new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 7

Pushing Boundaries: Mixup's Influence on Neural Collapse

Mixup is a data augmentation strategy that employs convex combinations of training instances and their respective labels to augment the robustness and calibration of deep neural networks. Despite its widespread adoption, the nuanced mechanisms that underpin its success are not entirely understood. The observed phenomenon of Neural Collapse, where the last-layer activations and classifier of deep networks converge to a simplex equiangular tight frame (ETF), provides a compelling motivation to explore whether mixup induces alternative geometric configurations and whether those could explain its success. In this study, we delve into the last-layer activations of training data for deep networks subjected to mixup, aiming to uncover insights into its operational efficacy. Our investigation, spanning various architectures and dataset pairs, reveals that mixup's last-layer activations predominantly converge to a distinctive configuration different than one might expect. In this configuration, activations from mixed-up examples of identical classes align with the classifier, while those from different classes delineate channels along the decision boundary. Moreover, activations in earlier layers exhibit patterns, as if trained with manifold mixup. These findings are unexpected, as mixed-up features are not simple convex combinations of feature class means (as one might get, for example, by training mixup with the mean squared error loss). By analyzing this distinctive geometric configuration, we elucidate the mechanisms by which mixup enhances model calibration. To further validate our empirical observations, we conduct a theoretical analysis under the assumption of an unconstrained features model, utilizing the mixup loss. Through this, we characterize and derive the optimal last-layer features under the assumption that the classifier forms a simplex ETF.

  • 3 authors
·
Feb 8, 2024

NOVA: Discovering Well-Conditioned Winograd Transforms through Numerical Optimization of Vandermonde Arithmetic

Winograd convolution is the standard algorithm for efficient inference, reducing arithmetic complexity by 2.25x for 3x3 kernels. However, it faces a critical barrier in the modern era of low precision computing: numerical instability. As tiles scale to maximize efficiency (e.g., F(6,3), F(8,3)), the condition numbers of standard integer based transforms explode, reaching kappa = 2 x 10^5 for F(8,3), rendering them unusable in FP16 or Int8. We introduce NOVA (Numerical Optimization of Vandermonde Arithmetic), a discovery framework that breaks the decades old convention of integer interpolation. Treating Winograd point selection as a continuous optimization problem, NOVA searches the manifold R^n-1 via Evolution Strategy, snaps candidates to simple rationals, and guarantees correctness via symbolic verification. This process uncovers a hidden landscape of stable, fractional configurations such as {+-5/6, +-7/6, +-3/5} that defy traditional vocabulary constraints. The impact is transformative: NOVA improves the conditioning of F(8,3) by 415x in 1D, which squares to a 172,484x improvement for 2D convolution. In real world FP16 ImageNet inference, where standard transforms collapse to random chance (e.g., 4.7 percent accuracy on VGG16), NOVA's points restore full accuracy (75 to 78 percent), recovering over 70 percentage points without retraining, calibration, or learned parameters. These discovered transforms act as drop in replacements, effectively unlocking the efficiency of large tile Winograd convolution for next generation hardware.

  • 1 authors
·
Dec 20, 2025 1

Artificial Hivemind: The Open-Ended Homogeneity of Language Models (and Beyond)

Language models (LMs) often struggle to generate diverse, human-like creative content, raising concerns about the long-term homogenization of human thought through repeated exposure to similar outputs. Yet scalable methods for evaluating LM output diversity remain limited, especially beyond narrow tasks such as random number or name generation, or beyond repeated sampling from a single model. We introduce Infinity-Chat, a large-scale dataset of 26K diverse, real-world, open-ended user queries that admit a wide range of plausible answers with no single ground truth. We introduce the first comprehensive taxonomy for characterizing the full spectrum of open-ended prompts posed to LMs, comprising 6 top-level categories (e.g., brainstorm & ideation) that further breaks down to 17 subcategories. Using Infinity-Chat, we present a large-scale study of mode collapse in LMs, revealing a pronounced Artificial Hivemind effect in open-ended generation of LMs, characterized by (1) intra-model repetition, where a single model consistently generates similar responses, and more so (2) inter-model homogeneity, where different models produce strikingly similar outputs. Infinity-Chat also includes 31,250 human annotations, across absolute ratings and pairwise preferences, with 25 independent human annotations per example. This enables studying collective and individual-specific human preferences in response to open-ended queries. Our findings show that LMs, reward models, and LM judges are less well calibrated to human ratings on model generations that elicit differing idiosyncratic annotator preferences, despite maintaining comparable overall quality. Overall, INFINITY-CHAT presents the first large-scale resource for systematically studying real-world open-ended queries to LMs, revealing critical insights to guide future research for mitigating long-term AI safety risks posed by the Artificial Hivemind.

  • 10 authors
·
Oct 26, 2025