capabilities of Large Language Models (LLMs) through a simple yet effective design. The core of R1 lies in its rule-based reward formulation, which leverages tasks with deterministic ground-truth answers to enable precise and stable reward computation. In the visual domain, we similarly observe that a wide range of visual understanding tasks are inherently equipped with well-defined ground-truth annotations. This property makes them naturally compatible with rule-based reward mechanisms. Motivated by this observation, we investigate the extension of R1-style reinforcement learning to Vision-Language Models (VLMs), aiming to enhance their visual reasoning capabilities. To this end, we develop VLM-R1, a dedicated framework designed to harness RL for improving VLMs' performance on general vision-language tasks. Using this framework, we further explore the feasibility of applying RL to visual domain. Experimental results indicate that the RL-based model not only delivers competitive performance on visual understanding tasks but also surpasses Supervised Fine-Tuning (SFT) in generalization ability. Furthermore, we conduct comprehensive ablation studies that uncover a series of noteworthy insights, including the presence of reward hacking in object detection, the emergence of the "OD aha moment", the impact of training data quality, and the scaling behavior of RL across different model sizes. Through these analyses, we aim to deepen the understanding of how reinforcement learning enhances the capabilities of vision-language models, and we hope our findings and open-source contributions will support continued progress in the vision-language RL community. Our code and model are available at https://github.com/om-ai-lab/VLM-R1
LLMs for Engineering: Teaching Models to Design High Powered Rockets
Large Language Models (LLMs) have transformed software engineering, but their application to physical engineering domains remains underexplored. This paper evaluates LLMs' capabilities in high-powered rocketry design through RocketBench, a benchmark connecting LLMs to high-fidelity rocket simulations. We test models on two increasingly complex design tasks: target altitude optimization and precision landing challenges. Our findings reveal that while state-of-the-art LLMs demonstrate strong baseline engineering knowledge, they struggle to iterate on their designs when given simulation results and ultimately plateau below human performance levels. However, when enhanced with reinforcement learning (RL), we show that a 7B parameter model outperforms both SoTA foundation models and human experts. This research demonstrates that RL-trained LLMs can serve as effective tools for complex engineering optimization, potentially transforming engineering domains beyond software development.
Beyond 'Aha!': Toward Systematic Meta-Abilities Alignment in Large Reasoning Models
Large reasoning models (LRMs) already possess a latent capacity for long chain-of-thought reasoning. Prior work has shown that outcome-based reinforcement learning (RL) can incidentally elicit advanced reasoning behaviors such as self-correction, backtracking, and verification phenomena often referred to as the model's "aha moment". However, the timing and consistency of these emergent behaviors remain unpredictable and uncontrollable, limiting the scalability and reliability of LRMs' reasoning capabilities. To address these limitations, we move beyond reliance on prompts and coincidental "aha moments". Instead, we explicitly align models with three meta-abilities: deduction, induction, and abduction, using automatically generated, self-verifiable tasks. Our three stage-pipeline individual alignment, parameter-space merging, and domain-specific reinforcement learning, boosting performance by over 10\% relative to instruction-tuned baselines. Furthermore, domain-specific RL from the aligned checkpoint yields an additional 2\% average gain in the performance ceiling across math, coding, and science benchmarks, demonstrating that explicit meta-ability alignment offers a scalable and dependable foundation for reasoning. Code is available at: https://github.com/zhiyuanhubj/Meta-Ability-Alignment
Optimizing Memory Mapping Using Deep Reinforcement Learning
Resource scheduling and allocation is a critical component of many high impact systems ranging from congestion control to cloud computing. Finding more optimal solutions to these problems often has significant impact on resource and time savings, reducing device wear-and-tear, and even potentially improving carbon emissions. In this paper, we focus on a specific instance of a scheduling problem, namely the memory mapping problem that occurs during compilation of machine learning programs: That is, mapping tensors to different memory layers to optimize execution time. We introduce an approach for solving the memory mapping problem using Reinforcement Learning. RL is a solution paradigm well-suited for sequential decision making problems that are amenable to planning, and combinatorial search spaces with high-dimensional data inputs. We formulate the problem as a single-player game, which we call the mallocGame, such that high-reward trajectories of the game correspond to efficient memory mappings on the target hardware. We also introduce a Reinforcement Learning agent, mallocMuZero, and show that it is capable of playing this game to discover new and improved memory mapping solutions that lead to faster execution times on real ML workloads on ML accelerators. We compare the performance of mallocMuZero to the default solver used by the Accelerated Linear Algebra (XLA) compiler on a benchmark of realistic ML workloads. In addition, we show that mallocMuZero is capable of improving the execution time of the recently published AlphaTensor matrix multiplication model.
On the Emergence of Thinking in LLMs I: Searching for the Right Intuition
Recent AI advancements, such as OpenAI's new models, are transforming LLMs into LRMs (Large Reasoning Models) that perform reasoning during inference, taking extra time and compute for higher-quality outputs. We aim to uncover the algorithmic framework for training LRMs. Methods like self-consistency, PRM, and AlphaZero suggest reasoning as guided search. We ask: what is the simplest, most scalable way to enable search in LLMs? We propose a post-training framework called Reinforcement Learning via Self-Play (RLSP). RLSP involves three steps: (1) supervised fine-tuning with human or synthetic demonstrations of the reasoning process, (2) using an exploration reward signal to encourage diverse and efficient reasoning behaviors, and (3) RL training with an outcome verifier to ensure correctness while preventing reward hacking. Our key innovation is to decouple exploration and correctness signals during PPO training, carefully balancing them to improve performance and efficiency. Empirical studies in the math domain show that RLSP improves reasoning. On the Llama-3.1-8B-Instruct model, RLSP can boost performance by 23% in MATH-500 test set; On AIME 2024 math problems, Qwen2.5-32B-Instruct improved by 10% due to RLSP. However, a more important finding of this work is that the models trained using RLSP, even with the simplest exploration reward that encourages the model to take more intermediate steps, showed several emergent behaviors such as backtracking, exploration of ideas, and verification. These findings demonstrate that RLSP framework might be enough to enable emergence of complex reasoning abilities in LLMs when scaled. Lastly, we propose a theory as to why RLSP search strategy is more suitable for LLMs inspired by a remarkable result that says CoT provably increases computational power of LLMs, which grows as the number of steps in CoT li2024chain,merrill2023expresssive.
Writing-Zero: Bridge the Gap Between Non-verifiable Problems and Verifiable Rewards
Reinforcement learning with verifiable rewards (RLVR) has enabled large language models (LLMs) to achieve remarkable breakthroughs in reasoning tasks with objective ground-truth answers, such as mathematics and code generation. However, a significant gap remains for non-verifiable tasks, like creative writing and open-ended dialogue, where quality assessment is inherently subjective and lacks definitive references. Existing approaches for these domains often rely on scalar reward models trained with human preferences, which suffer from limited generalization and are prone to reward hacking, such as over-explanation and length bias. In this work, we propose a unified RLVR-based training paradigm that bridges the gap between non-verifiable tasks and verifiable rewards. We introduce a writing-principle-based pairwise Generative Reward Model (GenRM) and a novel Bootstrapped Relative Policy Optimization (BRPO) algorithm. The pairwise writing GenRM leverages self-principled critique to transform subjective assessments into reliable, verifiable rewards, while BRPO enables dynamic, reference-free pairwise comparison by leveraging a bootstrapped response as temporary reference from within group rollouts during RL training. Our approach empowers LLMs to develop robust writing capabilities without supervised fine-tuning, as demonstrated by Writing-Zero, which shows consistent improvement and strong resistance to reward hacking compared to scalar reward baselines. Furthermore, our method achieves competitive results on both in-house and open-source writing benchmarks. Our findings suggest the potential to unify rule-based, reference-based, and reference-free reward modeling under the RLVR framework, thus paving the way for a comprehensive and scalable RL training paradigm applicable across all language tasks.
Continuous Control with Coarse-to-fine Reinforcement Learning
Despite recent advances in improving the sample-efficiency of reinforcement learning (RL) algorithms, designing an RL algorithm that can be practically deployed in real-world environments remains a challenge. In this paper, we present Coarse-to-fine Reinforcement Learning (CRL), a framework that trains RL agents to zoom-into a continuous action space in a coarse-to-fine manner, enabling the use of stable, sample-efficient value-based RL algorithms for fine-grained continuous control tasks. Our key idea is to train agents that output actions by iterating the procedure of (i) discretizing the continuous action space into multiple intervals and (ii) selecting the interval with the highest Q-value to further discretize at the next level. We then introduce a concrete, value-based algorithm within the CRL framework called Coarse-to-fine Q-Network (CQN). Our experiments demonstrate that CQN significantly outperforms RL and behavior cloning baselines on 20 sparsely-rewarded RLBench manipulation tasks with a modest number of environment interactions and expert demonstrations. We also show that CQN robustly learns to solve real-world manipulation tasks within a few minutes of online training.
RLPR: Extrapolating RLVR to General Domains without Verifiers
Reinforcement Learning with Verifiable Rewards (RLVR) demonstrates promising potential in advancing the reasoning capabilities of LLMs. However, its success remains largely confined to mathematical and code domains. This primary limitation stems from the heavy reliance on domain-specific verifiers, which results in prohibitive complexity and limited scalability. To address the challenge, our key observation is that LLM's intrinsic probability of generating a correct free-form answer directly indicates its own evaluation of the reasoning reward (i.e., how well the reasoning process leads to the correct answer). Building on this insight, we propose RLPR, a simple verifier-free framework that extrapolates RLVR to broader general domains. RLPR uses the LLM's own token probability scores for reference answers as the reward signal and maximizes the expected reward during training. We find that addressing the high variance of this noisy probability reward is crucial to make it work, and propose prob-to-reward and stabilizing methods to ensure a precise and stable reward from LLM intrinsic probabilities. Comprehensive experiments in four general-domain benchmarks and three mathematical benchmarks show that RLPR consistently improves reasoning capabilities in both areas for Gemma, Llama, and Qwen based models. Notably, RLPR outperforms concurrent VeriFree by 7.6 points on TheoremQA and 7.5 points on Minerva, and even surpasses strong verifier-model-dependent approaches General-Reasoner by 1.6 average points across seven benchmarks.
Perception-R1: Pioneering Perception Policy with Reinforcement Learning
Inspired by the success of DeepSeek-R1, we explore the potential of rule-based reinforcement learning (RL) in MLLM post-training for perception policy learning. While promising, our initial experiments reveal that incorporating a thinking process through RL does not consistently lead to performance gains across all visual perception tasks. This leads us to delve into the essential role of RL in the context of visual perception. In this work, we return to the fundamentals and explore the effects of RL on different perception tasks. We observe that the perceptual complexity is a major factor in determining the effectiveness of RL. We also observe that reward design plays a crucial role in further approching the upper limit of model perception. To leverage these findings, we propose Perception-R1, a scalable RL framework using GRPO during MLLM post-training. With a standard Qwen2.5-VL-3B-Instruct, Perception-R1 achieves +4.2% on RefCOCO+, +17.9% on PixMo-Count, +4.2% on PageOCR, and notably, 31.9% AP on COCO2017 val for the first time, establishing a strong baseline for perception policy learning.
When to Trust Your Simulator: Dynamics-Aware Hybrid Offline-and-Online Reinforcement Learning
Learning effective reinforcement learning (RL) policies to solve real-world complex tasks can be quite challenging without a high-fidelity simulation environment. In most cases, we are only given imperfect simulators with simplified dynamics, which inevitably lead to severe sim-to-real gaps in RL policy learning. The recently emerged field of offline RL provides another possibility to learn policies directly from pre-collected historical data. However, to achieve reasonable performance, existing offline RL algorithms need impractically large offline data with sufficient state-action space coverage for training. This brings up a new question: is it possible to combine learning from limited real data in offline RL and unrestricted exploration through imperfect simulators in online RL to address the drawbacks of both approaches? In this study, we propose the Dynamics-Aware Hybrid Offline-and-Online Reinforcement Learning (H2O) framework to provide an affirmative answer to this question. H2O introduces a dynamics-aware policy evaluation scheme, which adaptively penalizes the Q function learning on simulated state-action pairs with large dynamics gaps, while also simultaneously allowing learning from a fixed real-world dataset. Through extensive simulation and real-world tasks, as well as theoretical analysis, we demonstrate the superior performance of H2O against other cross-domain online and offline RL algorithms. H2O provides a brand new hybrid offline-and-online RL paradigm, which can potentially shed light on future RL algorithm design for solving practical real-world tasks.
A Critical Evaluation of AI Feedback for Aligning Large Language Models
Reinforcement learning with AI feedback (RLAIF) is a popular paradigm for improving the instruction-following abilities of powerful pre-trained language models. RLAIF first performs supervised fine-tuning (SFT) using demonstrations from a teacher model and then further fine-tunes the model with reinforcement learning (RL), using feedback from a critic model. While recent popular open-source models have demonstrated substantial improvements in performance from the RL step, in this paper we question whether the complexity of this RL step is truly warranted for AI feedback. We show that the improvements of the RL step are virtually entirely due to the widespread practice of using a weaker teacher model (e.g. GPT-3.5) for SFT data collection than the critic (e.g., GPT-4) used for AI feedback generation. Specifically, we show that simple supervised fine-tuning with GPT-4 as the teacher outperforms existing RLAIF pipelines. More generally, we find that the gains from RLAIF vary substantially across base model families, test-time evaluation protocols, and critic models. Finally, we provide a mechanistic explanation for when SFT may outperform the full two-step RLAIF pipeline as well as suggestions for making RLAIF maximally useful in practice.
Reinforcement Learning from Automatic Feedback for High-Quality Unit Test Generation
Software testing is a crucial aspect of software development, and the creation of high-quality tests that adhere to best practices is essential for effective maintenance. Recently, Large Language Models (LLMs) have gained popularity for code generation, including the automated creation of test cases. However, these LLMs are often trained on vast amounts of publicly available code, which may include test cases that do not adhere to best practices and may even contain test smells (anti-patterns). To address this issue, we propose a novel technique called Reinforcement Learning from Static Quality Metrics (RLSQM). To begin, we analyze the anti-patterns generated by the LLM and show that LLMs can generate undesirable test smells. Thus, we train specific reward models for each static quality metric, then utilize Proximal Policy Optimization (PPO) to train models for optimizing a single quality metric at a time. Furthermore, we amalgamate these rewards into a unified reward model aimed at capturing different best practices and quality aspects of tests. By comparing RL-trained models with those trained using supervised learning, we provide insights into how reliably utilize RL to improve test generation quality and into the effects of various training strategies. Our experimental results demonstrate that the RL-optimized model consistently generated high-quality test cases compared to the base LLM, improving the model by up to 21%, and successfully generates nearly 100% syntactically correct code. RLSQM also outperformed GPT-4 on four out of seven metrics. This represents a significant step towards enhancing the overall efficiency and reliability of software testing through Reinforcement Learning and static quality metrics. Our data are available at this link: https://figshare.com/s/ded476c8d4c221222849.
Angles Don't Lie: Unlocking Training-Efficient RL Through the Model's Own Signals
Current Reinforcement Fine-tuning (RFT) paradigms for Large Language Models (LLMs) suffer from sample inefficiency due to the redundant exposure of identical queries under uniform data sampling. While previous work has explored curriculum learning via heuristic difficulty metrics, these strategies exhibit limitations by neglecting the intrinsic learning signals generated by the model itself, thus leading to suboptimal training regimes. In this paper, we identify a model-inherent signal termed angle concentration that effectively reflects an LLM's capacity to learn from specific data. We theoretically and empirically demonstrate a correlation between the angular distribution of token hidden state vectors and the resulting gradient, revealing a learning preference for data exhibiting higher angle concentration. Inspired by this finding, we propose GAIN-RL, a Gradient-driven Angle-Informed Navigated RL framework. By leveraging the model's intrinsic angle concentration signal, GAIN-RL dynamically selects training data in each epoch, ensuring consistently impactful gradient updates and thus significantly enhancing overall training efficiency. Empirical evaluations show that GAIN-RL (GRPO) achieves over a 2.5x acceleration in training efficiency across diverse mathematical and coding tasks and varying model scales. Furthermore, GAIN-RL (GRPO)'s efficient sampling yields data-efficient training, achieving better performance with half the original data compared to vanilla GRPO with full training data. Code is realsed at https://github.com/wangqinsi1/GAINRL/tree/main.
WARM: On the Benefits of Weight Averaged Reward Models
Aligning large language models (LLMs) with human preferences through reinforcement learning (RLHF) can lead to reward hacking, where LLMs exploit failures in the reward model (RM) to achieve seemingly high rewards without meeting the underlying objectives. We identify two primary challenges when designing RMs to mitigate reward hacking: distribution shifts during the RL process and inconsistencies in human preferences. As a solution, we propose Weight Averaged Reward Models (WARM), first fine-tuning multiple RMs, then averaging them in the weight space. This strategy follows the observation that fine-tuned weights remain linearly mode connected when sharing the same pre-training. By averaging weights, WARM improves efficiency compared to the traditional ensembling of predictions, while improving reliability under distribution shifts and robustness to preference inconsistencies. Our experiments on summarization tasks, using best-of-N and RL methods, shows that WARM improves the overall quality and alignment of LLM predictions; for example, a policy RL fine-tuned with WARM has a 79.4% win rate against a policy RL fine-tuned with a single RM.
Self-Regulation and Requesting Interventions
Human intelligence involves metacognitive abilities like self-regulation, recognizing limitations, and seeking assistance only when needed. While LLM Agents excel in many domains, they often lack this awareness. Overconfident agents risk catastrophic failures, while those that seek help excessively hinder efficiency. A key challenge is enabling agents with a limited intervention budget C is to decide when to request assistance. In this paper, we propose an offline framework that trains a "helper" policy to request interventions, such as more powerful models or test-time compute, by combining LLM-based process reward models (PRMs) with tabular reinforcement learning. Using state transitions collected offline, we score optimal intervention timing with PRMs and train the helper model on these labeled trajectories. This offline approach significantly reduces costly intervention calls during training. Furthermore, the integration of PRMs with tabular RL enhances robustness to off-policy data while avoiding the inefficiencies of deep RL. We empirically find that our method delivers optimal helper behavior.
Pitfalls of Rule- and Model-based Verifiers -- A Case Study on Mathematical Reasoning
Trustworthy verifiers are essential for the success of reinforcement learning with verifiable reward (RLVR), which is the core methodology behind various large reasoning models such as DeepSeek-R1. In complex domains like mathematical reasoning, rule-based verifiers have been widely adopted in previous works to train strong reasoning models. However, the reliability of these verifiers and their impact on the RL training process remain poorly understood. In this work, we take mathematical reasoning as a case study and conduct a comprehensive analysis of various verifiers in both static evaluation and RL training scenarios. First, we find that current open-source rule-based verifiers often fail to recognize equivalent answers presented in different formats across multiple commonly used mathematical datasets, resulting in non-negligible false negative rates. This limitation adversely affects RL training performance and becomes more pronounced as the policy model gets stronger. Subsequently, we investigate model-based verifiers as a potential solution to address these limitations. While the static evaluation shows that model-based verifiers achieve significantly higher verification accuracy, further analysis and RL training results imply that they are highly susceptible to hacking, where they misclassify certain patterns in responses as correct (i.e., false positives). This vulnerability is exploited during policy model optimization, leading to artificially inflated rewards. Our findings underscore the unique risks inherent to both rule-based and model-based verifiers, aiming to offer valuable insights to develop more robust reward systems in reinforcement learning.
Accelerating Goal-Conditioned RL Algorithms and Research
Self-supervision has the potential to transform reinforcement learning (RL), paralleling the breakthroughs it has enabled in other areas of machine learning. While self-supervised learning in other domains aims to find patterns in a fixed dataset, self-supervised goal-conditioned reinforcement learning (GCRL) agents discover new behaviors by learning from the goals achieved during unstructured interaction with the environment. However, these methods have failed to see similar success, both due to a lack of data from slow environment simulations as well as a lack of stable algorithms. We take a step toward addressing both of these issues by releasing a high-performance codebase and benchmark (JaxGCRL) for self-supervised GCRL, enabling researchers to train agents for millions of environment steps in minutes on a single GPU. By utilizing GPU-accelerated replay buffers, environments, and a stable contrastive RL algorithm, we reduce training time by up to 22times. Additionally, we assess key design choices in contrastive RL, identifying those that most effectively stabilize and enhance training performance. With this approach, we provide a foundation for future research in self-supervised GCRL, enabling researchers to quickly iterate on new ideas and evaluate them in diverse and challenging environments. Website + Code: https://github.com/MichalBortkiewicz/JaxGCRL
RL-GPT: Integrating Reinforcement Learning and Code-as-policy
Large Language Models (LLMs) have demonstrated proficiency in utilizing various tools by coding, yet they face limitations in handling intricate logic and precise control. In embodied tasks, high-level planning is amenable to direct coding, while low-level actions often necessitate task-specific refinement, such as Reinforcement Learning (RL). To seamlessly integrate both modalities, we introduce a two-level hierarchical framework, RL-GPT, comprising a slow agent and a fast agent. The slow agent analyzes actions suitable for coding, while the fast agent executes coding tasks. This decomposition effectively focuses each agent on specific tasks, proving highly efficient within our pipeline. Our approach outperforms traditional RL methods and existing GPT agents, demonstrating superior efficiency. In the Minecraft game, it rapidly obtains diamonds within a single day on an RTX3090. Additionally, it achieves SOTA performance across all designated MineDojo tasks.
Understanding the Performance Gap in Preference Learning: A Dichotomy of RLHF and DPO
We present a fine-grained theoretical analysis of the performance gap between reinforcement learning from human feedback (RLHF) and direct preference optimization (DPO) under a representation gap. Our study decomposes this gap into two sources: an explicit representation gap under exact optimization and an implicit representation gap under finite samples. In the exact optimization setting, we characterize how the relative capacities of the reward and policy model classes influence the final policy qualities. We show that RLHF, DPO, or online DPO can outperform one another depending on the type of model mis-specifications. Notably, online DPO can outperform both RLHF and standard DPO when the reward and policy model classes are isomorphic and both mis-specified. In the approximate optimization setting, we provide a concrete construction where the ground-truth reward is implicitly sparse and show that RLHF requires significantly fewer samples than DPO to recover an effective reward model -- highlighting a statistical advantage of two-stage learning. Together, these results provide a comprehensive understanding of the performance gap between RLHF and DPO under various settings, and offer practical insights into when each method is preferred.
Ring-lite: Scalable Reasoning via C3PO-Stabilized Reinforcement Learning for LLMs
We present Ring-lite, a Mixture-of-Experts (MoE)-based large language model optimized via reinforcement learning (RL) to achieve efficient and robust reasoning capabilities. Built upon the publicly available Ling-lite model, a 16.8 billion parameter model with 2.75 billion activated parameters, our approach matches the performance of state-of-the-art (SOTA) small-scale reasoning models on challenging benchmarks (e.g., AIME, LiveCodeBench, GPQA-Diamond) while activating only one-third of the parameters required by comparable models. To accomplish this, we introduce a joint training pipeline integrating distillation with RL, revealing undocumented challenges in MoE RL training. First, we identify optimization instability during RL training, and we propose Constrained Contextual Computation Policy Optimization(C3PO), a novel approach that enhances training stability and improves computational throughput via algorithm-system co-design methodology. Second, we empirically demonstrate that selecting distillation checkpoints based on entropy loss for RL training, rather than validation metrics, yields superior performance-efficiency trade-offs in subsequent RL training. Finally, we develop a two-stage training paradigm to harmonize multi-domain data integration, addressing domain conflicts that arise in training with mixed dataset. We will release the model, dataset, and code.