- ACE: A fast, skillful learned global atmospheric model for climate prediction Existing ML-based atmospheric models are not suitable for climate prediction, which requires long-term stability and physical consistency. We present ACE (AI2 Climate Emulator), a 200M-parameter, autoregressive machine learning emulator of an existing comprehensive 100-km resolution global atmospheric model. The formulation of ACE allows evaluation of physical laws such as the conservation of mass and moisture. The emulator is stable for 100 years, nearly conserves column moisture without explicit constraints and faithfully reproduces the reference model's climate, outperforming a challenging baseline on over 90% of tracked variables. ACE requires nearly 100x less wall clock time and is 100x more energy efficient than the reference model using typically available resources. Without fine-tuning, ACE can stably generalize to a previously unseen historical sea surface temperature dataset. 12 authors · Oct 3, 2023
- Morphological Regimes of Rotating Moist Convection Moist convection is a physical process where the latent heat released by condensation acts as a buoyancy source that can enhance or even trigger an overturning convective instability. Since the saturation temperature often decreases with height, condensation releases latent heat preferentially in regions of upflow. Due to this inhomogeneous heat source, moist convection may be more sensitive to changes in flow morphology, such as those induced by rotation, than dry Rayleigh-B\'enard convection. In order to study the effects of rotation on flows driven by latent heat release, we present a suite of numerical simulations that solve the Rainy-B\'enard equations (Vallis et al. 2019). We identify three morphological regimes: a cellular regime and a plume regime broadly analogous to those found in rotating Rayleigh B\'enard convection, and a novel funnel regime that lacks a clear analog within the regimes exhibited by dry convection. We measure energy fluxes through the system and report rotational scalings of the Reynolds and moist Nusselt numbers. We find that moist static energy transport, as measured by a moist Nusselt number, is significantly enhanced in the funnel regime without a corresponding enhancement in Reynolds number, indicating that this funnel regime produces structures with more favorable correlations between the temperature and vertical velocity. 5 authors · May 2
- Phase behavior of Cacio and Pepe sauce "Pasta alla Cacio e pepe" is a traditional Italian dish made with pasta, pecorino cheese, and pepper. Despite its simple ingredient list, achieving the perfect texture and creaminess of the sauce can be challenging. In this study, we systematically explore the phase behavior of Cacio and pepe sauce, focusing on its stability at increasing temperatures for various proportions of cheese, water, and starch. We identify starch concentration as the key factor influencing sauce stability, with direct implications for practical cooking. Specifically, we delineate a regime where starch concentrations below 1% (relative to cheese mass) lead to the formation of system-wide clumps, a condition determining what we term the "Mozzarella Phase" and corresponding to an unpleasant and separated sauce. Additionally, we examine the impact of cheese concentration relative to water at a fixed starch level, observing a lower critical solution temperature that we theoretically rationalized by means of a minimal effective free-energy model. Finally, we present a scientifically optimized recipe based on our findings, enabling a consistently flawless execution of this classic dish. 8 authors · Dec 31, 2024