Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeGuiding Language Models of Code with Global Context using Monitors
Language models of code (LMs) work well when the surrounding code in the vicinity of generation provides sufficient context. This is not true when it becomes necessary to use types or functionality defined in another module or library, especially those not seen during training. LMs suffer from limited awareness of such global context and end up hallucinating, e.g., using types defined in other files incorrectly. Recent work tries to overcome this issue by retrieving global information to augment the local context. However, this bloats the prompt or requires architecture modifications and additional training. Integrated development environments (IDEs) assist developers by bringing the global context at their fingertips using static analysis. We extend this assistance, enjoyed by developers, to the LMs. We propose a notion of monitors that use static analysis in the background to guide the decoding. Unlike a priori retrieval, static analysis is invoked iteratively during the entire decoding process, providing the most relevant suggestions on demand. We demonstrate the usefulness of our proposal by monitoring for type-consistent use of identifiers whenever an LM generates code for object dereference. To evaluate our approach, we curate PragmaticCode, a dataset of open-source projects with their development environments. On models of varying parameter scale, we show that monitor-guided decoding consistently improves the ability of an LM to not only generate identifiers that match the ground truth but also improves compilation rates and agreement with ground truth. We find that LMs with fewer parameters, when guided with our monitor, can outperform larger LMs. With monitor-guided decoding, SantaCoder-1.1B achieves better compilation rate and next-identifier match than the much larger text-davinci-003 model. The datasets and code will be released at https://aka.ms/monitors4codegen .
RAG-MCP: Mitigating Prompt Bloat in LLM Tool Selection via Retrieval-Augmented Generation
Large language models (LLMs) struggle to effectively utilize a growing number of external tools, such as those defined by the Model Context Protocol (MCP)IntroducingMCP, due to prompt bloat and selection complexity. We introduce RAG-MCP, a Retrieval-Augmented Generation framework that overcomes this challenge by offloading tool discovery. RAG-MCP uses semantic retrieval to identify the most relevant MCP(s) for a given query from an external index before engaging the LLM. Only the selected tool descriptions are passed to the model, drastically reducing prompt size and simplifying decision-making. Experiments, including an MCP stress test, demonstrate RAG-MCP significantly cuts prompt tokens (e.g., by over 50%) and more than triples tool selection accuracy (43.13% vs 13.62% baseline) on benchmark tasks. RAG-MCP enables scalable and accurate tool integration for LLMs.
Evaluating Language Model Context Windows: A "Working Memory" Test and Inference-time Correction
Large language models are prominently used in real-world applications, often tasked with reasoning over large volumes of documents. An exciting development in this space is models boasting extended context capabilities, with some accommodating over 2 million tokens. Such long context model capabilities remain uncertain in production systems, motivating the need to benchmark their performance on real world use cases. We address this challenge by proposing SWiM, an evaluation framework that addresses the limitations of standard tests. Testing the framework on eight long context models, we find that even strong models such as GPT-4 and Claude 3 Opus degrade in performance when information is present in the middle of the context window (lost-in-the-middle effect). Next, in addition to our benchmark, we propose medoid voting, a simple, but effective training-free approach that helps alleviate this effect, by generating responses a few times, each time randomly permuting documents in the context, and selecting the medoid answer. We evaluate medoid voting on single document QA tasks, achieving up to a 24% lift in accuracy.
ContextDrag: Precise Drag-Based Image Editing via Context-Preserving Token Injection and Position-Consistent Attention
Drag-based image editing aims to modify visual content followed by user-specified drag operations. Despite existing methods having made notable progress, they still fail to fully exploit the contextual information in the reference image, including fine-grained texture details, leading to edits with limited coherence and fidelity. To address this challenge, we introduce ContextDrag, a new paradigm for drag-based editing that leverages the strong contextual modeling capability of editing models, such as FLUX-Kontext. By incorporating VAE-encoded features from the reference image, ContextDrag can leverage rich contextual cues and preserve fine-grained details, without the need for finetuning or inversion. Specifically, ContextDrag introduced a novel Context-preserving Token Injection (CTI) that injects noise-free reference features into their correct destination locations via a Latent-space Reverse Mapping (LRM) algorithm. This strategy enables precise drag control while preserving consistency in both semantics and texture details. Second, ContextDrag adopts a novel Position-Consistent Attention (PCA), which positional re-encodes the reference tokens and applies overlap-aware masking to eliminate interference from irrelevant reference features. Extensive experiments on DragBench-SR and DragBench-DR demonstrate that our approach surpasses all existing SOTA methods. Code will be publicly available.
Scaling Up Efficient Small Language Models Serving and Deployment for Semantic Job Search
Large Language Models (LLMs) have demonstrated impressive quality when applied to predictive tasks such as relevance ranking and semantic search. However, deployment of such LLMs remains prohibitively expensive for industry applications with strict latency and throughput requirements. In this work, we present lessons and efficiency insights from developing a purely text-based decoder-only Small Language Model (SLM) for a semantic search application at LinkedIn. Particularly, we discuss model compression techniques such as pruning that allow us to reduce the model size by up to 40% while maintaining the accuracy. Additionally, we present context compression techniques that allow us to reduce the input context length by up to 10x with minimal loss of accuracy. Finally, we present practical lessons from optimizing the serving infrastructure for deploying such a system on GPUs at scale, serving millions of requests per second. Taken together, this allows us to increase our system's throughput by 10x in a real-world deployment, while meeting our quality bar.
The What, Why, and How of Context Length Extension Techniques in Large Language Models -- A Detailed Survey
The advent of Large Language Models (LLMs) represents a notable breakthrough in Natural Language Processing (NLP), contributing to substantial progress in both text comprehension and generation. However, amidst these advancements, it is noteworthy that LLMs often face a limitation in terms of context length extrapolation. Understanding and extending the context length for LLMs is crucial in enhancing their performance across various NLP applications. In this survey paper, we delve into the multifaceted aspects of exploring why it is essential, and the potential transformations that superior techniques could bring to NLP applications. We study the inherent challenges associated with extending context length and present an organized overview of the existing strategies employed by researchers. Additionally, we discuss the intricacies of evaluating context extension techniques and highlight the open challenges that researchers face in this domain. Furthermore, we explore whether there is a consensus within the research community regarding evaluation standards and identify areas where further agreement is needed. This comprehensive survey aims to serve as a valuable resource for researchers, guiding them through the nuances of context length extension techniques and fostering discussions on future advancements in this evolving field.
Tracing cosmic voids with fast simulations
Context. Cosmic voids are vast underdense regions in the cosmic web that encode crucial information about structure formation, the composition of the Universe, and its expansion history. Due to their lower density, these regions are less affected by non-linear gravitational dynamics, making them suitable candidates for analysis using semi-analytic methods. Aims. We assess the accuracy of the PINOCCHIO code, a fast tool for generating dark matter halo catalogs based on Lagrangian Perturbation Theory, in modeling the statistical properties of cosmic voids. We validate this approach by comparing the resulting void statistics measured from PINOCCHIO to those obtained from N-body simulations. Methods. We generate a set of simulations using PINOCCHIO and OpenGADGET3, assuming a fiducial cosmology and varying the resolution. For a given resolution, the simulations share the same initial conditions between the different simulation codes. Snapshots are saved at multiple redshifts for each simulation and post-processed using the watershed void finder VIDE to identify cosmic voids. For each simulation code, we measure the following statistics: void size function, void ellipticity function, core density function, and the void radial density profile. We use these statistics to quantify the accuracy of PINOCCHIO relative to OpenGADGET3 in the context of cosmic voids. Results. We find agreement for all void statistics at better than 2{\sigma} between PINOCCHIO and OpenGADGET3, with no systematic difference in redshift trends. This demonstrates that the PINOCCHIO code can reliably produce void statistics with high computational efficiency compared to full N-body simulations.
Context Is What You Need: The Maximum Effective Context Window for Real World Limits of LLMs
Large language model (LLM) providers boast big numbers for maximum context window sizes. To test the real world use of context windows, we 1) define a concept of maximum effective context window, 2) formulate a testing method of a context window's effectiveness over various sizes and problem types, and 3) create a standardized way to compare model efficacy for increasingly larger context window sizes to find the point of failure. We collected hundreds of thousands of data points across several models and found significant differences between reported Maximum Context Window (MCW) size and Maximum Effective Context Window (MECW) size. Our findings show that the MECW is, not only, drastically different from the MCW but also shifts based on the problem type. A few top of the line models in our test group failed with as little as 100 tokens in context; most had severe degradation in accuracy by 1000 tokens in context. All models fell far short of their Maximum Context Window by as much as 99 percent. Our data reveals the Maximum Effective Context Window shifts based on the type of problem provided, offering clear and actionable insights into how to improve model accuracy and decrease model hallucination rates.
Compressing Lengthy Context With UltraGist
Compressing lengthy context is a critical but technically challenging problem. In this paper, we propose a new method called UltraGist, which is distinguished for its high-quality compression of lengthy context due to the innovative design of the compression and learning algorithm. UltraGist brings forth the following important benefits. Firstly, it notably contributes to the flexibility of compression, as it can be effectively learned to support a broad range of context lengths and compression ratios. Secondly, it helps to produce fine-grained compression for the lengthy context, where each small segment of the context is progressively processed on top of a tailored cross-attention mechanism. Thirdly, it makes the training process sample-efficient and thus maximizes the use of training data. Finally, it facilitates the efficient running of compression for dynamic context, as the compression result can be progressively generated and hence incrementally updated. UltraGist is evaluated on a wide variety of tasks associated with lengthy context, such as document QA and summarization, few-shot learning, multi-session conversation, et al. Whilst the existing methods fail to handle these challenging scenarios, our approach is able to preserve a near-lossless compression performance throughout all the evaluations. Our data, model, and code have been released at https://github.com/namespace-Pt/UltraGist.
LongCodeBench: Evaluating Coding LLMs at 1M Context Windows
Context lengths for models have grown rapidly, from thousands to millions of tokens in just a few years. The extreme context sizes of modern long-context models have made it difficult to construct realistic long-context benchmarks -- not only due to the cost of collecting million-context tasks but also in identifying realistic scenarios that require significant contexts. We identify code comprehension and repair as a natural testbed and challenge task for long-context models and introduce LongCodeBench (LCB), a benchmark to test LLM coding abilities in long-context scenarios. Our benchmark tests both the comprehension and repair capabilities of LCLMs in realistic and important settings by drawing from real-world GitHub issues and constructing QA (LongCodeQA) and bug fixing (LongSWE-Bench) tasks. We carefully stratify the complexity of our benchmark, enabling us to evaluate models across different scales -- ranging from Qwen2.5 14B Instruct to Google's flagship Gemini model. We find that long-context remains a weakness for all models, with performance drops such as from 29% to 3% for Claude 3.5 Sonnet, or from 70.2% to 40% for Qwen2.5.
Too Much Information: Keeping Training Simple for BabyLMs
This paper details the work of the University of Groningen for the BabyLM Challenge. We follow the idea that, like babies, language models should be introduced to simpler concepts first and build off of that knowledge to understand more complex concepts. We examine this strategy of simple-then-complex through a variety of lenses, namely context size, vocabulary, and overall linguistic complexity of the data. We find that only one, context size, is truly beneficial to training a language model. However this simple change to context size gives us improvements of 2 points on average on (Super)GLUE tasks, 1 point on MSGS tasks, and 12\% on average on BLiMP tasks. Our context-limited model outperforms the baseline that was trained on 10times the amount of data.
Leveraging Visual Tokens for Extended Text Contexts in Multi-Modal Learning
Training models with longer in-context lengths is a significant challenge for multimodal model due to substantial GPU memory and computational costs. This exploratory study does not present state-of-the-art models; rather, it introduces an innovative method designed to increase in-context text length in multi-modality large language models (MLLMs) efficiently. We present Visualized In-Context Text Processing (VisInContext), which processes long in-context text using visual tokens. This technique significantly reduces GPU memory usage and floating point operations (FLOPs) for both training and inferenceing stage. For instance, our method expands the pre-training in-context text length from 256 to 2048 tokens with nearly same FLOPs for a 56 billion parameter MOE model. Experimental results demonstrate that model trained with VisInContext delivers superior performance on common downstream benchmarks for in-context few-shot evaluation. Additionally, VisInContext is complementary to existing methods for increasing in-context text length and enhances document understanding capabilities, showing great potential in document QA tasks and sequential document retrieval.
Visual Chronicles: Using Multimodal LLMs to Analyze Massive Collections of Images
We present a system using Multimodal LLMs (MLLMs) to analyze a large database with tens of millions of images captured at different times, with the aim of discovering patterns in temporal changes. Specifically, we aim to capture frequent co-occurring changes ("trends") across a city over a certain period. Unlike previous visual analyses, our analysis answers open-ended queries (e.g., "what are the frequent types of changes in the city?") without any predetermined target subjects or training labels. These properties cast prior learning-based or unsupervised visual analysis tools unsuitable. We identify MLLMs as a novel tool for their open-ended semantic understanding capabilities. Yet, our datasets are four orders of magnitude too large for an MLLM to ingest as context. So we introduce a bottom-up procedure that decomposes the massive visual analysis problem into more tractable sub-problems. We carefully design MLLM-based solutions to each sub-problem. During experiments and ablation studies with our system, we find it significantly outperforms baselines and is able to discover interesting trends from images captured in large cities (e.g., "addition of outdoor dining,", "overpass was painted blue," etc.). See more results and interactive demos at https://boyangdeng.com/visual-chronicles.
"Paraphrasing The Original Text" Makes High Accuracy Long-Context QA
Although LLMs continue to iterate and improve, most open-source models still have a context window of no more than 4k, limiting their ability to handle long-context problems. Most existing open-source models for long-context chat still lack satisfactory accuracy. To address this issue, I approach it from the perspective of training data and theoretically prove that training the capability to handle long contexts requires "effective" rather than "long" data. Based on this, I propose using the "original text paraphrase" task, and successfully extend the context window of the existing model to 32k by a low-cost and effective method, achieving extremely high accuracy in multi-document-QA and surpassing all existing open-source models of the same scale. The model and training data have been open-sourced on HuggingFace and WiseModel.
Adapting LLMs for Efficient Context Processing through Soft Prompt Compression
The rapid advancement of Large Language Models (LLMs) has inaugurated a transformative epoch in natural language processing, fostering unprecedented proficiency in text generation, comprehension, and contextual scrutiny. Nevertheless, effectively handling extensive contexts, crucial for myriad applications, poses a formidable obstacle owing to the intrinsic constraints of the models' context window sizes and the computational burdens entailed by their operations. This investigation presents an innovative framework that strategically tailors LLMs for streamlined context processing by harnessing the synergies among natural language summarization, soft prompt compression, and augmented utility preservation mechanisms. Our methodology, dubbed SoftPromptComp, amalgamates natural language prompts extracted from summarization methodologies with dynamically generated soft prompts to forge a concise yet semantically robust depiction of protracted contexts. This depiction undergoes further refinement via a weighting mechanism optimizing information retention and utility for subsequent tasks. We substantiate that our framework markedly diminishes computational overhead and enhances LLMs' efficacy across various benchmarks, while upholding or even augmenting the caliber of the produced content. By amalgamating soft prompt compression with sophisticated summarization, SoftPromptComp confronts the dual challenges of managing lengthy contexts and ensuring model scalability. Our findings point towards a propitious trajectory for augmenting LLMs' applicability and efficiency, rendering them more versatile and pragmatic for real-world applications. This research enriches the ongoing discourse on optimizing language models, providing insights into the potency of soft prompts and summarization techniques as pivotal instruments for the forthcoming generation of NLP solutions.
MacRAG: Compress, Slice, and Scale-up for Multi-Scale Adaptive Context RAG
Long-context large language models (LC LLMs) combined with retrieval-augmented generation (RAG) hold strong potential for complex multi-hop and large-document tasks. However, existing RAG systems often suffer from imprecise retrieval, incomplete context coverage under constrained windows, and fragmented information from suboptimal context construction. We introduce Multi-scale Adaptive Context RAG (MacRAG), a hierarchical RAG framework that compresses and partitions documents into coarse-to-fine granularities, then adaptively merges relevant contexts through real-time chunk- and document-level expansions. By initiating with finest-level retrieval and progressively incorporating broader, higher-level context, MacRAG constructs effective query-specific long contexts, optimizing both precision and coverage. Evaluations on challenging LongBench expansions of HotpotQA, 2WikiMultihopQA, and Musique confirm MacRAG consistently surpasses baseline RAG pipelines in single- and multi-step generation using Llama-3.1-8B, Gemini-1.5-pro, and GPT-4o. Our results establish MacRAG as an efficient, scalable solution for real-world long-context, multi-hop reasoning. Our code is available at https://github.com/Leezekun/MacRAG.
Context is Gold to find the Gold Passage: Evaluating and Training Contextual Document Embeddings
A limitation of modern document retrieval embedding methods is that they typically encode passages (chunks) from the same documents independently, often overlooking crucial contextual information from the rest of the document that could greatly improve individual chunk representations. In this work, we introduce ConTEB (Context-aware Text Embedding Benchmark), a benchmark designed to evaluate retrieval models on their ability to leverage document-wide context. Our results show that state-of-the-art embedding models struggle in retrieval scenarios where context is required. To address this limitation, we propose InSeNT (In-sequence Negative Training), a novel contrastive post-training approach which combined with late chunking pooling enhances contextual representation learning while preserving computational efficiency. Our method significantly improves retrieval quality on ConTEB without sacrificing base model performance. We further find chunks embedded with our method are more robust to suboptimal chunking strategies and larger retrieval corpus sizes. We open-source all artifacts at https://github.com/illuin-tech/contextual-embeddings.
A Silver Bullet or a Compromise for Full Attention? A Comprehensive Study of Gist Token-based Context Compression
In this work, we provide a thorough investigation of gist-based context compression methods to improve long-context processing in large language models. We focus on two key questions: (1) How well can these methods replace full attention models? and (2) What potential failure patterns arise due to compression? Through extensive experiments, we show that while gist-based compression can achieve near-lossless performance on tasks like retrieval-augmented generation and long-document QA, it faces challenges in tasks like synthetic recall. Furthermore, we identify three key failure patterns: lost by the boundary, lost if surprise, and lost along the way. To mitigate these issues, we propose two effective strategies: fine-grained autoencoding, which enhances the reconstruction of original token information, and segment-wise token importance estimation, which adjusts optimization based on token dependencies. Our work provides valuable insights into the understanding of gist token-based context compression and offers practical strategies for improving compression capabilities.
ETHIC: Evaluating Large Language Models on Long-Context Tasks with High Information Coverage
Recent advancements in large language models (LLM) capable of processing extremely long texts highlight the need for a dedicated evaluation benchmark to assess their long-context capabilities. However, existing methods, like the needle-in-a-haystack test, do not effectively assess whether these models fully utilize contextual information, raising concerns about the reliability of current evaluation techniques. To thoroughly examine the effectiveness of existing benchmarks, we introduce a new metric called information coverage (IC), which quantifies the proportion of the input context necessary for answering queries. Our findings indicate that current benchmarks exhibit low IC; although the input context may be extensive, the actual usable context is often limited. To address this, we present ETHIC, a novel benchmark designed to assess LLMs' ability to leverage the entire context. Our benchmark comprises 2,648 test instances spanning four long-context tasks with high IC scores in the domains of books, debates, medicine, and law. Our evaluations reveal significant performance drops in contemporary LLMs, highlighting a critical challenge in managing long contexts. Our benchmark is available at https://github.com/dmis-lab/ETHIC.
Lost in the Haystack: Smaller Needles are More Difficult for LLMs to Find
Large language models (LLMs) face significant challenges with needle-in-a-haystack tasks, where relevant information ("the needle") must be drawn from a large pool of irrelevant context ("the haystack"). Previous studies have highlighted positional bias and distractor quantity as critical factors affecting model performance, yet the influence of gold context size has received little attention. We address this gap by systematically studying how variations in gold context length impact LLM performance on long-context question answering tasks. Our experiments reveal that LLM performance drops sharply when the gold context is shorter, i.e., smaller gold contexts consistently degrade model performance and amplify positional sensitivity, posing a major challenge for agentic systems that must integrate scattered, fine-grained information of varying lengths. This pattern holds across three diverse domains (general knowledge, biomedical reasoning, and mathematical reasoning) and seven state-of-the-art LLMs of various sizes and architectures. Our work provides clear insights to guide the design of robust, context-aware LLM-driven systems.
CLOVER: A Test Case Generation Benchmark with Coverage, Long-Context, and Verification
Software testing is a critical aspect of software development, yet generating test cases remains a routine task for engineers. This paper presents a benchmark, CLOVER, to evaluate models' capabilities in generating and completing test cases under specific conditions. Spanning from simple assertion completions to writing test cases that cover specific code blocks across multiple files, these tasks are based on 12 python repositories, analyzing 845 problems with context lengths ranging from 4k to 128k tokens. Utilizing code testing frameworks, we propose a method to construct retrieval contexts using coverage information. While models exhibit comparable performance with short contexts, notable differences emerge with 16k contexts. Notably, models like GPT-4o and Claude 3.5 can effectively leverage relevant snippets; however, all models score below 35\% on the complex Task III, even with the oracle context provided, underscoring the benchmark's significance and the potential for model improvement. The benchmark is containerized for code execution across tasks, and we will release the code, data, and construction methodologies.
Structured Packing in LLM Training Improves Long Context Utilization
Recent developments in long-context large language models have attracted considerable attention. Yet, their real-world applications are often hindered by ineffective context information use. This work shows that structuring training data to increase semantic interdependence is an effective strategy for optimizing context utilization. To this end, we introduce Structured Packing for Long Context (SPLiCe), a method for creating training examples by using information retrieval methods to collate mutually relevant documents into a single training context. We empirically validate SPLiCe on large 3B and 7B models, showing perplexity improvements and better long-context utilization on downstream tasks. Remarkably, already relatively short fine-tuning with SPLiCe is enough to attain these benefits. Additionally, the comprehensive study of SPLiCe reveals intriguing transfer effects such as training on code data leading to perplexity improvements on text data.
Is It Really Long Context if All You Need Is Retrieval? Towards Genuinely Difficult Long Context NLP
Improvements in language models' capabilities have pushed their applications towards longer contexts, making long-context evaluation and development an active research area. However, many disparate use-cases are grouped together under the umbrella term of "long-context", defined simply by the total length of the model's input, including - for example - Needle-in-a-Haystack tasks, book summarization, and information aggregation. Given their varied difficulty, in this position paper we argue that conflating different tasks by their context length is unproductive. As a community, we require a more precise vocabulary to understand what makes long-context tasks similar or different. We propose to unpack the taxonomy of long-context based on the properties that make them more difficult with longer contexts. We propose two orthogonal axes of difficulty: (I) Diffusion: How hard is it to find the necessary information in the context? (II) Scope: How much necessary information is there to find? We survey the literature on long-context, provide justification for this taxonomy as an informative descriptor, and situate the literature with respect to it. We conclude that the most difficult and interesting settings, whose necessary information is very long and highly diffused within the input, is severely under-explored. By using a descriptive vocabulary and discussing the relevant properties of difficulty in long-context, we can implement more informed research in this area. We call for a careful design of tasks and benchmarks with distinctly long context, taking into account the characteristics that make it qualitatively different from shorter context.
Characterizing Prompt Compression Methods for Long Context Inference
Long context inference presents challenges at the system level with increased compute and memory requirements, as well as from an accuracy perspective in being able to reason over long contexts. Recently, several methods have been proposed to compress the prompt to reduce the context length. However, there has been little work on comparing the different proposed methods across different tasks through a standardized analysis. This has led to conflicting results. To address this, here we perform a comprehensive characterization and evaluation of different prompt compression methods. In particular, we analyze extractive compression, summarization-based abstractive compression, and token pruning methods. Surprisingly, we find that extractive compression often outperforms all the other approaches, and enables up to 10x compression with minimal accuracy degradation. Interestingly, we also find that despite several recent claims, token pruning methods often lag behind extractive compression. We only found marginal improvements on summarization tasks.
Thus Spake Long-Context Large Language Model
Long context is an important topic in Natural Language Processing (NLP), running through the development of NLP architectures, and offers immense opportunities for Large Language Models (LLMs) giving LLMs the lifelong learning potential akin to humans. Unfortunately, the pursuit of a long context is accompanied by numerous obstacles. Nevertheless, long context remains a core competitive advantage for LLMs. In the past two years, the context length of LLMs has achieved a breakthrough extension to millions of tokens. Moreover, the research on long-context LLMs has expanded from length extrapolation to a comprehensive focus on architecture, infrastructure, training, and evaluation technologies. Inspired by the symphonic poem, Thus Spake Zarathustra, we draw an analogy between the journey of extending the context of LLM and the attempts of humans to transcend its mortality. In this survey, We will illustrate how LLM struggles between the tremendous need for a longer context and its equal need to accept the fact that it is ultimately finite. To achieve this, we give a global picture of the lifecycle of long-context LLMs from four perspectives: architecture, infrastructure, training, and evaluation, showcasing the full spectrum of long-context technologies. At the end of this survey, we will present 10 unanswered questions currently faced by long-context LLMs. We hope this survey can serve as a systematic introduction to the research on long-context LLMs.
360Zhinao Technical Report
We present 360Zhinao models with 7B parameter size and context lengths spanning 4K, 32K and 360K, all available at https://github.com/Qihoo360/360zhinao. For rapid development in pretraining, we establish a stable and sensitive ablation environment to evaluate and compare experiment runs with minimal model size. Under such guidance, we perfect our data cleaning and composition strategies to pretrain 360Zhinao-7B-Base on 3.4T tokens. We also mainly emphasize data during alignment, where we strive to balance quantity and quality with filtering and reformatting. With tailored data, 360Zhinao-7B's context window is easily extended to 32K and 360K. RMs and RLHF are trained following SFT and credibly applied to specific tasks. All together these contributions lead to 360Zhinao-7B's competitive performance among models of similar size.
COBRA Frames: Contextual Reasoning about Effects and Harms of Offensive Statements
Warning: This paper contains content that may be offensive or upsetting. Understanding the harms and offensiveness of statements requires reasoning about the social and situational context in which statements are made. For example, the utterance "your English is very good" may implicitly signal an insult when uttered by a white man to a non-white colleague, but uttered by an ESL teacher to their student would be interpreted as a genuine compliment. Such contextual factors have been largely ignored by previous approaches to toxic language detection. We introduce COBRA frames, the first context-aware formalism for explaining the intents, reactions, and harms of offensive or biased statements grounded in their social and situational context. We create COBRACORPUS, a dataset of 33k potentially offensive statements paired with machine-generated contexts and free-text explanations of offensiveness, implied biases, speaker intents, and listener reactions. To study the contextual dynamics of offensiveness, we train models to generate COBRA explanations, with and without access to the context. We find that explanations by context-agnostic models are significantly worse than by context-aware ones, especially in situations where the context inverts the statement's offensiveness (29% accuracy drop). Our work highlights the importance and feasibility of contextualized NLP by modeling social factors.
Long-context Non-factoid Question Answering in Indic Languages
Question Answering (QA) tasks, which involve extracting answers from a given context, are relatively straightforward for modern Large Language Models (LLMs) when the context is short. However, long contexts pose challenges due to the quadratic complexity of the self-attention mechanism. This challenge is compounded in Indic languages, which are often low-resource. This study explores context-shortening techniques, including Open Information Extraction (OIE), coreference resolution, Answer Paragraph Selection (APS), and their combinations, to improve QA performance. Compared to the baseline of unshortened (long) contexts, our experiments on four Indic languages (Hindi, Tamil, Telugu, and Urdu) demonstrate that context-shortening techniques yield an average improvement of 4\% in semantic scores and 47\% in token-level scores when evaluated on three popular LLMs without fine-tuning. Furthermore, with fine-tuning, we achieve an average increase of 2\% in both semantic and token-level scores. Additionally, context-shortening reduces computational overhead. Explainability techniques like LIME and SHAP reveal that when the APS model confidently identifies the paragraph containing the answer, nearly all tokens within the selected text receive high relevance scores. However, the study also highlights the limitations of LLM-based QA systems in addressing non-factoid questions, particularly those requiring reasoning or debate. Moreover, verbalizing OIE-generated triples does not enhance system performance. These findings emphasize the potential of context-shortening techniques to improve the efficiency and effectiveness of LLM-based QA systems, especially for low-resource languages. The source code and resources are available at https://github.com/ritwikmishra/IndicGenQA.
Benchmarking LLMs for Fine-Grained Code Review with Enriched Context in Practice
Code review is a cornerstone of software quality assurance, and recent advances in Large Language Models (LLMs) have shown promise in its automation. However, existing benchmarks for LLM-based code review face three major limitations. Lack of semantic context: most benchmarks provide only code diffs without textual information such as issue descriptions, which are crucial for understanding developer intent. Data quality issues: without rigorous validation, many samples are noisy-e.g., reviews on outdated or irrelevant code-reducing evaluation reliability. Coarse granularity: most benchmarks operate at the file or commit level, overlooking the fine-grained, line-level reasoning essential for precise review. We introduce ContextCRBench, a high-quality, context-rich benchmark for fine-grained LLM evaluation in code review. Our construction pipeline comprises: Raw Data Crawling, collecting 153.7K issues and pull requests from top-tier repositories; Comprehensive Context Extraction, linking issue-PR pairs for textual context and extracting the full surrounding function or class for code context; and Multi-stage Data Filtering, combining rule-based and LLM-based validation to remove outdated, malformed, or low-value samples, resulting in 67,910 context-enriched entries. ContextCRBench supports three evaluation scenarios aligned with the review workflow: hunk-level quality assessment, line-level defect localization, and line-level comment generation. Evaluating eight leading LLMs (four closed-source and four open-source) reveals that textual context yields greater performance gains than code context alone, while current LLMs remain far from human-level review ability. Deployed at ByteDance, ContextCRBench drives a self-evolving code review system, improving performance by 61.98% and demonstrating its robustness and industrial utility. https://github.com/kinesiatricssxilm14/ContextCRBench.
QuALITY: Question Answering with Long Input Texts, Yes!
To enable building and testing models on long-document comprehension, we introduce QuALITY, a multiple-choice QA dataset with context passages in English that have an average length of about 5,000 tokens, much longer than typical current models can process. Unlike in prior work with passages, our questions are written and validated by contributors who have read the entire passage, rather than relying on summaries or excerpts. In addition, only half of the questions are answerable by annotators working under tight time constraints, indicating that skimming and simple search are not enough to consistently perform well. Our baseline models perform poorly on this task (55.4%) and significantly lag behind human performance (93.5%).
Predicting Task Performance with Context-aware Scaling Laws
Scaling laws have transformed our understanding of large language models by linking upstream metrics like cross-entropy loss to design factors such as model size, training data, and compute. However, these conventional laws fail to capture downstream task performance, where context plays a critical role. In this work, we propose a straightforward, interpretable framework that jointly models downstream performance as a function of the training compute and the provided context. We empirically validate our framework by fitting it on the observed downstream performance of extended-context variants of Llama-2-7B and Llama-2-13B across 65,500 unique instances spanning three tasks: arithmetic reasoning, common sense reasoning, and machine translation. Our results demonstrate that our framework accurately models in-distribution downstream performance, generalizes across three orders of magnitude in training compute, and reliably extrapolates performance as the amount of context increases. These findings offer valuable insights into the interplay between training compute and context utilization, providing guidance for designing more efficient long-context LLMs for diverse downstream tasks. Our code is available at https://github.com/wang-research-lab/context-scaling.
NoLiMa: Long-Context Evaluation Beyond Literal Matching
Recent large language models (LLMs) support long contexts ranging from 128K to 1M tokens. A popular method for evaluating these capabilities is the needle-in-a-haystack (NIAH) test, which involves retrieving a "needle" (relevant information) from a "haystack" (long irrelevant context). Extensions of this approach include increasing distractors, fact chaining, and in-context reasoning. However, in these benchmarks, models can exploit existing literal matches between the needle and haystack to simplify the task. To address this, we introduce NoLiMa, a benchmark extending NIAH with a carefully designed needle set, where questions and needles have minimal lexical overlap, requiring models to infer latent associations to locate the needle within the haystack. We evaluate 12 popular LLMs that claim to support contexts of at least 128K tokens. While they perform well in short contexts (<1K), performance degrades significantly as context length increases. At 32K, for instance, 10 models drop below 50% of their strong short-length baselines. Even GPT-4o, one of the top-performing exceptions, experiences a reduction from an almost-perfect baseline of 99.3% to 69.7%. Our analysis suggests these declines stem from the increased difficulty the attention mechanism faces in longer contexts when literal matches are absent, making it harder to retrieve relevant information.
ACON: Optimizing Context Compression for Long-horizon LLM Agents
Large language models (LLMs) are increasingly deployed as agents in dynamic, real-world environments, where success requires both reasoning and effective tool use. A central challenge for agentic tasks is the growing context length, as agents must accumulate long histories of actions and observations. This expansion raises costs and reduces efficiency in long-horizon tasks, yet prior work on context compression has mostly focused on single-step tasks or narrow applications. We introduce Agent Context Optimization (ACON), a unified framework that optimally compresses both environment observations and interaction histories into concise yet informative condensations. ACON leverages compression guideline optimization in natural language space: given paired trajectories where full context succeeds but compressed context fails, capable LLMs analyze the causes of failure, and the compression guideline is updated accordingly. Furthermore, we propose distilling the optimized LLM compressor into smaller models to reduce the overhead of the additional module. Experiments on AppWorld, OfficeBench, and Multi-objective QA show that ACON reduces memory usage by 26-54% (peak tokens) while largely preserving task performance, preserves over 95% of accuracy when distilled into smaller compressors, and enhances smaller LMs as long-horizon agents with up to 46% performance improvement.
Marathon: A Race Through the Realm of Long Context with Large Language Models
Although there are currently many benchmarks available for evaluating the long context understanding and reasoning capability of large language models, with the expansion of the context window in these models, the existing long context benchmarks are no longer sufficient for evaluating the long context understanding and reasoning capability of large language models. In this paper, we have developed a fresh long context evaluation benchmark, which we name it Marathon in the form of multiple choice questions, inspired by benchmarks such as MMLU, for assessing the long context comprehension capability of large language models quickly, accurately, and objectively. We have evaluated several of the latest and most popular large language models, as well as three recent and effective long context optimization methods, on our benchmark. This showcases the long context reasoning and comprehension capabilities of these large language models and validates the effectiveness of these optimization methods. Marathon is available at https://huggingface.co/datasets/Lemoncoke/Marathon.
Using clarification questions to improve software developers' Web search
Context: Recent research indicates that Web queries written by software developers are not very successful in retrieving relevant results, performing measurably worse compared to general purpose Web queries. Most approaches up to this point have addressed this problem with software engineering-specific automated query reformulation techniques, which work without developer involvement but are limited by the content of the original query. In other words, these techniques automatically improve the existing query but can not contribute new, previously unmentioned, concepts. Objective: In this paper, we propose a technique to guide software developers in manually improving their own Web search queries. We examine a conversational approach that follows unsuccessful queries with a clarification question aimed at eliciting additional query terms, thus providing to the developer a clear dimension along which the query could be improved. Methods: We describe a set of clarification questions derived from a corpus of software developer queries and a neural approach to recommending them for a newly issued query. Results: Our evaluation indicates that the recommendation technique is accurate, predicting a valid clarification question 80% of the time and outperforms simple baselines, as well as, state-of-the-art Learning To Rank (LTR) baselines. Conclusion: As shown in the experimental results, the described approach is capable at recommending appropriate clarification questions to software developers and considered useful by a sample of developers ranging from novices to experienced professionals.
Extending Llama-3's Context Ten-Fold Overnight
We extend the context length of Llama-3-8B-Instruct from 8K to 80K via QLoRA fine-tuning. The entire training cycle is super efficient, which takes 8 hours on one 8xA800 (80G) GPU machine. The resulted model exhibits superior performances across a broad range of evaluation tasks, such as NIHS, topic retrieval, and long-context language understanding; meanwhile, it also well preserves the original capability over short contexts. The dramatic context extension is mainly attributed to merely 3.5K synthetic training samples generated by GPT-4 , which indicates the LLMs' inherent (yet largely underestimated) potential to extend its original context length. In fact, the context length could be extended far beyond 80K with more computation resources. Therefore, the team will publicly release the entire resources (including data, model, data generation pipeline, training code) so as to facilitate the future research from the community: https://github.com/FlagOpen/FlagEmbedding.
RepoFusion: Training Code Models to Understand Your Repository
Despite the huge success of Large Language Models (LLMs) in coding assistants like GitHub Copilot, these models struggle to understand the context present in the repository (e.g., imports, parent classes, files with similar names, etc.), thereby producing inaccurate code completions. This effect is more pronounced when using these assistants for repositories that the model has not seen during training, such as proprietary software or work-in-progress code projects. Recent work has shown the promise of using context from the repository during inference. In this work, we extend this idea and propose RepoFusion, a framework to train models to incorporate relevant repository context. Experiments on single-line code completion show that our models trained with repository context significantly outperform much larger code models as CodeGen-16B-multi (sim73times larger) and closely match the performance of the sim 70times larger StarCoderBase model that was trained with the Fill-in-the-Middle objective. We find these results to be a novel and compelling demonstration of the gains that training with repository context can bring. We carry out extensive ablation studies to investigate the impact of design choices such as context type, number of contexts, context length, and initialization within our framework. Lastly, we release Stack-Repo, a dataset of 200 Java repositories with permissive licenses and near-deduplicated files that are augmented with three types of repository contexts. Additionally, we are making available the code and trained checkpoints for our work. Our released resources can be found at https://huggingface.co/RepoFusion.
Context Filtering with Reward Modeling in Question Answering
Question Answering (QA) in NLP is the task of finding answers to a query within a relevant context retrieved by a retrieval system. Yet, the mix of relevant and irrelevant information in these contexts can hinder performance enhancements in QA tasks. To address this, we introduce a context filtering approach that removes non-essential details, summarizing crucial content through Reward Modeling. This method emphasizes keeping vital data while omitting the extraneous during summarization model training. We offer a framework for developing efficient QA models by discerning useful information from dataset pairs, bypassing the need for costly human evaluation. Furthermore, we show that our approach can significantly outperform the baseline, as evidenced by a 6.8-fold increase in the EM Per Token (EPT) metric, which we propose as a measure of token efficiency, indicating a notable token-efficiency boost for low-resource settings.
Analyzing Norm Violations in Live-Stream Chat
Toxic language, such as hate speech, can deter users from participating in online communities and enjoying popular platforms. Previous approaches to detecting toxic language and norm violations have been primarily concerned with conversations from online forums and social media, such as Reddit and Twitter. These approaches are less effective when applied to conversations on live-streaming platforms, such as Twitch and YouTube Live, as each comment is only visible for a limited time and lacks a thread structure that establishes its relationship with other comments. In this work, we share the first NLP study dedicated to detecting norm violations in conversations on live-streaming platforms. We define norm violation categories in live-stream chats and annotate 4,583 moderated comments from Twitch. We articulate several facets of live-stream data that differ from other forums, and demonstrate that existing models perform poorly in this setting. By conducting a user study, we identify the informational context humans use in live-stream moderation, and train models leveraging context to identify norm violations. Our results show that appropriate contextual information can boost moderation performance by 35\%.
A Survey of Context Engineering for Large Language Models
The performance of Large Language Models (LLMs) is fundamentally determined by the contextual information provided during inference. This survey introduces Context Engineering, a formal discipline that transcends simple prompt design to encompass the systematic optimization of information payloads for LLMs. We present a comprehensive taxonomy decomposing Context Engineering into its foundational components and the sophisticated implementations that integrate them into intelligent systems. We first examine the foundational components: context retrieval and generation, context processing and context management. We then explore how these components are architecturally integrated to create sophisticated system implementations: retrieval-augmented generation (RAG), memory systems and tool-integrated reasoning, and multi-agent systems. Through this systematic analysis of over 1300 research papers, our survey not only establishes a technical roadmap for the field but also reveals a critical research gap: a fundamental asymmetry exists between model capabilities. While current models, augmented by advanced context engineering, demonstrate remarkable proficiency in understanding complex contexts, they exhibit pronounced limitations in generating equally sophisticated, long-form outputs. Addressing this gap is a defining priority for future research. Ultimately, this survey provides a unified framework for both researchers and engineers advancing context-aware AI.
Evaluating Large Language Models for Generalization and Robustness via Data Compression
Existing methods for evaluating large language models face challenges such as data contamination, sensitivity to prompts, and the high cost of benchmark creation. To address this, we propose a lossless data compression based evaluation approach that tests how models' predictive abilities generalize after their training cutoff. Specifically, we collect comprehensive test data spanning 83 months from 2017 to 2023 and split the data into training and testing periods according to models' training data cutoff. We measure: 1) the compression performance on the testing period as a measure of generalization on unseen data; and 2) the performance gap between the training and testing period as a measure of robustness. Our experiments test 14 representative large language models with various sizes on sources including Wikipedia, news articles, code, arXiv papers, and multi-modal data. We find that the compression rate of many models reduces significantly after their cutoff date, but models such as Mistral and Llama-2 demonstrate a good balance between performance and robustness. Results also suggest that models struggle to generalize on news and code data, but work especially well on arXiv papers. We also find the context size and tokenization implementation have a big impact of on the overall compression performance.
Cartridges: Lightweight and general-purpose long context representations via self-study
Large language models are often used to answer queries grounded in large text corpora (e.g. codebases, legal documents, or chat histories) by placing the entire corpus in the context window and leveraging in-context learning (ICL). Although current models support contexts of 100K-1M tokens, this setup is costly to serve because the memory consumption of the KV cache scales with input length. We explore an alternative: training a smaller KV cache offline on each corpus. At inference time, we load this trained KV cache, which we call a Cartridge, and decode a response. Critically, the cost of training a Cartridge can be amortized across all the queries referencing the same corpus. However, we find that the naive approach of training the Cartridge with next-token prediction on the corpus is not competitive with ICL. Instead, we propose self-study, a training recipe in which we generate synthetic conversations about the corpus and train the Cartridge with a context-distillation objective. We find that Cartridges trained with self-study replicate the functionality of ICL, while being significantly cheaper to serve. On challenging long-context benchmarks, Cartridges trained with self-study match ICL performance while using 38.6x less memory and enabling 26.4x higher throughput. Self-study also extends the model's effective context length (e.g. from 128k to 484k tokens on MTOB) and surprisingly, leads to Cartridges that can be composed at inference time without retraining.
First Light And Reionisation Epoch Simulations (FLARES) IV: The size evolution of galaxies at zgeq5
We present the intrinsic and observed sizes of galaxies at zgeq5 in the First Light And Reionisation Epoch Simulations (FLARES). We employ the large effective volume of FLARES to produce a sizeable sample of high redshift galaxies with intrinsic and observed luminosities and half light radii in a range of rest frame UV and visual photometric bands. This sample contains a significant number of intrinsically ultra-compact galaxies in the far-UV (1500 angstrom), leading to a negative intrinsic far-UV size-luminosity relation. However, after the inclusion of the effects of dust these same compact galaxies exhibit observed sizes that are as much as 50 times larger than those measured from the intrinsic emission, and broadly agree with a range of observational samples. This increase in size is driven by the concentration of dust in the core of galaxies, heavily attenuating the intrinsically brightest regions. At fixed luminosity we find a galaxy size redshift evolution with a slope of m=1.21-1.87 depending on the luminosity sample in question, and we demonstrate the wavelength dependence of the size-luminosity relation which will soon be probed by the Webb Space Telescope.
Visual Funnel: Resolving Contextual Blindness in Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) demonstrate impressive reasoning capabilities, but often fail to perceive fine-grained visual details, limiting their applicability in precision-demanding tasks. While methods that crop salient regions of an image offer a partial solution, we identify a critical limitation they introduce: "Contextual Blindness". This failure occurs due to structural disconnect between high-fidelity details (from the crop) and the broader global context (from the original image), even when all necessary visual information is present. We argue that this limitation stems not from a lack of information 'Quantity', but from a lack of 'Structural Diversity' in the model's input. To resolve this, we propose Visual Funnel, a training-free, two-step approach. Visual Funnel first performs Contextual Anchoring to identify the region of interest in a single forward pass. It then constructs an Entropy-Scaled Portfolio that preserves the hierarchical context - ranging from focal detail to broader surroundings - by dynamically determining crop sizes based on attention entropy and refining crop centers. Through extensive experiments, we demonstrate that Visual Funnel significantly outperforms naive single-crop and unstructured multi-crop baselines. Our results further validate that simply adding more unstructured crops provides limited or even detrimental benefits, confirming that the hierarchical structure of our portfolio is key to resolving Contextual Blindness.
Assessing the impact of contextual information in hate speech detection
In recent years, hate speech has gained great relevance in social networks and other virtual media because of its intensity and its relationship with violent acts against members of protected groups. Due to the great amount of content generated by users, great effort has been made in the research and development of automatic tools to aid the analysis and moderation of this speech, at least in its most threatening forms. One of the limitations of current approaches to automatic hate speech detection is the lack of context. Most studies and resources are performed on data without context; that is, isolated messages without any type of conversational context or the topic being discussed. This restricts the available information to define if a post on a social network is hateful or not. In this work, we provide a novel corpus for contextualized hate speech detection based on user responses to news posts from media outlets on Twitter. This corpus was collected in the Rioplatense dialectal variety of Spanish and focuses on hate speech associated with the COVID-19 pandemic. Classification experiments using state-of-the-art techniques show evidence that adding contextual information improves hate speech detection performance for two proposed tasks (binary and multi-label prediction). We make our code, models, and corpus available for further research.
Boundless Byte Pair Encoding: Breaking the Pre-tokenization Barrier
Pre-tokenization, the initial step in many modern tokenization pipelines, segments text into smaller units called pretokens, typically splitting on whitespace and punctuation. While this process encourages having full, individual words as tokens, it introduces a fundamental limitation in most tokenization algorithms such as Byte Pair Encoding (BPE). Specifically, pre-tokenization causes the distribution of tokens in a corpus to heavily skew towards common, full-length words. This skewed distribution limits the benefits of expanding to larger vocabularies, since the additional tokens appear with progressively lower counts. To overcome this barrier, we propose BoundlessBPE, a modified BPE algorithm that relaxes the pretoken boundary constraint. Our approach selectively merges two complete pretokens into a larger unit we term a superword. Superwords are not necessarily semantically cohesive. For example, the pretokens " of" and " the" might be combined to form the superword " of the". This merging strategy results in a substantially more uniform distribution of tokens across a corpus than standard BPE, and compresses text more effectively, with an approximate 20% increase in bytes per token.
CompLLM: Compression for Long Context Q&A
Large Language Models (LLMs) face significant computational challenges when processing long contexts due to the quadratic complexity of self-attention. While soft context compression methods, which map input text to smaller latent representations, have shown promise, their real-world adoption is limited. Existing techniques typically compress the context as a single unit, which leads to quadratic compression complexity and an inability to reuse computations across queries with overlapping contexts. In this work, we introduce CompLLM, a soft compression technique designed for practical deployment. Instead of processing the context holistically, CompLLM divides it into segments and compresses each one independently. This simple design choice yields three critical properties: efficiency, as the compression step scales linearly with the context length; scalability, enabling models trained on short sequences (e.g., 1k tokens) to generalize to contexts of 100k tokens; and reusability, allowing compressed segments to be cached and reused across different queries. Our experiments show that with a 2x compression rate, at high context lengths CompLLM speeds up Time To First Token (TTFT) by up to 4x and reduces the KV cache size by 50%. Furthermore, CompLLM achieves performance comparable to that obtained with the uncompressed context, and even surpasses it on very long sequences, demonstrating its effectiveness and practical utility.
Health Care Waste Classification Using Deep Learning Aligned with Nepal's Bin Color Guidelines
The increasing number of Health Care facilities in Nepal has also added up the challenges on managing health care waste (HCW). Improper segregation and disposal of HCW leads to the contamination, spreading of infectious diseases and puts a risk of waste handlers. This study benchmarks the state of the art waste classification models: ResNeXt-50, EfficientNet-B0, MobileNetV3-S, YOLOv8-n and YOLOv5-s using Stratified K-fold techniques where we use 5 folds on combined HCW data, and found that the YOLOv5-s achieved higher of 95.06% accuracy but fell short few milliseconds in inference speed with YOLOv8-n model. The EfficientNet-B0 showed promising results of 93.22% accuracy but took the highest inference time. A repetitive ANOVA was performed to see statistical significance and the best performing model (YOLOv5-s) was deployed to the web with mapped bin color using Nepal's HCW management standards for public usage. Further work on the data was suggested along with localized context.
Contextualized Evaluations: Taking the Guesswork Out of Language Model Evaluations
Language model users often issue queries that lack specification, where the context under which a query was issued -- such as the user's identity, the query's intent, and the criteria for a response to be useful -- is not explicit. For instance, a good response to a subjective query like "What book should I read next?" would depend on the user's preferences, and a good response to an open-ended query like "How do antibiotics work against bacteria?" would depend on the user's expertise. This makes evaluation of responses to such queries an ill-posed task, as evaluators may make arbitrary judgments about the response quality. To remedy this, we present contextualized evaluations, a protocol that synthetically constructs context surrounding an underspecified query and provides it during evaluation. We find that the presence of context can 1) alter conclusions drawn from evaluation, even flipping win rates between model pairs, 2) nudge evaluators to make fewer judgments based on surface-level criteria, like style, and 3) provide new insights about model behavior across diverse contexts. Specifically, our procedure uncovers an implicit bias towards WEIRD contexts in models' "default" responses and we find that models are not equally sensitive to following different contexts, even when they are provided in prompts.
CODIS: Benchmarking Context-Dependent Visual Comprehension for Multimodal Large Language Models
Multimodal large language models (MLLMs) have demonstrated promising results in a variety of tasks that combine vision and language. As these models become more integral to research and applications, conducting comprehensive evaluations of their capabilities has grown increasingly important. However, most existing benchmarks fail to consider that, in certain situations, images need to be interpreted within a broader context. In this work, we introduce a new benchmark, named as CODIS, designed to assess the ability of models to use context provided in free-form text to enhance visual comprehension. Our findings indicate that MLLMs consistently fall short of human performance on this benchmark. Further analysis confirms that these models struggle to effectively extract and utilize contextual information to improve their understanding of images. This underscores the pressing need to enhance the ability of MLLMs to comprehend visuals in a context-dependent manner. View our project website at https://thunlp-mt.github.io/CODIS.
MultiverSeg: Scalable Interactive Segmentation of Biomedical Imaging Datasets with In-Context Guidance
Medical researchers and clinicians often need to perform novel segmentation tasks on a set of related images. Existing methods for segmenting a new dataset are either interactive, requiring substantial human effort for each image, or require an existing set of previously labeled images. We introduce a system, MultiverSeg, that enables practitioners to rapidly segment an entire new dataset without requiring access to any existing labeled data from that task or domain. Along with the image to segment, the model takes user interactions such as clicks, bounding boxes or scribbles as input, and predicts a segmentation. As the user segments more images, those images and segmentations become additional inputs to the model, providing context. As the context set of labeled images grows, the number of interactions required to segment each new image decreases. We demonstrate that MultiverSeg enables users to interactively segment new datasets efficiently, by amortizing the number of interactions per image to achieve an accurate segmentation. Compared to using a state-of-the-art interactive segmentation method, MultiverSeg reduced the total number of clicks by 36% and scribble steps by 25% to achieve 90% Dice on sets of images from unseen tasks. We release code and model weights at https://multiverseg.csail.mit.edu
Long Context In-Context Compression by Getting to the Gist of Gisting
Long context processing is critical for the adoption of LLMs, but existing methods often introduce architectural complexity that hinders their practical adoption. Gisting, an in-context compression method with no architectural modification to the decoder transformer, is a promising approach due to its simplicity and compatibility with existing frameworks. While effective for short instructions, we demonstrate that gisting struggles with longer contexts, with significant performance drops even at minimal compression rates. Surprisingly, a simple average pooling baseline consistently outperforms gisting. We analyze the limitations of gisting, including information flow interruptions, capacity limitations and the inability to restrict its attention to subsets of the context. Motivated by theoretical insights into the performance gap between gisting and average pooling, and supported by extensive experimentation, we propose GistPool, a new in-context compression method. GistPool preserves the simplicity of gisting, while significantly boosting its performance on long context compression tasks.
Can Large Language Models Understand Context?
Understanding context is key to understanding human language, an ability which Large Language Models (LLMs) have been increasingly seen to demonstrate to an impressive extent. However, though the evaluation of LLMs encompasses various domains within the realm of Natural Language Processing, limited attention has been paid to probing their linguistic capability of understanding contextual features. This paper introduces a context understanding benchmark by adapting existing datasets to suit the evaluation of generative models. This benchmark comprises of four distinct tasks and nine datasets, all featuring prompts designed to assess the models' ability to understand context. First, we evaluate the performance of LLMs under the in-context learning pretraining scenario. Experimental results indicate that pre-trained dense models struggle with understanding more nuanced contextual features when compared to state-of-the-art fine-tuned models. Second, as LLM compression holds growing significance in both research and real-world applications, we assess the context understanding of quantized models under in-context-learning settings. We find that 3-bit post-training quantization leads to varying degrees of performance reduction on our benchmark. We conduct an extensive analysis of these scenarios to substantiate our experimental results.
Needle Threading: Can LLMs Follow Threads through Near-Million-Scale Haystacks?
As the context limits of Large Language Models (LLMs) increase, the range of possible applications and downstream functions broadens. In many real-world tasks, decisions depend on details scattered across collections of often disparate documents containing mostly irrelevant information. Long-context LLMs appear well-suited to this form of complex information retrieval and reasoning, which has traditionally proven costly and time-consuming. However, although the development of longer context models has seen rapid gains in recent years, our understanding of how effectively LLMs use their context has not kept pace. To address this, we conduct a set of retrieval experiments designed to evaluate the capabilities of 17 leading LLMs, such as their ability to follow threads of information through the context window. Strikingly, we find that many models are remarkably threadsafe: capable of simultaneously following multiple threads without significant loss in performance. Still, for many models, we find the effective context limit is significantly shorter than the supported context length, with accuracy decreasing as the context window grows. Our study also highlights the important point that token counts from different tokenizers should not be directly compared -- they often correspond to substantially different numbers of written characters. We release our code and long-context experimental data.
KVzip: Query-Agnostic KV Cache Compression with Context Reconstruction
Transformer-based large language models (LLMs) cache context as key-value (KV) pairs during inference. As context length grows, KV cache sizes expand, leading to substantial memory overhead and increased attention latency. This paper introduces KVzip, a query-agnostic KV cache eviction method enabling effective reuse of compressed KV caches across diverse queries. KVzip quantifies the importance of a KV pair using the underlying LLM to reconstruct original contexts from cached KV pairs, subsequently evicting pairs with lower importance. Extensive empirical evaluations demonstrate that KVzip reduces KV cache size by 3-4times and FlashAttention decoding latency by approximately 2times, with negligible performance loss in question-answering, retrieval, reasoning, and code comprehension tasks. Evaluations include various models such as LLaMA3.1-8B, Qwen2.5-14B, and Gemma3-12B, with context lengths reaching up to 170K tokens. KVzip significantly outperforms existing query-aware KV eviction methods, which suffer from performance degradation even at a 90% cache budget ratio under multi-query scenarios.
Deep Learning-based Code Completion: On the Impact on Performance of Contextual Information
Code completion aims at speeding up code writing by recommending to developers the next tokens they are likely to type. Deep Learning (DL) models pushed the boundaries of code completion by redefining what these coding assistants can do: We moved from predicting few code tokens to automatically generating entire functions. One important factor impacting the performance of DL-based code completion techniques is the context provided as input. With "context" we refer to what the model knows about the code to complete. In a simple scenario, the DL model might be fed with a partially implemented function to complete. In this case, the context is represented by the incomplete function and, based on it, the model must generate a prediction. It is however possible to expand such a context to include additional information, like the whole source code file containing the function to complete, which could be useful to boost the prediction performance. In this work, we present an empirical study investigating how the performance of a DL-based code completion technique is affected by different contexts. We experiment with 8 types of contexts and their combinations. These contexts include: (i) coding contexts, featuring information extracted from the code base in which the code completion is invoked (e.g., code components structurally related to the one to "complete"); (ii) process context, with information aimed at depicting the current status of the project in which a code completion task is triggered (e.g., a textual representation of open issues relevant for the code to complete); and (iii) developer contexts, capturing information about the developer invoking the code completion (e.g., the APIs frequently used). Our results show that additional contextual information can benefit the performance of DL-based code completion, with relative improvements up to +22% in terms of correct predictions.
FB-RAG: Improving RAG with Forward and Backward Lookup
The performance of Retrieval Augmented Generation (RAG) systems relies heavily on the retriever quality and the size of the retrieved context. A large enough context ensures that the relevant information is present in the input context for the LLM, but also incorporates irrelevant content that has been shown to confuse the models. On the other hand, a smaller context reduces the irrelevant information, but it often comes at the risk of losing important information necessary to answer the input question. This duality is especially challenging to manage for complex queries that contain little information to retrieve the relevant chunks from the full context. To address this, we present a novel framework, called FB-RAG, which enhances the RAG pipeline by relying on a combination of backward lookup (overlap with the query) and forward lookup (overlap with candidate reasons and answers) to retrieve specific context chunks that are the most relevant for answering the input query. Our evaluations on 9 datasets from two leading benchmarks show that FB-RAG consistently outperforms RAG and Long Context baselines developed recently for these benchmarks. We further show that FB-RAG can improve performance while reducing latency. We perform qualitative analysis of the strengths and shortcomings of our approach, providing specific insights to guide future work.
DroidSpeak: Enhancing Cross-LLM Communication
In multi-agent systems utilizing Large Language Models (LLMs), communication between agents traditionally relies on natural language. This communication often includes the full context of the query so far, which can introduce significant prefill-phase latency, especially with long contexts. We introduce DroidSpeak, a novel framework to target this cross-LLM communication by leveraging the reuse of intermediate data, such as input embeddings (E-cache) and key-value caches (KV-cache). We efficiently bypass the need to reprocess entire contexts for fine-tuned versions of the same foundational model. This approach allows faster context integration while maintaining the quality of task performance. Experimental evaluations demonstrate DroidSpeak's ability to significantly accelerate inter-agent communication, achieving up to a 2.78x speedup in prefill latency with negligible loss in accuracy. Our findings underscore the potential to create more efficient and scalable multi-agent systems.
Preface to Contextuality in Random Variables: A Systematic Introduction, by E. N. Dzhafarov, J. V. Kujala, and V. H. Cervantes
This is the preface for the book by E. N. Dzhafarov, J. V. Kujala, and V. H. Cervantes, titled Contextuality in Random Variables: A Systematic Introduction. It is to be published by Cambridge University Press in 2026.
Long Code Arena: a Set of Benchmarks for Long-Context Code Models
Nowadays, the fields of code and natural language processing are evolving rapidly. In particular, models become better at processing long context windows - supported context sizes have increased by orders of magnitude over the last few years. However, there is a shortage of benchmarks for code processing that go beyond a single file of context, while the most popular ones are limited to a single method. With this work, we aim to close this gap by introducing Long Code Arena, a suite of six benchmarks for code processing tasks that require project-wide context. These tasks cover different aspects of code processing: library-based code generation, CI builds repair, project-level code completion, commit message generation, bug localization, and module summarization. For each task, we provide a manually verified dataset for testing, an evaluation suite, and open-source baseline solutions based on popular LLMs to showcase the usage of the dataset and to simplify adoption by other researchers. We publish the benchmark page on HuggingFace Spaces with the leaderboard, links to HuggingFace Hub for all the datasets, and link to the GitHub repository with baselines: https://huggingface.co/spaces/JetBrains-Research/long-code-arena.
The CAP Principle for LLM Serving: A Survey of Long-Context Large Language Model Serving
We survey the large language model (LLM) serving area to understand the intricate dynamics between cost-efficiency and accuracy, which is magnified by the growing need for longer contextual understanding when deploying models at a massive scale. Our findings reveal that works in this space optimize along three distinct but conflicting goals: improving serving context length (C), improving serving accuracy (A), and improving serving performance (P). Drawing inspiration from the CAP theorem in databases, we propose a CAP principle for LLM serving, which suggests that any optimization can improve at most two of these three goals simultaneously. Our survey categorizes existing works within this framework. We find the definition and continuity of user-perceived measurement metrics are crucial in determining whether a goal has been met, akin to prior CAP databases in the wild. We recognize the CAP principle for LLM serving as a guiding principle, rather than a formal theorem, to inform designers of the inherent and dynamic trade-offs in serving models. As serving accuracy and performance have been extensively studied, this survey focuses on works that extend serving context length and address the resulting challenges.
Scaling Long-Horizon LLM Agent via Context-Folding
Large language model (LLM) agents are fundamentally constrained by context length on long-horizon tasks. We introduce Context-Folding, a framework that empowers agents to actively manage their working context. An agent can procedurally branch into a sub-trajectory to handle a subtask and then fold it upon completion, collapsing the intermediate steps while retaining a concise summary of the outcome. To make this behavior learnable, we develop an end-to-end reinforcement learning framework FoldGRPO with specific process rewards to encourage effective task decomposition and context management. On complex long-horizon tasks (Deep Research and SWE), our folding agent matches or outperforms the ReAct baselines while using an active context 10times smaller and significantly outperforms models that rely on summarization-based context management.
A Controlled Study on Long Context Extension and Generalization in LLMs
Broad textual understanding and in-context learning require language models that utilize full document contexts. Due to the implementation challenges associated with directly training long-context models, many methods have been proposed for extending models to handle long contexts. However, owing to differences in data and model classes, it has been challenging to compare these approaches, leading to uncertainty as to how to evaluate long-context performance and whether it differs from standard evaluation. We implement a controlled protocol for extension methods with a standardized evaluation, utilizing consistent base models and extension data. Our study yields several insights into long-context behavior. First, we reaffirm the critical role of perplexity as a general-purpose performance indicator even in longer-context tasks. Second, we find that current approximate attention methods systematically underperform across long-context tasks. Finally, we confirm that exact fine-tuning based methods are generally effective within the range of their extension, whereas extrapolation remains challenging. All codebases, models, and checkpoints will be made available open-source, promoting transparency and facilitating further research in this critical area of AI development.
Revisiting Long-context Modeling from Context Denoising Perspective
Long-context models (LCMs) have demonstrated great potential in processing long sequences, facilitating many real-world applications. The success of LCMs can be attributed to their ability to locate implicit critical information within the context for further prediction. However, recent research reveals that LCMs are often susceptible to contextual noise, i.e., irrelevant tokens, that can mislead model attention. In this paper, we conduct a fine-grained analysis of the context noise and propose an effective metric, the Integrated Gradient (IG) score, to detect and quantify the noise information within the context. Our findings reveal that even simple mitigation of detected context noise can substantially boost the model's attention on critical tokens and benefit subsequent predictions. Building on this insight, we propose Context Denoising Training (CDT), a straightforward yet effective training strategy that improves attention on critical tokens while reinforcing their influence on model predictions. Extensive experiments across four tasks, under both context window scaling and long-context alignment settings, demonstrate the superiority of CDT. Notably, when trained with CDT, an open-source 8B model can achieve performance (50.92) comparable to GPT-4o (51.00).
SitEmb-v1.5: Improved Context-Aware Dense Retrieval for Semantic Association and Long Story Comprehension
Retrieval-augmented generation (RAG) over long documents typically involves splitting the text into smaller chunks, which serve as the basic units for retrieval. However, due to dependencies across the original document, contextual information is often essential for accurately interpreting each chunk. To address this, prior work has explored encoding longer context windows to produce embeddings for longer chunks. Despite these efforts, gains in retrieval and downstream tasks remain limited. This is because (1) longer chunks strain the capacity of embedding models due to the increased amount of information they must encode, and (2) many real-world applications still require returning localized evidence due to constraints on model or human bandwidth. We propose an alternative approach to this challenge by representing short chunks in a way that is conditioned on a broader context window to enhance retrieval performance -- i.e., situating a chunk's meaning within its context. We further show that existing embedding models are not well-equipped to encode such situated context effectively, and thus introduce a new training paradigm and develop the situated embedding models (SitEmb). To evaluate our method, we curate a book-plot retrieval dataset specifically designed to assess situated retrieval capabilities. On this benchmark, our SitEmb-v1 model based on BGE-M3 substantially outperforms state-of-the-art embedding models, including several with up to 7-8B parameters, with only 1B parameters. Our 8B SitEmb-v1.5 model further improves performance by over 10% and shows strong results across different languages and several downstream applications.
Revisiting In-Context Learning with Long Context Language Models
In-Context Learning (ICL) is a technique by which language models make predictions based on examples provided in their input context. Previously, their context window size imposed a limit on the number of examples that can be shown, making example selection techniques crucial for identifying the maximally effective set of examples. However, the recent advent of Long Context Language Models (LCLMs) has significantly increased the number of examples that can be included in context, raising an important question of whether ICL performance in a many-shot regime is still sensitive to the method of sample selection. To answer this, we revisit these approaches in the context of LCLMs through extensive experiments on 18 datasets spanning 4 tasks. Surprisingly, we observe that sophisticated example selection techniques do not yield significant improvements over a simple random sample selection method. Instead, we find that the advent of LCLMs has fundamentally shifted the challenge of ICL from that of selecting the most effective examples to that of collecting sufficient examples to fill the context window. Specifically, in certain datasets, including all available examples does not fully utilize the context window; however, by augmenting the examples in context with a simple data augmentation approach, we substantially improve ICL performance by 5%.
Unlocking Context Constraints of LLMs: Enhancing Context Efficiency of LLMs with Self-Information-Based Content Filtering
Large language models (LLMs) have received significant attention by achieving remarkable performance across various tasks. However, their fixed context length poses challenges when processing long documents or maintaining extended conversations. This paper proposes a method called Selective Context that employs self-information to filter out less informative content, thereby enhancing the efficiency of the fixed context length. We demonstrate the effectiveness of our approach on tasks of summarisation and question answering across different data sources, including academic papers, news articles, and conversation transcripts.
Improving Slot Filling by Utilizing Contextual Information
Slot Filling (SF) is one of the sub-tasks of Spoken Language Understanding (SLU) which aims to extract semantic constituents from a given natural language utterance. It is formulated as a sequence labeling task. Recently, it has been shown that contextual information is vital for this task. However, existing models employ contextual information in a restricted manner, e.g., using self-attention. Such methods fail to distinguish the effects of the context on the word representation and the word label. To address this issue, in this paper, we propose a novel method to incorporate the contextual information in two different levels, i.e., representation level and task-specific (i.e., label) level. Our extensive experiments on three benchmark datasets on SF show the effectiveness of our model leading to new state-of-the-art results on all three benchmark datasets for the task of SF.
Context Matters for Image Descriptions for Accessibility: Challenges for Referenceless Evaluation Metrics
Few images on the Web receive alt-text descriptions that would make them accessible to blind and low vision (BLV) users. Image-based NLG systems have progressed to the point where they can begin to address this persistent societal problem, but these systems will not be fully successful unless we evaluate them on metrics that guide their development correctly. Here, we argue against current referenceless metrics -- those that don't rely on human-generated ground-truth descriptions -- on the grounds that they do not align with the needs of BLV users. The fundamental shortcoming of these metrics is that they do not take context into account, whereas contextual information is highly valued by BLV users. To substantiate these claims, we present a study with BLV participants who rated descriptions along a variety of dimensions. An in-depth analysis reveals that the lack of context-awareness makes current referenceless metrics inadequate for advancing image accessibility. As a proof-of-concept, we provide a contextual version of the referenceless metric CLIPScore which begins to address the disconnect to the BLV data. An accessible HTML version of this paper is available at https://elisakreiss.github.io/contextual-description-evaluation/paper/reflessmetrics.html
Privacy Preserving Prompt Engineering: A Survey
Pre-trained language models (PLMs) have demonstrated significant proficiency in solving a wide range of general natural language processing (NLP) tasks. Researchers have observed a direct correlation between the performance of these models and their sizes. As a result, the sizes of these models have notably expanded in recent years, persuading researchers to adopt the term large language models (LLMs) to characterize the larger-sized PLMs. The size expansion comes with a distinct capability called in-context learning (ICL), which represents a special form of prompting and allows the models to be utilized through the presentation of demonstration examples without modifications to the model parameters. Although interesting, privacy concerns have become a major obstacle in its widespread usage. Multiple studies have examined the privacy risks linked to ICL and prompting in general, and have devised techniques to alleviate these risks. Thus, there is a necessity to organize these mitigation techniques for the benefit of the community. This survey provides a systematic overview of the privacy protection methods employed during ICL and prompting in general. We review, analyze, and compare different methods under this paradigm. Furthermore, we provide a summary of the resources accessible for the development of these frameworks. Finally, we discuss the limitations of these frameworks and offer a detailed examination of the promising areas that necessitate further exploration.
Meta-learning via Language Model In-context Tuning
The goal of meta-learning is to learn to adapt to a new task with only a few labeled examples. To tackle this problem in NLP, we propose in-context tuning, which recasts adaptation and prediction as a simple sequence prediction problem: to form the input sequence, we concatenate the task instruction, the labeled examples, and the target input to predict; to meta-train the model to learn from in-context examples, we fine-tune a pre-trained language model (LM) to predict the target label from the input sequences on a collection of tasks. We benchmark our method on two collections of text classification tasks: LAMA and BinaryClfs. Compared to first-order MAML which adapts the model with gradient descent, our method better leverages the inductive bias of LMs to perform pattern matching, and outperforms MAML by an absolute 6% AUC ROC score on BinaryClfs, with increasing advantage w.r.t. model size. Compared to non-fine-tuned in-context learning (i.e. prompting a raw LM), in-context tuning directly learns to learn from in-context examples. On BinaryClfs, in-context tuning improves the average AUC-ROC score by an absolute 10%, and reduces the variance with respect to example ordering by 6x and example choices by 2x.
Context Engineering for Trustworthiness: Rescorla Wagner Steering Under Mixed and Inappropriate Contexts
Incorporating external context can significantly enhance the response quality of Large Language Models (LLMs). However, real-world contexts often mix relevant information with disproportionate inappropriate content, posing reliability risks. How do LLMs process and prioritize mixed context? To study this, we introduce the Poisoned Context Testbed, pairing queries with real-world contexts containing relevant and inappropriate content. Inspired by associative learning in animals, we adapt the Rescorla-Wagner (RW) model from neuroscience to quantify how competing contextual signals influence LLM outputs. Our adapted model reveals a consistent behavioral pattern: LLMs exhibit a strong tendency to incorporate information that is less prevalent in the context. This susceptibility is harmful in real-world settings, where small amounts of inappropriate content can substantially degrade response quality. Empirical evaluations on our testbed further confirm this vulnerability. To tackle this, we introduce RW-Steering, a two-stage finetuning-based approach that enables the model to internally identify and ignore inappropriate signals. Unlike prior methods that rely on extensive supervision across diverse context mixtures, RW-Steering generalizes robustly across varying proportions of inappropriate content. Experiments show that our best fine-tuned model improves response quality by 39.8% and reverses the undesirable behavior curve, establishing RW-Steering as a robust, generalizable context engineering solution for improving LLM safety in real-world use.
Compress, Gather, and Recompute: REFORMing Long-Context Processing in Transformers
As large language models increasingly gain popularity in real-world applications, processing extremely long contexts, often exceeding the model's pre-trained context limits, has emerged as a critical challenge. While existing approaches to efficient long-context processing show promise, recurrent compression-based methods struggle with information preservation, whereas random access approaches require substantial memory resources. We introduce REFORM, a novel inference framework that efficiently handles long contexts through a two-phase approach. First, it incrementally processes input chunks while maintaining a compressed KV cache, constructs cross-layer context embeddings, and utilizes early exit strategy for improved efficiency. Second, it identifies and gathers essential tokens via similarity matching and selectively recomputes the KV cache. Compared to baselines, REFORM achieves over 50% and 27% performance gains on RULER and BABILong respectively at 1M context length. It also outperforms baselines on Infinite-Bench and MM-NIAH, demonstrating flexibility across diverse tasks and domains. Additionally, REFORM reduces inference time by 30% and peak memory usage by 5%, achieving both efficiency and superior performance.
LongRoPE2: Near-Lossless LLM Context Window Scaling
LongRoPE2 is a novel approach that extends the effective context window of pre-trained large language models (LLMs) to the target length, while preserving the performance on the original shorter context window. This is achieved by three contributions: (1) a hypothesis that insufficient training in higher RoPE dimensions contributes to the persistent out-of-distribution (OOD) issues observed in existing methods; (2) an effective RoPE rescaling algorithm that adopts evolutionary search guided by "needle-driven" perplexity to address the insufficient training problem; (3) a mixed context window training approach that fine-tunes model weights to adopt rescaled RoPE for long-context sequences while preserving the short-context performance with the original RoPE. Extensive experiments on LLaMA3-8B and Phi3-mini-3.8B across various benchmarks validate the hypothesis and demonstrate the effectiveness of LongRoPE2. Remarkably, LongRoPE2 extends LLaMA3-8B to achieve a 128K effective context length while retaining over 98.5% of short-context performance, using only 10B tokens -- 80x fewer than Meta's approach, which fails to reach the target effective context length. Code will be available at https://github.com/microsoft/LongRoPE.
Beyond monoculture: Polydisperse moment methods for sub-stellar atmosphere cloud microphysics II. A three-moment gamma distribution formulation for GCM applications
Context. Understanding how the shape of cloud particle size distributions affects the atmospheric properties of sub-stellar atmospheres is a key area to explore, particularly in the JWST era of broad wavelength coverage, where observations are sensitive to particle size distributions. It is therefore important to elucidate how underlying cloud microphysical processes influence the size distribution, in order to better understand how clouds affect observed atmospheric properties. Aims. In this follow-up paper, we aim to extend our sub-stellar atmosphere microphysical cloud formation framework from Paper I to include effects of assuming a polydisperse gamma particle size distribution, requiring a three-moment solution set of equations. Methods. We develop a three-moment framework for sub-stellar mineral cloud particle microphysical nucleation, condensation, evaporation and collisional growth assuming a gamma distribution. As in the previous paper, we demonstrate the effects of polydispersity using a simple one-dimensional Y-dwarf KCl cloud formation scenario, and compare the results with the monodisperse case. Results. Our three-moment scheme provides a generalised framework applicable to any size distribution with a defined moment generation expression. In our test case, we show that the gamma distribution evolves with altitude, initially broad at the cloud base and narrowing at lower pressures. We find that differences between the gamma and monodisperse cloud structures can be significant, depending on the surface gravity of the atmosphere. Conclusions. We present a self-consistent framework for including the effects of polydispersity for sub-stellar microphysical cloud studies using the moment method.
Scaling Context, Not Parameters: Training a Compact 7B Language Model for Efficient Long-Context Processing
We present MegaBeam-Mistral-7B, a language model that supports 512K-token context length. Our work addresses practical limitations in long-context training, supporting real-world tasks such as compliance monitoring and verification. Evaluated on three long-context benchmarks, our 7B-parameter model demonstrates superior in-context learning performance on HELMET and robust retrieval and tracing capability on RULER. It is currently the only open model to achieve competitive long-range reasoning on BABILong at 512K context length without RAG or targeted fine-tuning. Released as fully open source under the Apache 2.0 license, the model has been downloaded over 100,000 times on Hugging Face. Model available at: https://huggingface.co/aws-prototyping/MegaBeam-Mistral-7B-512k
EXIT: Context-Aware Extractive Compression for Enhancing Retrieval-Augmented Generation
We introduce EXIT, an extractive context compression framework that enhances both the effectiveness and efficiency of retrieval-augmented generation (RAG) in question answering (QA). Current RAG systems often struggle when retrieval models fail to rank the most relevant documents, leading to the inclusion of more context at the expense of latency and accuracy. While abstractive compression methods can drastically reduce token counts, their token-by-token generation process significantly increases end-to-end latency. Conversely, existing extractive methods reduce latency but rely on independent, non-adaptive sentence selection, failing to fully utilize contextual information. EXIT addresses these limitations by classifying sentences from retrieved documents - while preserving their contextual dependencies - enabling parallelizable, context-aware extraction that adapts to query complexity and retrieval quality. Our evaluations on both single-hop and multi-hop QA tasks show that EXIT consistently surpasses existing compression methods and even uncompressed baselines in QA accuracy, while also delivering substantial reductions in inference time and token count. By improving both effectiveness and efficiency, EXIT provides a promising direction for developing scalable, high-quality QA solutions in RAG pipelines. Our code is available at https://github.com/ThisIsHwang/EXIT
Is this bug severe? A text-cum-graph based model for bug severity prediction
Repositories of large software systems have become commonplace. This massive expansion has resulted in the emergence of various problems in these software platforms including identification of (i) bug-prone packages, (ii) critical bugs, and (iii) severity of bugs. One of the important goals would be to mine these bugs and recommend them to the developers to resolve them. The first step to this is that one has to accurately detect the extent of severity of the bugs. In this paper, we take up this task of predicting the severity of bugs in the near future. Contextualized neural models built on the text description of a bug and the user comments about the bug help to achieve reasonably good performance. Further information on how the bugs are related to each other in terms of the ways they affect packages can be summarised in the form of a graph and used along with the text to get additional benefits.
LLM-Microscope: Uncovering the Hidden Role of Punctuation in Context Memory of Transformers
We introduce methods to quantify how Large Language Models (LLMs) encode and store contextual information, revealing that tokens often seen as minor (e.g., determiners, punctuation) carry surprisingly high context. Notably, removing these tokens -- especially stopwords, articles, and commas -- consistently degrades performance on MMLU and BABILong-4k, even if removing only irrelevant tokens. Our analysis also shows a strong correlation between contextualization and linearity, where linearity measures how closely the transformation from one layer's embeddings to the next can be approximated by a single linear mapping. These findings underscore the hidden importance of filler tokens in maintaining context. For further exploration, we present LLM-Microscope, an open-source toolkit that assesses token-level nonlinearity, evaluates contextual memory, visualizes intermediate layer contributions (via an adapted Logit Lens), and measures the intrinsic dimensionality of representations. This toolkit illuminates how seemingly trivial tokens can be critical for long-range understanding.
Squeeze3D: Your 3D Generation Model is Secretly an Extreme Neural Compressor
We propose Squeeze3D, a novel framework that leverages implicit prior knowledge learnt by existing pre-trained 3D generative models to compress 3D data at extremely high compression ratios. Our approach bridges the latent spaces between a pre-trained encoder and a pre-trained generation model through trainable mapping networks. Any 3D model represented as a mesh, point cloud, or a radiance field is first encoded by the pre-trained encoder and then transformed (i.e. compressed) into a highly compact latent code. This latent code can effectively be used as an extremely compressed representation of the mesh or point cloud. A mapping network transforms the compressed latent code into the latent space of a powerful generative model, which is then conditioned to recreate the original 3D model (i.e. decompression). Squeeze3D is trained entirely on generated synthetic data and does not require any 3D datasets. The Squeeze3D architecture can be flexibly used with existing pre-trained 3D encoders and existing generative models. It can flexibly support different formats, including meshes, point clouds, and radiance fields. Our experiments demonstrate that Squeeze3D achieves compression ratios of up to 2187x for textured meshes, 55x for point clouds, and 619x for radiance fields while maintaining visual quality comparable to many existing methods. Squeeze3D only incurs a small compression and decompression latency since it does not involve training object-specific networks to compress an object.
Nugget 2D: Dynamic Contextual Compression for Scaling Decoder-only Language Models
Standard Transformer-based language models (LMs) scale poorly to long contexts. We propose a solution based on dynamic contextual compression, which extends the Nugget approach of Qin & Van Durme (2023) from BERT-like frameworks to decoder-only LMs. Our method models history as compressed "nuggets" which are trained to allow for reconstruction, and it can be initialized with off-the-shelf models such as LLaMA. We demonstrate through experiments in language modeling, question answering, and summarization that Nugget2D retains capabilities in these tasks, while drastically reducing the overhead during decoding in terms of time and space. For example, in the experiments of autoencoding, Nugget2D can shrink context at a 20x compression ratio with a BLEU score of 98% for reconstruction, achieving nearly lossless encoding.
SmartDoc: A Context-Aware Agentic Method Comment Generation Plugin
Context: The software maintenance phase involves many activities such as code refactoring, bug fixing, code review or testing. Program comprehension is key to all these activities, as it demands developers to grasp the knowledge (e.g., implementation details) required to modify the codebase. Methods as main building blocks in a program can offer developers this knowledge source for code comprehension. However, reading entire method statements can be challenging, which necessitates precise and up-to-date comments. Objective: We propose a solution as an IntelliJ IDEA plugin, named SmartDoc, that assists developers in generating context-aware method comments. Method: This plugin acts as an Artificial Intelligence (AI) agent that has its own memory and is augmented by target methods' context. When a request is initiated by the end-user, the method content and all its nested method calls are used in the comment generation. At the beginning, these nested methods are visited and a call graph is generated. This graph is then traversed using depth-first search (DFS), enabling the provision of full-context to enrich Large Language Model (LLM) prompts. Result: The product is a software, as a plugin, developed for Java codebase and installable on IntelliJ IDEA. This plugin can serve concurrently for methods whose comments are being updated , and it shares memory across all flows to avoid redundant calls. o measure the accuracy of this solution, a dedicated test case is run to record SmartDoc generated comments and their corresponding ground truth. For each collected result-set, three metrics are computed, BERTScore, BLEU and ROUGE-1. These metrics will determine how accurate the generated comments are in comparison to the ground truth. Result: The obtained accuracy, in terms of the precision, recall and F1, is promising, and lies in the range of 0.80 to 0.90 for BERTScore.
Improving neural networks by preventing co-adaptation of feature detectors
When a large feedforward neural network is trained on a small training set, it typically performs poorly on held-out test data. This "overfitting" is greatly reduced by randomly omitting half of the feature detectors on each training case. This prevents complex co-adaptations in which a feature detector is only helpful in the context of several other specific feature detectors. Instead, each neuron learns to detect a feature that is generally helpful for producing the correct answer given the combinatorially large variety of internal contexts in which it must operate. Random "dropout" gives big improvements on many benchmark tasks and sets new records for speech and object recognition.
Attention Entropy is a Key Factor: An Analysis of Parallel Context Encoding with Full-attention-based Pre-trained Language Models
Large language models have shown remarkable performance across a wide range of language tasks, owing to their exceptional capabilities in context modeling. The most commonly used method of context modeling is full self-attention, as seen in standard decoder-only Transformers. Although powerful, this method can be inefficient for long sequences and may overlook inherent input structures. To address these problems, an alternative approach is parallel context encoding, which splits the context into sub-pieces and encodes them parallelly. Because parallel patterns are not encountered during training, naively applying parallel encoding leads to performance degradation. However, the underlying reasons and potential mitigations are unclear. In this work, we provide a detailed analysis of this issue and identify that unusually high attention entropy can be a key factor. Furthermore, we adopt two straightforward methods to reduce attention entropy by incorporating attention sinks and selective mechanisms. Experiments on various tasks reveal that these methods effectively lower irregular attention entropy and narrow performance gaps. We hope this study can illuminate ways to enhance context modeling mechanisms.
LOOM-Scope: a comprehensive and efficient LOng-cOntext Model evaluation framework
Long-context processing has become a fundamental capability for large language models~(LLMs). To assess model's long-context performance, numerous long-context evaluation benchmarks have been proposed. However, variations in evaluation settings across these benchmarks lead to inconsistent results, making it difficult to draw reliable comparisons. Besides, the high computational cost of long-context evaluation poses a significant barrier for the community to conduct comprehensive assessments of long-context models. In this paper, we propose LOOM-Scope, a comprehensive and efficient framework for long-context evaluation. LOOM-Scope standardizes evaluation settings across diverse benchmarks, supports deployment of efficient long-context inference acceleration methods, and introduces a holistic yet lightweight benchmark suite to evaluate models comprehensively. Homepage: https://loomscope.github.io
MultiMend: Multilingual Program Repair with Context Augmentation and Multi-Hunk Patch Generation
Context: Bugs in code are inevitable and can lead to severe consequences, ranging from security vulnerabilities to operational failures. Debugging software remains challenging despite advances in testing and verification, often requiring extensive manual effort. Learning-based automated program repair (APR) has shown promise in reducing the time, effort, and cost of manually fixing bugs. However, existing techniques face several challenges, including language-dependent strategies, limited bug context utilization, and difficulties in handling bugs that span multiple locations in the code. Objective: This paper introduces MultiMend, a learning-based APR approach designed to improve repair performance on multiple programming languages with language-independent context augmentation and multi-hunk patch generation. Method: MultiMend fine-tunes a pre-trained encoder-decoder transformer model (CodeT5) to generate bug-fixing patches. It embeds source code lines and applies retrieval-augmented generation to augment the buggy context with relevant lines during patch generation. The approach systematically constructs patches for multi-hunk bugs to reduce the needed patch validations. We evaluate MultiMend on four benchmarks with four programming languages and compare it with state-of-the-art methods. Results: Experimental results show that MultiMend achieves competitive effectiveness and efficiency against compared tools. Across all benchmarks, MultiMend fixes 2,077 bugs, of which 1,455 are identical to the developer's patch, and 106 are for multi-hunk bugs. Both context augmentation and multi-hunk patch generation positively contribute to the results. Conclusion: MultiMend shows promising performance across benchmarks. The findings highlight its applicability to real-world software maintenance and its potential to reduce manual debugging efforts.
CORG: Generating Answers from Complex, Interrelated Contexts
In a real-world corpus, knowledge frequently recurs across documents but often contains inconsistencies due to ambiguous naming, outdated information, or errors, leading to complex interrelationships between contexts. Previous research has shown that language models struggle with these complexities, typically focusing on single factors in isolation. We classify these relationships into four types: distracting, ambiguous, counterfactual, and duplicated. Our analysis reveals that no single approach effectively addresses all these interrelationships simultaneously. Therefore, we introduce Context Organizer (CORG), a framework that organizes multiple contexts into independently processed groups. This design allows the model to efficiently find all relevant answers while ensuring disambiguation. CORG consists of three key components: a graph constructor, a reranker, and an aggregator. Our results demonstrate that CORG balances performance and efficiency effectively, outperforming existing grouping methods and achieving comparable results to more computationally intensive, single-context approaches.
CSTRL: Context-Driven Sequential Transfer Learning for Abstractive Radiology Report Summarization
A radiology report comprises several sections, including the Findings and Impression of the diagnosis. Automatically generating the Impression from the Findings is crucial for reducing radiologists' workload and improving diagnostic accuracy. Pretrained models that excel in common abstractive summarization problems encounter challenges when applied to specialized medical domains largely due to the complex terminology and the necessity for accurate clinical context. Such tasks in medical domains demand extracting core information, avoiding context shifts, and maintaining proper flow. Misuse of medical terms can lead to drastic clinical errors. To address these issues, we introduce a sequential transfer learning that ensures key content extraction and coherent summarization. Sequential transfer learning often faces challenges like initial parameter decay and knowledge loss, which we resolve with the Fisher matrix regularization. Using MIMIC-CXR and Open-I datasets, our model, CSTRL - Context-driven Sequential TRansfer Learning - achieved state-of-the-art performance, showing 56.2% improvement in BLEU-1, 40.5% in BLEU-2, 84.3% in BLEU-3, 28.9% in ROUGE-1, 41.0% in ROUGE-2 and 26.5% in ROGUE-3 score over benchmark studies. We also analyze factual consistency scores while preserving the medical context. Our code is publicly available at https://github.com/fahmidahossain/Report_Summarization.
Se^2: Sequential Example Selection for In-Context Learning
The remarkable capability of large language models (LLMs) for in-context learning (ICL) needs to be activated by demonstration examples. Prior work has extensively explored the selection of examples for ICL, predominantly following the "select then organize" paradigm, such approaches often neglect the internal relationships between examples and exist an inconsistency between the training and inference. In this paper, we formulate the problem as a sequential selection problem and introduce Se^2, a sequential-aware method that leverages the LLM's feedback on varying context, aiding in capturing inter-relationships and sequential information among examples, significantly enriching the contextuality and relevance of ICL prompts. Meanwhile, we utilize beam search to seek and construct example sequences, enhancing both quality and diversity. Extensive experiments across 23 NLP tasks from 8 distinct categories illustrate that Se^2 markedly surpasses competitive baselines and achieves 42% relative improvement over random selection. Further in-depth analysis show the effectiveness of proposed strategies, highlighting Se^2's exceptional stability and adaptability across various scenarios. Our code will be released to facilitate future research.
BrightCookies at SemEval-2025 Task 9: Exploring Data Augmentation for Food Hazard Classification
This paper presents our system developed for the SemEval-2025 Task 9: The Food Hazard Detection Challenge. The shared task's objective is to evaluate explainable classification systems for classifying hazards and products in two levels of granularity from food recall incident reports. In this work, we propose text augmentation techniques as a way to improve poor performance on minority classes and compare their effect for each category on various transformer and machine learning models. We explore three word-level data augmentation techniques, namely synonym replacement, random word swapping, and contextual word insertion. The results show that transformer models tend to have a better overall performance. None of the three augmentation techniques consistently improved overall performance for classifying hazards and products. We observed a statistically significant improvement (P < 0.05) in the fine-grained categories when using the BERT model to compare the baseline with each augmented model. Compared to the baseline, the contextual words insertion augmentation improved the accuracy of predictions for the minority hazard classes by 6%. This suggests that targeted augmentation of minority classes can improve the performance of transformer models.
Automated Structured Radiology Report Generation with Rich Clinical Context
Automated structured radiology report generation (SRRG) from chest X-ray images offers significant potential to reduce workload of radiologists by generating reports in structured formats that ensure clarity, consistency, and adherence to clinical reporting standards. While radiologists effectively utilize available clinical contexts in their diagnostic reasoning, existing SRRG systems overlook these essential elements. This fundamental gap leads to critical problems including temporal hallucinations when referencing non-existent clinical contexts. To address these limitations, we propose contextualized SRRG (C-SRRG) that comprehensively incorporates rich clinical context for SRRG. We curate C-SRRG dataset by integrating comprehensive clinical context encompassing 1) multi-view X-ray images, 2) clinical indication, 3) imaging techniques, and 4) prior studies with corresponding comparisons based on patient histories. Through extensive benchmarking with state-of-the-art multimodal large language models, we demonstrate that incorporating clinical context with the proposed C-SRRG significantly improves report generation quality. We publicly release dataset, code, and checkpoints to facilitate future research for clinically-aligned automated RRG at https://github.com/vuno/contextualized-srrg.
Focus Directions Make Your Language Models Pay More Attention to Relevant Contexts
Long-context large language models (LLMs) are prone to be distracted by irrelevant contexts. The reason for distraction remains poorly understood. In this paper, we first identify the contextual heads, a special group of attention heads that control the overall attention of the LLM. Then, we demonstrate that distraction arises when contextual heads fail to allocate sufficient attention to relevant contexts and can be mitigated by increasing attention to these contexts. We further identify focus directions, located at the key and query activations of these heads, which enable them to allocate more attention to relevant contexts without explicitly specifying which context is relevant. We comprehensively evaluate the effect of focus direction on various long-context tasks and find out focus directions could help to mitigate the poor task alignment of the long-context LLMs. We believe our findings could promote further research on long-context LLM alignment.
Retaining Key Information under High Compression Ratios: Query-Guided Compressor for LLMs
The growing popularity of Large Language Models has sparked interest in context compression for Large Language Models (LLMs). However, the performance of previous methods degrades dramatically as compression ratios increase, sometimes even falling to the closed-book level. This decline can be attributed to the loss of key information during the compression process. Our preliminary study supports this hypothesis, emphasizing the significance of retaining key information to maintain model performance under high compression ratios. As a result, we introduce Query-Guided Compressor (QGC), which leverages queries to guide the context compression process, effectively preserving key information within the compressed context. Additionally, we employ a dynamic compression strategy. We validate the effectiveness of our proposed QGC on the Question Answering task, including NaturalQuestions, TriviaQA, and HotpotQA datasets. Experimental results show that QGC can consistently perform well even at high compression ratios, which also offers significant benefits in terms of inference cost and throughput.
Holistic Reasoning with Long-Context LMs: A Benchmark for Database Operations on Massive Textual Data
The rapid increase in textual information means we need more efficient methods to sift through, organize, and understand it all. While retrieval-augmented generation (RAG) models excel in accessing information from large document collections, they struggle with complex tasks that require aggregation and reasoning over information spanning across multiple documents--what we call holistic reasoning. Long-context language models (LCLMs) have great potential for managing large-scale documents, but their holistic reasoning capabilities remain unclear. In this work, we introduce HoloBench, a novel framework that brings database reasoning operations into text-based contexts, making it easier to systematically evaluate how LCLMs handle holistic reasoning across large documents. Our approach adjusts key factors such as context length, information density, distribution of information, and query complexity to evaluate LCLMs comprehensively. Our experiments show that the amount of information in the context has a bigger influence on LCLM performance than the actual context length. Furthermore, the complexity of queries affects performance more than the amount of information, particularly for different types of queries. Interestingly, queries that involve finding maximum or minimum values are easier for LCLMs and are less affected by context length, even though they pose challenges for RAG systems. However, tasks requiring the aggregation of multiple pieces of information show a noticeable drop in accuracy as context length increases. Additionally, we find that while grouping relevant information generally improves performance, the optimal positioning varies across models. Our findings surface both the advancements and the ongoing challenges in achieving a holistic understanding of long contexts.
Sentence-Anchored Gist Compression for Long-Context LLMs
This work investigates context compression for Large Language Models (LLMs) using learned compression tokens to reduce the memory and computational demands of processing long sequences. We demonstrate that pre-trained LLMs can be fine-tuned to compress their context by factors of 2x to 8x without significant performance degradation, as evaluated on both short-context and long-context benchmarks. Furthermore, in experiments on a 3-billion-parameter LLaMA model, our method achieves results on par with alternative compression techniques while attaining higher compression ratios.
Building astroBERT, a language model for Astronomy & Astrophysics
The existing search tools for exploring the NASA Astrophysics Data System (ADS) can be quite rich and empowering (e.g., similar and trending operators), but researchers are not yet allowed to fully leverage semantic search. For example, a query for "results from the Planck mission" should be able to distinguish between all the various meanings of Planck (person, mission, constant, institutions and more) without further clarification from the user. At ADS, we are applying modern machine learning and natural language processing techniques to our dataset of recent astronomy publications to train astroBERT, a deeply contextual language model based on research at Google. Using astroBERT, we aim to enrich the ADS dataset and improve its discoverability, and in particular we are developing our own named entity recognition tool. We present here our preliminary results and lessons learned.
HLTCOE at LiveRAG: GPT-Researcher using ColBERT retrieval
The HLTCOE LiveRAG submission utilized the GPT-researcher framework for researching the context of the question, filtering the returned results, and generating the final answer. The retrieval system was a ColBERT bi-encoder architecture, which represents a passage with many dense tokens. Retrieval used a local, compressed index of the FineWeb10-BT collection created with PLAID-X, using a model fine-tuned for multilingual retrieval. Query generation from context was done with Qwen2.5-7B-Instruct, while filtering was accomplished with m2-bert-80M-8k-retrieval. Up to nine passages were used as context to generate an answer using Falcon3-10B. This system placed 5th in the LiveRAG automatic evaluation for correctness with a score of 1.07.
Context Aware Grounded Teacher for Source Free Object Detection
We focus on the Source Free Object Detection (SFOD) problem, when source data is unavailable during adaptation, and the model must adapt to the unlabeled target domain. In medical imaging, several approaches have leveraged a semi-supervised student-teacher architecture to bridge domain discrepancy. Context imbalance in labeled training data and significant domain shifts between domains can lead to biased teacher models that produce inaccurate pseudolabels, degrading the student model's performance and causing a mode collapse. Class imbalance, particularly when one class significantly outnumbers another, leads to contextual bias. To tackle the problem of context bias and the significant performance drop of the student model in the SFOD setting, we introduce Grounded Teacher (GT) as a standard framework. In this study, we model contextual relationships using a dedicated relational context module and leverage it to mitigate inherent biases in the model. This approach enables us to apply augmentations to closely related classes, across and within domains, enhancing the performance of underrepresented classes while keeping the effect on dominant classes minimal. We further improve the quality of predictions by implementing an expert foundational branch to supervise the student model. We validate the effectiveness of our approach in mitigating context bias under the SFOD setting through experiments on three medical datasets supported by comprehensive ablation studies. All relevant resources, including preprocessed data, trained model weights, and code, are publicly available at this https://github.com/Tajamul21/Grounded_Teacher.
Focused Transformer: Contrastive Training for Context Scaling
Large language models have an exceptional capability to incorporate new information in a contextual manner. However, the full potential of such an approach is often restrained due to a limitation in the effective context length. One solution to this issue is to endow an attention layer with access to an external memory, which comprises of (key, value) pairs. Yet, as the number of documents increases, the proportion of relevant keys to irrelevant ones decreases, leading the model to focus more on the irrelevant keys. We identify a significant challenge, dubbed the distraction issue, where keys linked to different semantic values might overlap, making them hard to distinguish. To tackle this problem, we introduce the Focused Transformer (FoT), a technique that employs a training process inspired by contrastive learning. This novel approach enhances the structure of the (key, value) space, enabling an extension of the context length. Our method allows for fine-tuning pre-existing, large-scale models to lengthen their effective context. This is demonstrated by our fine-tuning of 3B and 7B OpenLLaMA checkpoints. The resulting models, which we name LongLLaMA, exhibit advancements in tasks requiring a long context. We further illustrate that our LongLLaMA models adeptly manage a 256 k context length for passkey retrieval.
Context Diffusion: In-Context Aware Image Generation
We propose Context Diffusion, a diffusion-based framework that enables image generation models to learn from visual examples presented in context. Recent work tackles such in-context learning for image generation, where a query image is provided alongside context examples and text prompts. However, the quality and fidelity of the generated images deteriorate when the prompt is not present, demonstrating that these models are unable to truly learn from the visual context. To address this, we propose a novel framework that separates the encoding of the visual context and preserving the structure of the query images. This results in the ability to learn from the visual context and text prompts, but also from either one of them. Furthermore, we enable our model to handle few-shot settings, to effectively address diverse in-context learning scenarios. Our experiments and user study demonstrate that Context Diffusion excels in both in-domain and out-of-domain tasks, resulting in an overall enhancement in image quality and fidelity compared to counterpart models.
PDFTriage: Question Answering over Long, Structured Documents
Large Language Models (LLMs) have issues with document question answering (QA) in situations where the document is unable to fit in the small context length of an LLM. To overcome this issue, most existing works focus on retrieving the relevant context from the document, representing them as plain text. However, documents such as PDFs, web pages, and presentations are naturally structured with different pages, tables, sections, and so on. Representing such structured documents as plain text is incongruous with the user's mental model of these documents with rich structure. When a system has to query the document for context, this incongruity is brought to the fore, and seemingly trivial questions can trip up the QA system. To bridge this fundamental gap in handling structured documents, we propose an approach called PDFTriage that enables models to retrieve the context based on either structure or content. Our experiments demonstrate the effectiveness of the proposed PDFTriage-augmented models across several classes of questions where existing retrieval-augmented LLMs fail. To facilitate further research on this fundamental problem, we release our benchmark dataset consisting of 900+ human-generated questions over 80 structured documents from 10 different categories of question types for document QA.
Dynamical evolution of massless particles in star clusters with NBODY6++GPU-MASSLESS: I. Free-floating MLPs
Context. Low-mass bodies, such as comets, asteroids, planetesimals, and free-floating planets, are continuously injected into the intra-cluster environment after expulsion from their host planetary systems. These can be modeled as massless particles (MLPs, hereafter). The dynamics of large populations of MLPs, however, has yet received little attention in literature. Aims. We investigate the dynamical evolution of MLP populations in star clusters, and characterize their kinematics and ejection rates. Methods. We present NBODY6++GPU-MASSLESS, a modified version of the N-body simulation code NBODY6++GPU, that allows fast integration of star clusters that contain large numbers of massless particles (MLPs). NBODY6++GPU-MASSLESS contains routines specifically directed at the dynamical evolution of low-mass bodies, such as planets. Results. Unlike stars, MLPs do not participate in the mass segregation process. Instead, MLPs mostly follow the gravitational potential of the star cluster, which gradually decreases over time due to stellar ejections and stellar evolution. The dynamical evolution of MLPs is primarily affected by the evolution of the core of the star cluster. This is most apparent in the outer regions for clusters with higher initial densities. High escape rates of MLPs are observed before the core-collapse, after which escape rates remain stable. Denser star clusters undergo a more intense core collapse, but this does not impact the dynamical evolution of MLPs. The speeds of escaping stars are similar to those of escaping MLPs, when disregarding the high-velocity ejections of neutron stars during the first 50 Myr.
Overflow Prevention Enhances Long-Context Recurrent LLMs
A recent trend in LLMs is developing recurrent sub-quadratic models that improve long-context processing efficiency. We investigate leading large long-context models, focusing on how their fixed-size recurrent memory affects their performance. Our experiments reveal that, even when these models are trained for extended contexts, their use of long contexts remains underutilized. Specifically, we demonstrate that a chunk-based inference procedure, which identifies and processes only the most relevant portion of the input can mitigate recurrent memory failures and be effective for many long-context tasks: On LongBench, our method improves the overall performance of Falcon3-Mamba-Inst-7B by 14%, Falcon-Mamba-Inst-7B by 28%, RecurrentGemma-IT-9B by 50%, and RWKV6-Finch-7B by 51%. Surprisingly, this simple approach also leads to state-of-the-art results in the challenging LongBench v2 benchmark, showing competitive performance with equivalent size Transformers. Furthermore, our findings raise questions about whether recurrent models genuinely exploit long-range dependencies, as our single-chunk strategy delivers stronger performance - even in tasks that presumably require cross-context relations.
Oolong: Evaluating Long Context Reasoning and Aggregation Capabilities
As model context lengths continue to grow, concerns about whether models effectively use the full context length have persisted. While several carefully designed long-context evaluations have recently been released, these evaluations tend to rely on retrieval from one or more sections of the context, which allows nearly all of the context tokens to be disregarded as noise. This represents only one type of task that might be performed with long context. We introduce Oolong, a benchmark of long-context reasoning tasks that require analyzing individual chunks of text on an atomic level, and then aggregating these analyses to answer distributional questions. Oolong is separated into two task sets: Oolong-synth, a set of naturalistic synthetic tasks, where we can easily ablate components of the reasoning problem; and Oolong-real, a downstream setting which requires reasoning over real-world conversational data. Oolong requires models to reason over large quantities of examples, to perform both classification and counting in-context, and to reason over temporal and user relations. Even frontier models struggle on Oolong, with GPT-5, Claude-Sonnet-4, and Gemini-2.5-Pro all achieving less than 50% accuracy on both splits at 128K. We release the data and evaluation harness for Oolong to enable further development of models that can reason over large quantities of text.
Developer Experiences with a Contextualized AI Coding Assistant: Usability, Expectations, and Outcomes
In the rapidly advancing field of artificial intelligence, software development has emerged as a key area of innovation. Despite the plethora of general-purpose AI assistants available, their effectiveness diminishes in complex, domain-specific scenarios. Noting this limitation, both the academic community and industry players are relying on contextualized coding AI assistants. These assistants surpass general-purpose AI tools by integrating proprietary, domain-specific knowledge, offering precise and relevant solutions. Our study focuses on the initial experiences of 62 participants who used a contextualized coding AI assistant -- named StackSpot AI -- in a controlled setting. According to the participants, the assistants' use resulted in significant time savings, easier access to documentation, and the generation of accurate codes for internal APIs. However, challenges associated with the knowledge sources necessary to make the coding assistant access more contextual information as well as variable responses and limitations in handling complex codes were observed. The study's findings, detailing both the benefits and challenges of contextualized AI assistants, underscore their potential to revolutionize software development practices, while also highlighting areas for further refinement.
Black-box language model explanation by context length probing
The increasingly widespread adoption of large language models has highlighted the need for improving their explainability. We present context length probing, a novel explanation technique for causal language models, based on tracking the predictions of a model as a function of the length of available context, and allowing to assign differential importance scores to different contexts. The technique is model-agnostic and does not rely on access to model internals beyond computing token-level probabilities. We apply context length probing to large pre-trained language models and offer some initial analyses and insights, including the potential for studying long-range dependencies. The source code and an interactive demo of the method are available.
LooGLE: Can Long-Context Language Models Understand Long Contexts?
Large language models (LLMs), despite their impressive performance in various language tasks, are typically limited to processing texts within context-window size. This limitation has spurred significant research efforts to enhance LLMs' long-context understanding with high-quality long-sequence benchmarks. However, prior datasets in this regard suffer from shortcomings, such as short context length compared to the context window of modern LLMs; outdated documents that have data leakage problems; and an emphasis on short dependency tasks rather than long dependency tasks. In this paper, we present LooGLE, a Long Context Generic Language Evaluation benchmark for LLMs' long context understanding. LooGLE features relatively new documents post-2022, with over 24,000 tokens per document and 6,000 newly generated questions spanning diverse domains. Human annotators meticulously crafted more than 1,100 high-quality question-answer pairs to meet the long dependency requirements. These pairs underwent thorough cross-validation, yielding the most precise assessment of LLMs' long dependency capabilities. The evaluation of eight state-of-the-art LLMs on LooGLE revealed key findings: (i) commercial models outperformed open-sourced models; (ii) LLMs excelled in short dependency tasks like short question-answering and cloze tasks but struggled with more intricate long dependency tasks; (iii) in-context learning and chaining thoughts offered only marginal improvements; (iv) retrieval-based techniques demonstrated substantial benefits for short question-answering, while strategies for extending context window length had limited impact on long context understanding. As such, LooGLE not only provides a systematic and comprehensive evaluation schema on long-context LLMs, but also sheds light on future development of enhanced models towards "true long-context understanding".
Expect the Unexpected: FailSafe Long Context QA for Finance
We propose a new long-context financial benchmark, FailSafeQA, designed to test the robustness and context-awareness of LLMs against six variations in human-interface interactions in LLM-based query-answer systems within finance. We concentrate on two case studies: Query Failure and Context Failure. In the Query Failure scenario, we perturb the original query to vary in domain expertise, completeness, and linguistic accuracy. In the Context Failure case, we simulate the uploads of degraded, irrelevant, and empty documents. We employ the LLM-as-a-Judge methodology with Qwen2.5-72B-Instruct and use fine-grained rating criteria to define and calculate Robustness, Context Grounding, and Compliance scores for 24 off-the-shelf models. The results suggest that although some models excel at mitigating input perturbations, they must balance robust answering with the ability to refrain from hallucinating. Notably, Palmyra-Fin-128k-Instruct, recognized as the most compliant model, maintained strong baseline performance but encountered challenges in sustaining robust predictions in 17% of test cases. On the other hand, the most robust model, OpenAI o3-mini, fabricated information in 41% of tested cases. The results demonstrate that even high-performing models have significant room for improvement and highlight the role of FailSafeQA as a tool for developing LLMs optimized for dependability in financial applications. The dataset is available at: https://huggingface.co/datasets/Writer/FailSafeQA
LongCodeZip: Compress Long Context for Code Language Models
Code generation under long contexts is becoming increasingly critical as Large Language Models (LLMs) are required to reason over extensive information in the codebase. While recent advances enable code LLMs to process long inputs, high API costs and generation latency remain substantial bottlenecks. Existing context pruning techniques, such as LLMLingua, achieve promising results for general text but overlook code-specific structures and dependencies, leading to suboptimal performance in programming tasks. In this paper, we propose LongCodeZip, a novel plug-and-play code compression framework designed specifically for code LLMs. LongCodeZip employs a dual-stage strategy: (1) coarse-grained compression, which identifies and ranks function-level chunks using conditional perplexity with respect to the instruction, retaining only the most relevant functions; and (2) fine-grained compression, which segments retained functions into blocks based on perplexity and selects an optimal subset under an adaptive token budget to maximize relevance. Evaluations across multiple tasks, including code completion, summarization, and question answering, show that LongCodeZip consistently outperforms baseline methods, achieving up to a 5.6x compression ratio without degrading task performance. By effectively reducing context size while preserving essential information, LongCodeZip enables LLMs to better scale to real-world, large-scale code scenarios, advancing the efficiency and capability of code intelligence applications.
TCRA-LLM: Token Compression Retrieval Augmented Large Language Model for Inference Cost Reduction
Since ChatGPT released its API for public use, the number of applications built on top of commercial large language models (LLMs) increase exponentially. One popular usage of such models is leveraging its in-context learning ability and generating responses given user queries leveraging knowledge obtained by retrieval augmentation. One problem of deploying commercial retrieval-augmented LLMs is the cost due to the additionally retrieved context that largely increases the input token size of the LLMs. To mitigate this, we propose a token compression scheme that includes two methods: summarization compression and semantic compression. The first method applies a T5-based model that is fine-tuned by datasets generated using self-instruct containing samples with varying lengths and reduce token size by doing summarization. The second method further compresses the token size by removing words with lower impact on the semantic. In order to adequately evaluate the effectiveness of the proposed methods, we propose and utilize a dataset called Food-Recommendation DB (FRDB) focusing on food recommendation for women around pregnancy period or infants. Our summarization compression can reduce 65% of the retrieval token size with further 0.3% improvement on the accuracy; semantic compression provides a more flexible way to trade-off the token size with performance, for which we can reduce the token size by 20% with only 1.6% of accuracy drop.
Optical Emission Model for Binary Black Hole Merger Remnants Travelling through Discs of Active Galactic Nuclei
Active galactic nuclei (AGNs) have been proposed as plausible sites for hosting a sizable fraction of the binary black hole (BBH) mergers measured through gravitational waves (GWs) by the LIGO-Virgo-Kagra (LVK) experiment. These GWs could be accompanied by radiation feedback due to the interaction of the BBH merger remnant with the AGN disc. We present a new predicted radiation signature driven by the passage of a kicked BBH remnant throughout a thin AGN disc. We analyse the situation of a merger occurring outside the thin disc, where the merger is of second or higher generation in a merging hierarchical sequence. The coalescence produces a kicked BH remnant that eventually plunges into the disc, accretes material, and inflates jet cocoons. We consider the case of a jet cocoon propagating quasi-parallel to the disc plane and study the outflow that results when the cocoon emerges from the disc. We calculate the transient emission of the emerging cocoon using a photon diffusion model typically employed to describe the light curves of supernovae. Depending on the parameter configuration, the flare produced by the emerging cocoon could be comparable to or exceed the AGN background emission at optical, and extreme ultraviolet wavelengths. For instance, in AGNs with central engines of sim 5times10^{6} M_odot, flares driven by BH remnants with masses of sim 100 M_odot can appear in about sim[10-100] days after the GW, lasting for few days.
Giraffe: Adventures in Expanding Context Lengths in LLMs
Modern large language models (LLMs) that rely on attention mechanisms are typically trained with fixed context lengths which enforce upper limits on the length of input sequences that they can handle at evaluation time. To use these models on sequences longer than the train-time context length, one might employ techniques from the growing family of context length extrapolation methods -- most of which focus on modifying the system of positional encodings used in the attention mechanism to indicate where tokens or activations are located in the input sequence. We conduct a wide survey of existing methods of context length extrapolation on a base LLaMA or LLaMA 2 model, and introduce some of our own design as well -- in particular, a new truncation strategy for modifying the basis for the position encoding. We test these methods using three new evaluation tasks (FreeFormQA, AlteredNumericQA, and LongChat-Lines) as well as perplexity, which we find to be less fine-grained as a measure of long context performance of LLMs. We release the three tasks publicly as datasets on HuggingFace. We discover that linear scaling is the best method for extending context length, and show that further gains can be achieved by using longer scales at evaluation time. We also discover promising extrapolation capabilities in the truncated basis. To support further research in this area, we release three new 13B parameter long-context models which we call Giraffe: 4k and 16k context models trained from base LLaMA-13B, and a 32k context model trained from base LLaMA2-13B. We also release the code to replicate our results.
Context Clues: Evaluating Long Context Models for Clinical Prediction Tasks on EHRs
Foundation Models (FMs) trained on Electronic Health Records (EHRs) have achieved state-of-the-art results on numerous clinical prediction tasks. However, most existing EHR FMs have context windows of <1k tokens. This prevents them from modeling full patient EHRs which can exceed 10k's of events. Recent advancements in subquadratic long-context architectures (e.g., Mamba) offer a promising solution. However, their application to EHR data has not been well-studied. We address this gap by presenting the first systematic evaluation of the effect of context length on modeling EHR data. We find that longer context models improve predictive performance -- our Mamba-based model surpasses the prior state-of-the-art on 9/14 tasks on the EHRSHOT prediction benchmark. For clinical applications, however, model performance alone is insufficient -- robustness to the unique properties of EHR is crucial. Thus, we also evaluate models across three previously underexplored properties of EHR data: (1) the prevalence of "copy-forwarded" diagnoses which creates artificial repetition of tokens within EHR sequences; (2) the irregular time intervals between EHR events which can lead to a wide range of timespans within a context window; and (3) the natural increase in disease complexity over time which makes later tokens in the EHR harder to predict than earlier ones. Stratifying our EHRSHOT results, we find that higher levels of each property correlate negatively with model performance, but that longer context models are more robust to more extreme levels of these properties. Our work highlights the potential for using long-context architectures to model EHR data, and offers a case study for identifying new challenges in modeling sequential data motivated by domains outside of natural language. We release our models and code at: https://github.com/som-shahlab/long_context_clues
