- Detectability of Supernova Remnants with the Southern Wide-field Gamma-ray Observatory Supernova remnants (SNRs) are likely sources of hadronic particle acceleration within our galaxy, contributing to the galactic cosmic ray flux. Next-generation instruments, such as the Southern Wide-field Gamma-ray Observatory (SWGO), will be of crucial importance in identifying new candidate SNRs. SWGO will observe two-thirds of the gamma-ray sky, covering the energy range between a few hundreds of GeV and a PeV. In this work, we apply a model of SNR evolution to a catalogue of SNRs in order to predict their gamma-ray spectra, explore the SNR emission phase space, and quantify detection prospects for SWGO. Finally, we validate our model for sources observed with current-generation instruments, fitting it using a Monte-Carlo Markov Chain technique to the observed gamma-ray emission from four SNRs. We anticipate that at least 6, and potentially as many as 11 SNRs will be detected by SWGO within 1 year. 4 authors · Oct 21, 2024
- Illusory Attacks: Detectability Matters in Adversarial Attacks on Sequential Decision-Makers Autonomous agents deployed in the real world need to be robust against adversarial attacks on sensory inputs. Robustifying agent policies requires anticipating the strongest attacks possible. We demonstrate that existing observation-space attacks on reinforcement learning agents have a common weakness: while effective, their lack of temporal consistency makes them detectable using automated means or human inspection. Detectability is undesirable to adversaries as it may trigger security escalations. We introduce perfect illusory attacks, a novel form of adversarial attack on sequential decision-makers that is both effective and provably statistically undetectable. We then propose the more versatile R-attacks, which result in observation transitions that are consistent with the state-transition function of the adversary-free environment and can be learned end-to-end. Compared to existing attacks, we empirically find R-attacks to be significantly harder to detect with automated methods, and a small study with human subjects suggests they are similarly harder to detect for humans. We propose that undetectability should be a central concern in the study of adversarial attacks on mixed-autonomy settings. 7 authors · Jul 20, 2022
- Fate and detectability of rare gas hydride ions in nova ejecta: A case study with nova templates HeH^+ was the first heteronuclear molecule to form in the metal-free Universe after the Big Bang. The molecule gained significant attention following its first circumstellar detection in the young and dense planetary nebula NGC 7027. We target some hydride ions associated with the noble gases (HeH^+, ArH^+, and NeH^+) to investigate their formation in harsh environments like the nova outburst region. We use a photoionization modeling (based on previously published best-fit physical parameters) of the moderately fast ONe type nova, QU Vulpeculae 1984, and the CO type novae, RS Ophiuchi and V1716 Scorpii. Our steady-state modeling reveals a convincing amount of HeH^+, especially in the dense clump of RS Ophiuchi and V1716 Scorpii. The calculated upper limit on the surface brightness of HeH^+ transitions suggests that the James Webb Space Telescope (JWST) could detect some of them, particularly in sources like RS Ophiuchi and V1716 Scorpii, which have similar physical and chemical conditions and evolution. It must be clearly noted that the sources studied are used as templates, and not as targets for observations. The detection of these lines could be useful for determining the physical conditions in similar types of systems and for validating our predictions based on new electron-impact ro-vibrational collisional data at temperatures of up to 20,000 K. 9 authors · Nov 8, 2024
- Detecting AI-Generated Text: Factors Influencing Detectability with Current Methods Large language models (LLMs) have advanced to a point that even humans have difficulty discerning whether a text was generated by another human, or by a computer. However, knowing whether a text was produced by human or artificial intelligence (AI) is important to determining its trustworthiness, and has applications in many domains including detecting fraud and academic dishonesty, as well as combating the spread of misinformation and political propaganda. The task of AI-generated text (AIGT) detection is therefore both very challenging, and highly critical. In this survey, we summarize state-of-the art approaches to AIGT detection, including watermarking, statistical and stylistic analysis, and machine learning classification. We also provide information about existing datasets for this task. Synthesizing the research findings, we aim to provide insight into the salient factors that combine to determine how "detectable" AIGT text is under different scenarios, and to make practical recommendations for future work towards this significant technical and societal challenge. 3 authors · Jun 21, 2024
- WaterMax: breaking the LLM watermark detectability-robustness-quality trade-off Watermarking is a technical means to dissuade malfeasant usage of Large Language Models. This paper proposes a novel watermarking scheme, so-called WaterMax, that enjoys high detectability while sustaining the quality of the generated text of the original LLM. Its new design leaves the LLM untouched (no modification of the weights, logits, temperature, or sampling technique). WaterMax balances robustness and complexity contrary to the watermarking techniques of the literature inherently provoking a trade-off between quality and robustness. Its performance is both theoretically proven and experimentally validated. It outperforms all the SotA techniques under the most complete benchmark suite. Code available at https://github.com/eva-giboulot/WaterMax. 2 authors · Mar 6, 2024
- Counter Turing Test CT^2: AI-Generated Text Detection is Not as Easy as You May Think -- Introducing AI Detectability Index With the rise of prolific ChatGPT, the risk and consequences of AI-generated text has increased alarmingly. To address the inevitable question of ownership attribution for AI-generated artifacts, the US Copyright Office released a statement stating that 'If a work's traditional elements of authorship were produced by a machine, the work lacks human authorship and the Office will not register it'. Furthermore, both the US and the EU governments have recently drafted their initial proposals regarding the regulatory framework for AI. Given this cynosural spotlight on generative AI, AI-generated text detection (AGTD) has emerged as a topic that has already received immediate attention in research, with some initial methods having been proposed, soon followed by emergence of techniques to bypass detection. This paper introduces the Counter Turing Test (CT^2), a benchmark consisting of techniques aiming to offer a comprehensive evaluation of the robustness of existing AGTD techniques. Our empirical findings unequivocally highlight the fragility of the proposed AGTD methods under scrutiny. Amidst the extensive deliberations on policy-making for regulating AI development, it is of utmost importance to assess the detectability of content generated by LLMs. Thus, to establish a quantifiable spectrum facilitating the evaluation and ranking of LLMs according to their detectability levels, we propose the AI Detectability Index (ADI). We conduct a thorough examination of 15 contemporary LLMs, empirically demonstrating that larger LLMs tend to have a higher ADI, indicating they are less detectable compared to smaller LLMs. We firmly believe that ADI holds significant value as a tool for the wider NLP community, with the potential to serve as a rubric in AI-related policy-making. 12 authors · Oct 8, 2023
16 Training Language Models on the Knowledge Graph: Insights on Hallucinations and Their Detectability While many capabilities of language models (LMs) improve with increased training budget, the influence of scale on hallucinations is not yet fully understood. Hallucinations come in many forms, and there is no universally accepted definition. We thus focus on studying only those hallucinations where a correct answer appears verbatim in the training set. To fully control the training data content, we construct a knowledge graph (KG)-based dataset, and use it to train a set of increasingly large LMs. We find that for a fixed dataset, larger and longer-trained LMs hallucinate less. However, hallucinating on leq5% of the training data requires an order of magnitude larger model, and thus an order of magnitude more compute, than Hoffmann et al. (2022) reported was optimal. Given this costliness, we study how hallucination detectors depend on scale. While we see detector size improves performance on fixed LM's outputs, we find an inverse relationship between the scale of the LM and the detectability of its hallucinations. 31 authors · Aug 14, 2024 2
- Counter Turing Test ($CT^2$): Investigating AI-Generated Text Detection for Hindi -- Ranking LLMs based on Hindi AI Detectability Index ($ADI_{hi}$) The widespread adoption of large language models (LLMs) and awareness around multilingual LLMs have raised concerns regarding the potential risks and repercussions linked to the misapplication of AI-generated text, necessitating increased vigilance. While these models are primarily trained for English, their extensive training on vast datasets covering almost the entire web, equips them with capabilities to perform well in numerous other languages. AI-Generated Text Detection (AGTD) has emerged as a topic that has already received immediate attention in research, with some initial methods having been proposed, soon followed by the emergence of techniques to bypass detection. In this paper, we report our investigation on AGTD for an indic language Hindi. Our major contributions are in four folds: i) examined 26 LLMs to evaluate their proficiency in generating Hindi text, ii) introducing the AI-generated news article in Hindi (AG_{hi}) dataset, iii) evaluated the effectiveness of five recently proposed AGTD techniques: ConDA, J-Guard, RADAR, RAIDAR and Intrinsic Dimension Estimation for detecting AI-generated Hindi text, iv) proposed Hindi AI Detectability Index (ADI_{hi}) which shows a spectrum to understand the evolving landscape of eloquence of AI-generated text in Hindi. We will make the codes and datasets available to encourage further research. 6 authors · Jul 22, 2024
- A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks We consider the two related problems of detecting if an example is misclassified or out-of-distribution. We present a simple baseline that utilizes probabilities from softmax distributions. Correctly classified examples tend to have greater maximum softmax probabilities than erroneously classified and out-of-distribution examples, allowing for their detection. We assess performance by defining several tasks in computer vision, natural language processing, and automatic speech recognition, showing the effectiveness of this baseline across all. We then show the baseline can sometimes be surpassed, demonstrating the room for future research on these underexplored detection tasks. 2 authors · Oct 7, 2016
- Relative Likelihood of Success in the Searches for Primitive versus Intelligent Extraterrestrial Life We estimate the relative likelihood of success in the searches for primitive versus intelligent life on other planets. Taking into account the larger search volume for detectable artificial electromagnetic signals, we conclude that both searches should be performed concurrently, albeit with significantly more funding dedicated to primitive life. Based on the current federal funding allocated to the search for biosignatures, our analysis suggests that the search for extraterrestrial intelligence (SETI) may merit a federal funding level of at least 10$ million per year, assuming that the average lifetime of technological species exceeds a millennium. 2 authors · Jul 23, 2018
- Anomaly Detection in Autonomous Driving: A Survey Nowadays, there are outstanding strides towards a future with autonomous vehicles on our roads. While the perception of autonomous vehicles performs well under closed-set conditions, they still struggle to handle the unexpected. This survey provides an extensive overview of anomaly detection techniques based on camera, lidar, radar, multimodal and abstract object level data. We provide a systematization including detection approach, corner case level, ability for an online application, and further attributes. We outline the state-of-the-art and point out current research gaps. 3 authors · Apr 17, 2022 1
- Towards a Universal Method for Meaningful Signal Detection It is known that human speech and certain animal vocalizations can convey meaningful content because we can decipher the content that a given utterance does convey. This paper explores an alternative approach to determining whether a signal is meaningful, one that analyzes only the signal itself and is independent of what the conveyed meaning might be. We devise a method that takes a waveform as input and outputs a score indicating its degree of `meaningfulness`. We cluster contiguous portions of the input to minimize the total description length, and then take the length of the code of the assigned cluster labels as meaningfulness score. We evaluate our method empirically, against several baselines, and show that it is the only one to give a high score to human speech in various languages and with various speakers, a moderate score to animal vocalizations from birds and orcas, and a low score to ambient noise from various sources. 1 authors · Jul 28, 2024
- V3Det Challenge 2024 on Vast Vocabulary and Open Vocabulary Object Detection: Methods and Results Detecting objects in real-world scenes is a complex task due to various challenges, including the vast range of object categories, and potential encounters with previously unknown or unseen objects. The challenges necessitate the development of public benchmarks and challenges to advance the field of object detection. Inspired by the success of previous COCO and LVIS Challenges, we organize the V3Det Challenge 2024 in conjunction with the 4th Open World Vision Workshop: Visual Perception via Learning in an Open World (VPLOW) at CVPR 2024, Seattle, US. This challenge aims to push the boundaries of object detection research and encourage innovation in this field. The V3Det Challenge 2024 consists of two tracks: 1) Vast Vocabulary Object Detection: This track focuses on detecting objects from a large set of 13204 categories, testing the detection algorithm's ability to recognize and locate diverse objects. 2) Open Vocabulary Object Detection: This track goes a step further, requiring algorithms to detect objects from an open set of categories, including unknown objects. In the following sections, we will provide a comprehensive summary and analysis of the solutions submitted by participants. By analyzing the methods and solutions presented, we aim to inspire future research directions in vast vocabulary and open-vocabulary object detection, driving progress in this field. Challenge homepage: https://v3det.openxlab.org.cn/challenge 34 authors · Jun 17, 2024
- Phase Transitions in the Detection of Correlated Databases We study the problem of detecting the correlation between two Gaussian databases XinR^{ntimes d} and Y^{ntimes d}, each composed of n users with d features. This problem is relevant in the analysis of social media, computational biology, etc. We formulate this as a hypothesis testing problem: under the null hypothesis, these two databases are statistically independent. Under the alternative, however, there exists an unknown permutation sigma over the set of n users (or, row permutation), such that X is rho-correlated with Y^sigma, a permuted version of Y. We determine sharp thresholds at which optimal testing exhibits a phase transition, depending on the asymptotic regime of n and d. Specifically, we prove that if rho^2dto0, as dtoinfty, then weak detection (performing slightly better than random guessing) is statistically impossible, irrespectively of the value of n. This compliments the performance of a simple test that thresholds the sum all entries of X^TY. Furthermore, when d is fixed, we prove that strong detection (vanishing error probability) is impossible for any rho<rho^star, where rho^star is an explicit function of d, while weak detection is again impossible as long as rho^2dto0. These results close significant gaps in current recent related studies. 2 authors · Feb 7, 2023
2 Object Detection in 20 Years: A Survey Object detection, as of one the most fundamental and challenging problems in computer vision, has received great attention in recent years. Over the past two decades, we have seen a rapid technological evolution of object detection and its profound impact on the entire computer vision field. If we consider today's object detection technique as a revolution driven by deep learning, then back in the 1990s, we would see the ingenious thinking and long-term perspective design of early computer vision. This paper extensively reviews this fast-moving research field in the light of technical evolution, spanning over a quarter-century's time (from the 1990s to 2022). A number of topics have been covered in this paper, including the milestone detectors in history, detection datasets, metrics, fundamental building blocks of the detection system, speed-up techniques, and the recent state-of-the-art detection methods. 5 authors · May 13, 2019
- Midgar: Detection of people through computer vision in the Internet of Things scenarios to improve the security in Smart Cities, Smart Towns, and Smart Homes Could we use Computer Vision in the Internet of Things for using pictures as sensors? This is the principal hypothesis that we want to resolve. Currently, in order to create safety areas, cities, or homes, people use IP cameras. Nevertheless, this system needs people who watch the camera images, watch the recording after something occurred, or watch when the camera notifies them of any movement. These are the disadvantages. Furthermore, there are many Smart Cities and Smart Homes around the world. This is why we thought of using the idea of the Internet of Things to add a way of automating the use of IP cameras. In our case, we propose the analysis of pictures through Computer Vision to detect people in the analysed pictures. With this analysis, we are able to obtain if these pictures contain people and handle the pictures as if they were sensors with two possible states. Notwithstanding, Computer Vision is a very complicated field. This is why we needed a second hypothesis: Could we work with Computer Vision in the Internet of Things with a good accuracy to automate or semi-automate this kind of events? The demonstration of these hypotheses required a testing over our Computer Vision module to check the possibilities that we have to use this module in a possible real environment with a good accuracy. Our proposal, as a possible solution, is the analysis of entire sequence instead of isolated pictures for using pictures as sensors in the Internet of Things. 5 authors · Jan 10, 2017
- Do uHear? Validation of uHear App for Preliminary Screening of Hearing Ability in Soundscape Studies Studies involving soundscape perception often exclude participants with hearing loss to prevent impaired perception from affecting experimental results. Participants are typically screened with pure tone audiometry, the "gold standard" for identifying and quantifying hearing loss at specific frequencies, and excluded if a study-dependent threshold is not met. However, procuring professional audiometric equipment for soundscape studies may be cost-ineffective, and manually performing audiometric tests is labour-intensive. Moreover, testing requirements for soundscape studies may not require sensitivities and specificities as high as that in a medical diagnosis setting. Hence, in this study, we investigate the effectiveness of the uHear app, an iOS application, as an affordable and automatic alternative to a conventional audiometer in screening participants for hearing loss for the purpose of soundscape studies or listening tests in general. Based on audiometric comparisons with the audiometer of 163 participants, the uHear app was found to have high precision (98.04%) when using the World Health Organization (WHO) grading scheme for assessing normal hearing. Precision is further improved (98.69%) when all frequencies assessed with the uHear app is considered in the grading, which lends further support to this cost-effective, automated alternative to screen for normal hearing. 6 authors · Jul 16, 2022
1 Improving Drone Imagery For Computer Vision/Machine Learning in Wilderness Search and Rescue This paper describes gaps in acquisition of drone imagery that impair the use with computer vision/machine learning (CV/ML) models and makes five recommendations to maximize image suitability for CV/ML post-processing. It describes a notional work process for the use of drones in wilderness search and rescue incidents. The large volume of data from the wide area search phase offers the greatest opportunity for CV/ML techniques because of the large number of images that would otherwise have to be manually inspected. The 2023 Wu-Murad search in Japan, one of the largest missing person searches conducted in that area, serves as a case study. Although drone teams conducting wide area searches may not know in advance if the data they collect is going to be used for CV/ML post-processing, there are data collection procedures that can improve the search in general with automated collection software. If the drone teams do expect to use CV/ML, then they can exploit knowledge about the model to further optimize flights. 2 authors · Sep 4, 2023
4 Detection Avoidance Techniques for Large Language Models The increasing popularity of large language models has not only led to widespread use but has also brought various risks, including the potential for systematically spreading fake news. Consequently, the development of classification systems such as DetectGPT has become vital. These detectors are vulnerable to evasion techniques, as demonstrated in an experimental series: Systematic changes of the generative models' temperature proofed shallow learning-detectors to be the least reliable. Fine-tuning the generative model via reinforcement learning circumvented BERT-based-detectors. Finally, rephrasing led to a >90\% evasion of zero-shot-detectors like DetectGPT, although texts stayed highly similar to the original. A comparison with existing work highlights the better performance of the presented methods. Possible implications for society and further research are discussed. 4 authors · Mar 10 1
- Algorithmic Writing Assistance on Jobseekers' Resumes Increases Hires There is a strong association between the quality of the writing in a resume for new labor market entrants and whether those entrants are ultimately hired. We show that this relationship is, at least partially, causal: a field experiment in an online labor market was conducted with nearly half a million jobseekers in which a treated group received algorithmic writing assistance. Treated jobseekers experienced an 8% increase in the probability of getting hired. Contrary to concerns that the assistance is taking away a valuable signal, we find no evidence that employers were less satisfied. We present a model in which better writing is not a signal of ability but helps employers ascertain ability, which rationalizes our findings. 3 authors · Jan 19, 2023
- Discovering Transferable Forensic Features for CNN-generated Images Detection Visual counterfeits are increasingly causing an existential conundrum in mainstream media with rapid evolution in neural image synthesis methods. Though detection of such counterfeits has been a taxing problem in the image forensics community, a recent class of forensic detectors -- universal detectors -- are able to surprisingly spot counterfeit images regardless of generator architectures, loss functions, training datasets, and resolutions. This intriguing property suggests the possible existence of transferable forensic features (T-FF) in universal detectors. In this work, we conduct the first analytical study to discover and understand T-FF in universal detectors. Our contributions are 2-fold: 1) We propose a novel forensic feature relevance statistic (FF-RS) to quantify and discover T-FF in universal detectors and, 2) Our qualitative and quantitative investigations uncover an unexpected finding: color is a critical T-FF in universal detectors. Code and models are available at https://keshik6.github.io/transferable-forensic-features/ 4 authors · Aug 24, 2022
- YOLOv1 to YOLOv10: A comprehensive review of YOLO variants and their application in the agricultural domain This survey investigates the transformative potential of various YOLO variants, from YOLOv1 to the state-of-the-art YOLOv10, in the context of agricultural advancements. The primary objective is to elucidate how these cutting-edge object detection models can re-energise and optimize diverse aspects of agriculture, ranging from crop monitoring to livestock management. It aims to achieve key objectives, including the identification of contemporary challenges in agriculture, a detailed assessment of YOLO's incremental advancements, and an exploration of its specific applications in agriculture. This is one of the first surveys to include the latest YOLOv10, offering a fresh perspective on its implications for precision farming and sustainable agricultural practices in the era of Artificial Intelligence and automation. Further, the survey undertakes a critical analysis of YOLO's performance, synthesizes existing research, and projects future trends. By scrutinizing the unique capabilities packed in YOLO variants and their real-world applications, this survey provides valuable insights into the evolving relationship between YOLO variants and agriculture. The findings contribute towards a nuanced understanding of the potential for precision farming and sustainable agricultural practices, marking a significant step forward in the integration of advanced object detection technologies within the agricultural sector. 2 authors · Jun 14, 2024
- Language Models Optimized to Fool Detectors Still Have a Distinct Style (And How to Change It) Despite considerable progress in the development of machine-text detectors, it has been suggested that the problem is inherently hard, and therefore, that stakeholders should proceed under the assumption that machine-generated text cannot be reliably detected as such. We examine a recent such claim by Nicks et al. (2024) regarding the ease with which language models can be optimized to degrade the performance of machine-text detectors, including detectors not specifically optimized against. We identify a feature spacex2013the stylistic feature spacex2013that is robust to such optimization, and show that it may be used to reliably detect samples from language models optimized to prevent detection. Furthermore, we show that even when models are explicitly optimized against stylistic detectors, detection performance remains surprisingly unaffected. We then seek to understand if stylistic detectors are inherently more robust. To study this question, we explore a new paraphrasing approach that simultaneously aims to close the gap between human writing and machine writing in stylistic feature space while avoiding detection using traditional features. We show that when only a single sample is available for detection, this attack is universally effective across all detectors considered, including those that use writing style. However, as the number of samples available for detection grows, the human and machine distributions become distinguishable. This observation encourages us to introduce AURA, a metric that estimates the overlap between human and machine-generated distributions by analyzing how detector performance improves as more samples become available. Overall, our findings underscore previous recommendations to avoid reliance on machine-text detection. 3 authors · May 20
- The Tracking Machine Learning challenge : Throughput phase This paper reports on the second "Throughput" phase of the Tracking Machine Learning (TrackML) challenge on the Codalab platform. As in the first "Accuracy" phase, the participants had to solve a difficult experimental problem linked to tracking accurately the trajectory of particles as e.g. created at the Large Hadron Collider (LHC): given O(10^5) points, the participants had to connect them into O(10^4) individual groups that represent the particle trajectories which are approximated helical. While in the first phase only the accuracy mattered, the goal of this second phase was a compromise between the accuracy and the speed of inference. Both were measured on the Codalab platform where the participants had to upload their software. The best three participants had solutions with good accuracy and speed an order of magnitude faster than the state of the art when the challenge was designed. Although the core algorithms were less diverse than in the first phase, a diversity of techniques have been used and are described in this paper. The performance of the algorithms are analysed in depth and lessons derived. 21 authors · May 3, 2021
- Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition Describes an audio dataset of spoken words designed to help train and evaluate keyword spotting systems. Discusses why this task is an interesting challenge, and why it requires a specialized dataset that is different from conventional datasets used for automatic speech recognition of full sentences. Suggests a methodology for reproducible and comparable accuracy metrics for this task. Describes how the data was collected and verified, what it contains, previous versions and properties. Concludes by reporting baseline results of models trained on this dataset. 1 authors · Apr 9, 2018
4 An accurate detection is not all you need to combat label noise in web-noisy datasets Training a classifier on web-crawled data demands learning algorithms that are robust to annotation errors and irrelevant examples. This paper builds upon the recent empirical observation that applying unsupervised contrastive learning to noisy, web-crawled datasets yields a feature representation under which the in-distribution (ID) and out-of-distribution (OOD) samples are linearly separable. We show that direct estimation of the separating hyperplane can indeed offer an accurate detection of OOD samples, and yet, surprisingly, this detection does not translate into gains in classification accuracy. Digging deeper into this phenomenon, we discover that the near-perfect detection misses a type of clean examples that are valuable for supervised learning. These examples often represent visually simple images, which are relatively easy to identify as clean examples using standard loss- or distance-based methods despite being poorly separated from the OOD distribution using unsupervised learning. Because we further observe a low correlation with SOTA metrics, this urges us to propose a hybrid solution that alternates between noise detection using linear separation and a state-of-the-art (SOTA) small-loss approach. When combined with the SOTA algorithm PLS, we substantially improve SOTA results for real-world image classification in the presence of web noise github.com/PaulAlbert31/LSA 6 authors · Jul 7, 2024 4
- Increasing the Robustness of the Fine-tuned Multilingual Machine-Generated Text Detectors Since the proliferation of LLMs, there have been concerns about their misuse for harmful content creation and spreading. Recent studies justify such fears, providing evidence of LLM vulnerabilities and high potential of their misuse. Humans are no longer able to distinguish between high-quality machine-generated and authentic human-written texts. Therefore, it is crucial to develop automated means to accurately detect machine-generated content. It would enable to identify such content in online information space, thus providing an additional information about its credibility. This work addresses the problem by proposing a robust fine-tuning process of LLMs for the detection task, making the detectors more robust against obfuscation and more generalizable to out-of-distribution data. 3 authors · Mar 19
- Towards Total Recall in Industrial Anomaly Detection Being able to spot defective parts is a critical component in large-scale industrial manufacturing. A particular challenge that we address in this work is the cold-start problem: fit a model using nominal (non-defective) example images only. While handcrafted solutions per class are possible, the goal is to build systems that work well simultaneously on many different tasks automatically. The best performing approaches combine embeddings from ImageNet models with an outlier detection model. In this paper, we extend on this line of work and propose PatchCore, which uses a maximally representative memory bank of nominal patch-features. PatchCore offers competitive inference times while achieving state-of-the-art performance for both detection and localization. On the challenging, widely used MVTec AD benchmark PatchCore achieves an image-level anomaly detection AUROC score of up to 99.6%, more than halving the error compared to the next best competitor. We further report competitive results on two additional datasets and also find competitive results in the few samples regime.^* Work done during a research internship at Amazon AWS. Code: github.com/amazon-research/patchcore-inspection. 6 authors · Jun 15, 2021
- Algorithmic Ways of Seeing: Using Object Detection to Facilitate Art Exploration This Research through Design paper explores how object detection may be applied to a large digital art museum collection to facilitate new ways of encountering and experiencing art. We present the design and evaluation of an interactive application called SMKExplore, which allows users to explore a museum's digital collection of paintings by browsing through objects detected in the images, as a novel form of open-ended exploration. We provide three contributions. First, we show how an object detection pipeline can be integrated into a design process for visual exploration. Second, we present the design and development of an app that enables exploration of an art museum's collection. Third, we offer reflections on future possibilities for museums and HCI researchers to incorporate object detection techniques into the digitalization of museums. 7 authors · Mar 28, 2024
1 I Need Help! Evaluating LLM's Ability to Ask for Users' Support: A Case Study on Text-to-SQL Generation This study explores the proactive ability of LLMs to seek user support. We propose metrics to evaluate the trade-off between performance improvements and user burden, and investigate whether LLMs can determine when to request help under varying information availability. Our experiments show that without external feedback, many LLMs struggle to recognize their need for user support. The findings highlight the importance of external signals and provide insights for future research on improving support-seeking strategies. Source code: https://github.com/appier-research/i-need-help 6 authors · Jul 20, 2024
- A noisy elephant in the room: Is your out-of-distribution detector robust to label noise? The ability to detect unfamiliar or unexpected images is essential for safe deployment of computer vision systems. In the context of classification, the task of detecting images outside of a model's training domain is known as out-of-distribution (OOD) detection. While there has been a growing research interest in developing post-hoc OOD detection methods, there has been comparably little discussion around how these methods perform when the underlying classifier is not trained on a clean, carefully curated dataset. In this work, we take a closer look at 20 state-of-the-art OOD detection methods in the (more realistic) scenario where the labels used to train the underlying classifier are unreliable (e.g. crowd-sourced or web-scraped labels). Extensive experiments across different datasets, noise types & levels, architectures and checkpointing strategies provide insights into the effect of class label noise on OOD detection, and show that poor separation between incorrectly classified ID samples vs. OOD samples is an overlooked yet important limitation of existing methods. Code: https://github.com/glhr/ood-labelnoise 3 authors · Apr 2, 2024
- A Puzzle-Based Dataset for Natural Language Inference We provide here a dataset for tasks related to natural language understanding and natural language inference. The dataset contains logical puzzles in natural language from three domains: comparing puzzles, knighs and knaves, and zebra puzzles. Each puzzle is associated with the entire set of atomic questions that can be generated based on the relations and individuals occurring in the text. For each question we provide the correct answer: entailment, contradiction or ambiguity. The answer's correctness is verified against theorem provers. Good puzzles have two properties: (i) each piece of information is necessary and (ii) no unnecessary information is provided. These properties make puzzles interesting candidates for machine comprehension tasks. 2 authors · Dec 10, 2021
- Real-time Object Detection: YOLOv1 Re-Implementation in PyTorch Real-time object detection is a crucial problem to solve when in comes to computer vision systems that needs to make appropriate decision based on detection in a timely manner. I have chosen the YOLO v1 architecture to implement it using PyTorch framework, with goal to familiarize with entire object detection pipeline I attempted different techniques to modify the original architecture to improve the results. Finally, I compare the metrics of my implementation to the original. 1 authors · May 28, 2023
1 PCB-Fire: Automated Classification and Fault Detection in PCB Printed Circuit Boards are the foundation for the functioning of any electronic device, and therefore are an essential component for various industries such as automobile, communication, computation, etc. However, one of the challenges faced by the PCB manufacturers in the process of manufacturing of the PCBs is the faulty placement of its components including missing components. In the present scenario the infrastructure required to ensure adequate quality of the PCB requires a lot of time and effort. The authors present a novel solution for detecting missing components and classifying them in a resourceful manner. The presented algorithm focuses on pixel theory and object detection, which has been used in combination to optimize the results from the given dataset. 3 authors · Feb 22, 2021
- Interpreting Black Box Models via Hypothesis Testing In science and medicine, model interpretations may be reported as discoveries of natural phenomena or used to guide patient treatments. In such high-stakes tasks, false discoveries may lead investigators astray. These applications would therefore benefit from control over the finite-sample error rate of interpretations. We reframe black box model interpretability as a multiple hypothesis testing problem. The task is to discover "important" features by testing whether the model prediction is significantly different from what would be expected if the features were replaced with uninformative counterfactuals. We propose two testing methods: one that provably controls the false discovery rate but which is not yet feasible for large-scale applications, and an approximate testing method which can be applied to real-world data sets. In simulation, both tests have high power relative to existing interpretability methods. When applied to state-of-the-art vision and language models, the framework selects features that intuitively explain model predictions. The resulting explanations have the additional advantage that they are themselves easy to interpret. 3 authors · Mar 29, 2019
- Development of an NLP-driven computer-based test guide for visually impaired students In recent years, advancements in Natural Language Processing (NLP) techniques have revolutionized the field of accessibility and exclusivity of testing, particularly for visually impaired students (VIS). CBT has shown in years back its relevance in terms of administering exams electronically, making the test process easier, providing quicker and more accurate results, and offering greater flexibility and accessibility for candidates. Yet, its relevance was not felt by the visually impaired students as they cannot access printed documents. Hence, in this paper, we present an NLP-driven Computer-Based Test guide for visually impaired students. It employs a speech technology pre-trained methods to provide real-time assistance and support to visually impaired students. The system utilizes NLP technologies to convert the text-based questions and the associated options in a machine-readable format. Subsequently, the speech technology pre-trained model processes the converted text enabling the VIS to comprehend and analyze the content. Furthermore, we validated that this pre-trained model is not perverse by testing for accuracy using sample audio datasets labels (A, B, C, D, E, F, G) to compare with the voice recordings obtained from 20 VIS which is been predicted by the system to attain values for precision, recall, and F1-scores. These metrics are used to assess the performance of the pre-trained model and have indicated that it is proficient enough to give its better performance to the evaluated system. The methodology adopted for this system is Object Oriented Analysis and Design Methodology (OOADM) where Objects are discussed and built by modeling real-world instances. 3 authors · Jan 22, 2024
- Beyond AUROC & co. for evaluating out-of-distribution detection performance While there has been a growing research interest in developing out-of-distribution (OOD) detection methods, there has been comparably little discussion around how these methods should be evaluated. Given their relevance for safe(r) AI, it is important to examine whether the basis for comparing OOD detection methods is consistent with practical needs. In this work, we take a closer look at the go-to metrics for evaluating OOD detection, and question the approach of exclusively reducing OOD detection to a binary classification task with little consideration for the detection threshold. We illustrate the limitations of current metrics (AUROC & its friends) and propose a new metric - Area Under the Threshold Curve (AUTC), which explicitly penalizes poor separation between ID and OOD samples. Scripts and data are available at https://github.com/glhr/beyond-auroc 3 authors · Jun 26, 2023
- MMDetection: Open MMLab Detection Toolbox and Benchmark We present MMDetection, an object detection toolbox that contains a rich set of object detection and instance segmentation methods as well as related components and modules. The toolbox started from a codebase of MMDet team who won the detection track of COCO Challenge 2018. It gradually evolves into a unified platform that covers many popular detection methods and contemporary modules. It not only includes training and inference codes, but also provides weights for more than 200 network models. We believe this toolbox is by far the most complete detection toolbox. In this paper, we introduce the various features of this toolbox. In addition, we also conduct a benchmarking study on different methods, components, and their hyper-parameters. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new detectors. Code and models are available at https://github.com/open-mmlab/mmdetection. The project is under active development and we will keep this document updated. 25 authors · Jun 17, 2019
- Penalizing Unfairness in Binary Classification We present a new approach for mitigating unfairness in learned classifiers. In particular, we focus on binary classification tasks over individuals from two populations, where, as our criterion for fairness, we wish to achieve similar false positive rates in both populations, and similar false negative rates in both populations. As a proof of concept, we implement our approach and empirically evaluate its ability to achieve both fairness and accuracy, using datasets from the fields of criminal risk assessment, credit, lending, and college admissions. 2 authors · Jun 30, 2017
1 Building astroBERT, a language model for Astronomy & Astrophysics The existing search tools for exploring the NASA Astrophysics Data System (ADS) can be quite rich and empowering (e.g., similar and trending operators), but researchers are not yet allowed to fully leverage semantic search. For example, a query for "results from the Planck mission" should be able to distinguish between all the various meanings of Planck (person, mission, constant, institutions and more) without further clarification from the user. At ADS, we are applying modern machine learning and natural language processing techniques to our dataset of recent astronomy publications to train astroBERT, a deeply contextual language model based on research at Google. Using astroBERT, we aim to enrich the ADS dataset and improve its discoverability, and in particular we are developing our own named entity recognition tool. We present here our preliminary results and lessons learned. 17 authors · Dec 1, 2021
- Learning Invariant Representations with Missing Data Spurious correlations allow flexible models to predict well during training but poorly on related test distributions. Recent work has shown that models that satisfy particular independencies involving correlation-inducing nuisance variables have guarantees on their test performance. Enforcing such independencies requires nuisances to be observed during training. However, nuisances, such as demographics or image background labels, are often missing. Enforcing independence on just the observed data does not imply independence on the entire population. Here we derive mmd estimators used for invariance objectives under missing nuisances. On simulations and clinical data, optimizing through these estimates achieves test performance similar to using estimators that make use of the full data. 7 authors · Dec 1, 2021
- Improving traffic sign recognition by active search We describe an iterative active-learning algorithm to recognise rare traffic signs. A standard ResNet is trained on a training set containing only a single sample of the rare class. We demonstrate that by sorting the samples of a large, unlabeled set by the estimated probability of belonging to the rare class, we can efficiently identify samples from the rare class. This works despite the fact that this estimated probability is usually quite low. A reliable active-learning loop is obtained by labeling these candidate samples, including them in the training set, and iterating the procedure. Further, we show that we get similar results starting from a single synthetic sample. Our results are important as they indicate a straightforward way of improving traffic-sign recognition for automated driving systems. In addition, they show that we can make use of the information hidden in low confidence outputs, which is usually ignored. 5 authors · Nov 29, 2021
- Detectors for Safe and Reliable LLMs: Implementations, Uses, and Limitations Large language models (LLMs) are susceptible to a variety of risks, from non-faithful output to biased and toxic generations. Due to several limiting factors surrounding LLMs (training cost, API access, data availability, etc.), it may not always be feasible to impose direct safety constraints on a deployed model. Therefore, an efficient and reliable alternative is required. To this end, we present our ongoing efforts to create and deploy a library of detectors: compact and easy-to-build classification models that provide labels for various harms. In addition to the detectors themselves, we discuss a wide range of uses for these detector models - from acting as guardrails to enabling effective AI governance. We also deep dive into inherent challenges in their development and discuss future work aimed at making the detectors more reliable and broadening their scope. 38 authors · Mar 9, 2024
- Sensors, Safety Models and A System-Level Approach to Safe and Scalable Automated Vehicles When considering the accuracy of sensors in an automated vehicle (AV), it is not sufficient to evaluate the performance of any given sensor in isolation. Rather, the performance of any individual sensor must be considered in the context of the overall system design. Techniques like redundancy and different sensing modalities can reduce the chances of a sensing failure. Additionally, the use of safety models is essential to understanding whether any particular sensing failure is relevant. Only when the entire system design is taken into account can one properly understand the meaning of safety-relevant sensing failures in an AV. In this paper, we will consider what should actually constitute a sensing failure, how safety models play an important role in mitigating potential failures, how a system-level approach to safety will deliver a safe and scalable AV, and what an acceptable sensing failure rate should be considering the full picture of an AV's architecture. 1 authors · Sep 4, 2020
- Bounding Box Stability against Feature Dropout Reflects Detector Generalization across Environments Bounding boxes uniquely characterize object detection, where a good detector gives accurate bounding boxes of categories of interest. However, in the real-world where test ground truths are not provided, it is non-trivial to find out whether bounding boxes are accurate, thus preventing us from assessing the detector generalization ability. In this work, we find under feature map dropout, good detectors tend to output bounding boxes whose locations do not change much, while bounding boxes of poor detectors will undergo noticeable position changes. We compute the box stability score (BoS score) to reflect this stability. Specifically, given an image, we compute a normal set of bounding boxes and a second set after feature map dropout. To obtain BoS score, we use bipartite matching to find the corresponding boxes between the two sets and compute the average Intersection over Union (IoU) across the entire test set. We contribute to finding that BoS score has a strong, positive correlation with detection accuracy measured by mean average precision (mAP) under various test environments. This relationship allows us to predict the accuracy of detectors on various real-world test sets without accessing test ground truths, verified on canonical detection tasks such as vehicle detection and pedestrian detection. Code and data are available at https://github.com/YangYangGirl/BoS. 5 authors · Mar 20, 2024
- Cascade R-CNN: Delving into High Quality Object Detection In object detection, an intersection over union (IoU) threshold is required to define positives and negatives. An object detector, trained with low IoU threshold, e.g. 0.5, usually produces noisy detections. However, detection performance tends to degrade with increasing the IoU thresholds. Two main factors are responsible for this: 1) overfitting during training, due to exponentially vanishing positive samples, and 2) inference-time mismatch between the IoUs for which the detector is optimal and those of the input hypotheses. A multi-stage object detection architecture, the Cascade R-CNN, is proposed to address these problems. It consists of a sequence of detectors trained with increasing IoU thresholds, to be sequentially more selective against close false positives. The detectors are trained stage by stage, leveraging the observation that the output of a detector is a good distribution for training the next higher quality detector. The resampling of progressively improved hypotheses guarantees that all detectors have a positive set of examples of equivalent size, reducing the overfitting problem. The same cascade procedure is applied at inference, enabling a closer match between the hypotheses and the detector quality of each stage. A simple implementation of the Cascade R-CNN is shown to surpass all single-model object detectors on the challenging COCO dataset. Experiments also show that the Cascade R-CNN is widely applicable across detector architectures, achieving consistent gains independently of the baseline detector strength. The code will be made available at https://github.com/zhaoweicai/cascade-rcnn. 2 authors · Dec 3, 2017
- A Manually Annotated Image-Caption Dataset for Detecting Children in the Wild Platforms and the law regulate digital content depicting minors (defined as individuals under 18 years of age) differently from other types of content. Given the sheer amount of content that needs to be assessed, machine learning-based automation tools are commonly used to detect content depicting minors. To our knowledge, no dataset or benchmark currently exists for detecting these identification methods in a multi-modal environment. To fill this gap, we release the Image-Caption Children in the Wild Dataset (ICCWD), an image-caption dataset aimed at benchmarking tools that detect depictions of minors. Our dataset is richer than previous child image datasets, containing images of children in a variety of contexts, including fictional depictions and partially visible bodies. ICCWD contains 10,000 image-caption pairs manually labeled to indicate the presence or absence of a child in the image. To demonstrate the possible utility of our dataset, we use it to benchmark three different detectors, including a commercial age estimation system applied to images. Our results suggest that child detection is a challenging task, with the best method achieving a 75.3% true positive rate. We hope the release of our dataset will aid in the design of better minor detection methods in a wide range of scenarios. 6 authors · Jun 11
- The Possible, the Plausible, and the Desirable: Event-Based Modality Detection for Language Processing Modality is the linguistic ability to describe events with added information such as how desirable, plausible, or feasible they are. Modality is important for many NLP downstream tasks such as the detection of hedging, uncertainty, speculation, and more. Previous studies that address modality detection in NLP often restrict modal expressions to a closed syntactic class, and the modal sense labels are vastly different across different studies, lacking an accepted standard. Furthermore, these senses are often analyzed independently of the events that they modify. This work builds on the theoretical foundations of the Georgetown Gradable Modal Expressions (GME) work by Rubinstein et al. (2013) to propose an event-based modality detection task where modal expressions can be words of any syntactic class and sense labels are drawn from a comprehensive taxonomy which harmonizes the modal concepts contributed by the different studies. We present experiments on the GME corpus aiming to detect and classify fine-grained modal concepts and associate them with their modified events. We show that detecting and classifying modal expressions is not only feasible, but also improves the detection of modal events in their own right. 5 authors · Jun 15, 2021
- Detecting Fake News Using Machine Learning : A Systematic Literature Review Internet is one of the important inventions and a large number of persons are its users. These persons use this for different purposes. There are different social media platforms that are accessible to these users. Any user can make a post or spread the news through the online platforms. These platforms do not verify the users or their posts. So some of the users try to spread fake news through these platforms. These news can be propaganda against an individual, society, organization or political party. A human being is unable to detect all these fake news. So there is a need for machine learning classifiers that can detect these fake news automatically. Use of machine learning classifiers for detecting fake news is described in this systematic literature review. 4 authors · Feb 8, 2021
1 Pseudo-online framework for BCI evaluation: A MOABB perspective Objective: BCI (Brain-Computer Interface) technology operates in three modes: online, offline, and pseudo-online. In the online mode, real-time EEG data is constantly analyzed. In offline mode, the signal is acquired and processed afterwards. The pseudo-online mode processes collected data as if they were received in real-time. The main difference is that the offline mode often analyzes the whole data, while the online and pseudo-online modes only analyze data in short time windows. Offline analysis is usually done with asynchronous BCIs, which restricts analysis to predefined time windows. Asynchronous BCI, compatible with online and pseudo-online modes, allows flexible mental activity duration. Offline processing tends to be more accurate, while online analysis is better for therapeutic applications. Pseudo-online implementation approximates online processing without real-time constraints. Many BCI studies being offline introduce biases compared to real-life scenarios, impacting classification algorithm performance. Approach: The objective of this research paper is therefore to extend the current MOABB framework, operating in offline mode, so as to allow a comparison of different algorithms in a pseudo-online setting with the use of a technology based on overlapping sliding windows. To do this will require the introduction of a idle state event in the dataset that takes into account all different possibilities that are not task thinking. To validate the performance of the algorithms we will use the normalized Matthews Correlation Coefficient (nMCC) and the Information Transfer Rate (ITR). Main results: We analyzed the state-of-the-art algorithms of the last 15 years over several Motor Imagery (MI) datasets composed by several subjects, showing the differences between the two approaches from a statistical point of view. Significance: The ability to analyze the performance of different algorithms in offline and pseudo-online modes will allow the BCI community to obtain more accurate and comprehensive reports regarding the performance of classification algorithms. 2 authors · Aug 21, 2023
1 What Looks Good with my Sofa: Multimodal Search Engine for Interior Design In this paper, we propose a multi-modal search engine for interior design that combines visual and textual queries. The goal of our engine is to retrieve interior objects, e.g. furniture or wall clocks, that share visual and aesthetic similarities with the query. Our search engine allows the user to take a photo of a room and retrieve with a high recall a list of items identical or visually similar to those present in the photo. Additionally, it allows to return other items that aesthetically and stylistically fit well together. To achieve this goal, our system blends the results obtained using textual and visual modalities. Thanks to this blending strategy, we increase the average style similarity score of the retrieved items by 11%. Our work is implemented as a Web-based application and it is planned to be opened to the public. 6 authors · Jul 21, 2017
1 The Lovelace 2.0 Test of Artificial Creativity and Intelligence Observing that the creation of certain types of artistic artifacts necessitate intelligence, we present the Lovelace 2.0 Test of creativity as an alternative to the Turing Test as a means of determining whether an agent is intelligent. The Lovelace 2.0 Test builds off prior tests of creativity and additionally provides a means of directly comparing the relative intelligence of different agents. 1 authors · Oct 22, 2014
- Benchmarking Clinical Decision Support Search Finding relevant literature underpins the practice of evidence-based medicine. From 2014 to 2016, TREC conducted a clinical decision support track, wherein participants were tasked with finding articles relevant to clinical questions posed by physicians. In total, 87 teams have participated over the past three years, generating 395 runs. During this period, each team has trialled a variety of methods. While there was significant overlap in the methods employed by different teams, the results were varied. Due to the diversity of the platforms used, the results arising from the different techniques are not directly comparable, reducing the ability to build on previous work. By using a stable platform, we have been able to compare different document and query processing techniques, allowing us to experiment with different search parameters. We have used our system to reproduce leading teams runs, and compare the results obtained. By benchmarking our indexing and search techniques, we can statistically test a variety of hypotheses, paving the way for further research. 4 authors · Jan 28, 2018
83 Vision language models are blind Large language models with vision capabilities (VLMs), e.g., GPT-4o and Gemini 1.5 Pro are powering countless image-text applications and scoring high on many vision-understanding benchmarks. Yet, we find that VLMs fail on 7 visual tasks absurdly easy to humans such as identifying (a) whether two circles overlap; (b) whether two lines intersect; (c) which letter is being circled in a word; and (d) counting the number of circles in a Olympic-like logo. The shockingly poor performance of four state-of-the-art VLMs suggests their vision is, at best, like of a person with myopia seeing fine details as blurry, and at worst, like an intelligent person that is blind making educated guesses. Code is available at: https://vlmsareblind.github.io/ 4 authors · Jul 9, 2024 17
1 OoDIS: Anomaly Instance Segmentation Benchmark Autonomous vehicles require a precise understanding of their environment to navigate safely. Reliable identification of unknown objects, especially those that are absent during training, such as wild animals, is critical due to their potential to cause serious accidents. Significant progress in semantic segmentation of anomalies has been driven by the availability of out-of-distribution (OOD) benchmarks. However, a comprehensive understanding of scene dynamics requires the segmentation of individual objects, and thus the segmentation of instances is essential. Development in this area has been lagging, largely due to the lack of dedicated benchmarks. To address this gap, we have extended the most commonly used anomaly segmentation benchmarks to include the instance segmentation task. Our evaluation of anomaly instance segmentation methods shows that this challenge remains an unsolved problem. The benchmark website and the competition page can be found at: https://vision.rwth-aachen.de/oodis . 6 authors · Jun 17, 2024
- Black-Box Detection of Language Model Watermarks Watermarking has emerged as a promising way to detect LLM-generated text, by augmenting LLM generations with later detectable signals. Recent work has proposed multiple families of watermarking schemes, several of which focus on preserving the LLM distribution. This distribution-preservation property is motivated by the fact that it is a tractable proxy for retaining LLM capabilities, as well as the inherently implied undetectability of the watermark by downstream users. Yet, despite much discourse around undetectability, no prior work has investigated the practical detectability of any of the current watermarking schemes in a realistic black-box setting. In this work we tackle this for the first time, developing rigorous statistical tests to detect the presence, and estimate parameters, of all three popular watermarking scheme families, using only a limited number of black-box queries. We experimentally confirm the effectiveness of our methods on a range of schemes and a diverse set of open-source models. Further, we validate the feasibility of our tests on real-world APIs. Our findings indicate that current watermarking schemes are more detectable than previously believed. 4 authors · May 28, 2024
- On the Existence of Simpler Machine Learning Models It is almost always easier to find an accurate-but-complex model than an accurate-yet-simple model. Finding optimal, sparse, accurate models of various forms (linear models with integer coefficients, decision sets, rule lists, decision trees) is generally NP-hard. We often do not know whether the search for a simpler model will be worthwhile, and thus we do not go to the trouble of searching for one. In this work, we ask an important practical question: can accurate-yet-simple models be proven to exist, or shown likely to exist, before explicitly searching for them? We hypothesize that there is an important reason that simple-yet-accurate models often do exist. This hypothesis is that the size of the Rashomon set is often large, where the Rashomon set is the set of almost-equally-accurate models from a function class. If the Rashomon set is large, it contains numerous accurate models, and perhaps at least one of them is the simple model we desire. In this work, we formally present the Rashomon ratio as a new gauge of simplicity for a learning problem, depending on a function class and a data set. The Rashomon ratio is the ratio of the volume of the set of accurate models to the volume of the hypothesis space, and it is different from standard complexity measures from statistical learning theory. Insight from studying the Rashomon ratio provides an easy way to check whether a simpler model might exist for a problem before finding it, namely whether several different machine learning methods achieve similar performance on the data. In that sense, the Rashomon ratio is a powerful tool for understanding why and when an accurate-yet-simple model might exist. If, as we hypothesize in this work, many real-world data sets admit large Rashomon sets, the implications are vast: it means that simple or interpretable models may often be used for high-stakes decisions without losing accuracy. 3 authors · Aug 5, 2019
1 Truthful AI: Developing and governing AI that does not lie In many contexts, lying -- the use of verbal falsehoods to deceive -- is harmful. While lying has traditionally been a human affair, AI systems that make sophisticated verbal statements are becoming increasingly prevalent. This raises the question of how we should limit the harm caused by AI "lies" (i.e. falsehoods that are actively selected for). Human truthfulness is governed by social norms and by laws (against defamation, perjury, and fraud). Differences between AI and humans present an opportunity to have more precise standards of truthfulness for AI, and to have these standards rise over time. This could provide significant benefits to public epistemics and the economy, and mitigate risks of worst-case AI futures. Establishing norms or laws of AI truthfulness will require significant work to: (1) identify clear truthfulness standards; (2) create institutions that can judge adherence to those standards; and (3) develop AI systems that are robustly truthful. Our initial proposals for these areas include: (1) a standard of avoiding "negligent falsehoods" (a generalisation of lies that is easier to assess); (2) institutions to evaluate AI systems before and after real-world deployment; and (3) explicitly training AI systems to be truthful via curated datasets and human interaction. A concerning possibility is that evaluation mechanisms for eventual truthfulness standards could be captured by political interests, leading to harmful censorship and propaganda. Avoiding this might take careful attention. And since the scale of AI speech acts might grow dramatically over the coming decades, early truthfulness standards might be particularly important because of the precedents they set. 8 authors · Oct 13, 2021
1 PCB Component Detection using Computer Vision for Hardware Assurance Printed Circuit Board (PCB) assurance in the optical domain is a crucial field of study. Though there are many existing PCB assurance methods using image processing, computer vision (CV), and machine learning (ML), the PCB field is complex and increasingly evolving so new techniques are required to overcome the emerging problems. Existing ML-based methods outperform traditional CV methods, however they often require more data, have low explainability, and can be difficult to adapt when a new technology arises. To overcome these challenges, CV methods can be used in tandem with ML methods. In particular, human-interpretable CV algorithms such as those that extract color, shape, and texture features increase PCB assurance explainability. This allows for incorporation of prior knowledge, which effectively reduce the number of trainable ML parameters and thus, the amount of data needed to achieve high accuracy when training or retraining an ML model. Hence, this study explores the benefits and limitations of a variety of common computer vision-based features for the task of PCB component detection using semantic data. Results of this study indicate that color features demonstrate promising performance for PCB component detection. The purpose of this paper is to facilitate collaboration between the hardware assurance, computer vision, and machine learning communities. 6 authors · Feb 17, 2022
- Worldwide AI Ethics: a review of 200 guidelines and recommendations for AI governance In the last decade, several organizations have produced documents intended to standardize, in the normative sense, and promote guidance to our recent and rapid AI development. However, the full spectrum of ideas presented in these documents has not yet been analyzed, except for a few meta-analyses and critical reviews of the field. In this work, we seek to expand on the work done by past researchers and create a tool for better data visualization of the contents and nature of these documents, to understand whether there is consensus or similarity between the principles espoused by various institutions, which may inspire debates on future regulations. We also provide some preliminary thoughts and questions that could guide the continuity of the research through a critical analysis of the results acquired by our methodology into a sample size of 200 documents. 10 authors · Jun 23, 2022
- RKadiyala at SemEval-2024 Task 8: Black-Box Word-Level Text Boundary Detection in Partially Machine Generated Texts With increasing usage of generative models for text generation and widespread use of machine generated texts in various domains, being able to distinguish between human written and machine generated texts is a significant challenge. While existing models and proprietary systems focus on identifying whether given text is entirely human written or entirely machine generated, only a few systems provide insights at sentence or paragraph level at likelihood of being machine generated at a non reliable accuracy level, working well only for a set of domains and generators. This paper introduces few reliable approaches for the novel task of identifying which part of a given text is machine generated at a word level while comparing results from different approaches and methods. We present a comparison with proprietary systems , performance of our model on unseen domains' and generators' texts. The findings reveal significant improvements in detection accuracy along with comparison on other aspects of detection capabilities. Finally we discuss potential avenues for improvement and implications of our work. The proposed model is also well suited for detecting which parts of a text are machine generated in outputs of Instruct variants of many LLMs. 1 authors · Oct 21, 2024
- Proximity Ascertainment Bias in Early Covid Case Locations A comparison of the distances to the Huanan Seafood Market of early Covid cases with known links to the market versus cases without known links shows results apparently incompatible with a location model lacking proximity ascertainment bias. The sign of the difference instead agrees with a model in which such ascertainment bias is large. In the presence of such bias inferences based on the clustering of case locations become unreliable. 1 authors · Jan 11, 2024
- YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications For years, the YOLO series has been the de facto industry-level standard for efficient object detection. The YOLO community has prospered overwhelmingly to enrich its use in a multitude of hardware platforms and abundant scenarios. In this technical report, we strive to push its limits to the next level, stepping forward with an unwavering mindset for industry application. Considering the diverse requirements for speed and accuracy in the real environment, we extensively examine the up-to-date object detection advancements either from industry or academia. Specifically, we heavily assimilate ideas from recent network design, training strategies, testing techniques, quantization, and optimization methods. On top of this, we integrate our thoughts and practice to build a suite of deployment-ready networks at various scales to accommodate diversified use cases. With the generous permission of YOLO authors, we name it YOLOv6. We also express our warm welcome to users and contributors for further enhancement. For a glimpse of performance, our YOLOv6-N hits 35.9% AP on the COCO dataset at a throughput of 1234 FPS on an NVIDIA Tesla T4 GPU. YOLOv6-S strikes 43.5% AP at 495 FPS, outperforming other mainstream detectors at the same scale~(YOLOv5-S, YOLOX-S, and PPYOLOE-S). Our quantized version of YOLOv6-S even brings a new state-of-the-art 43.3% AP at 869 FPS. Furthermore, YOLOv6-M/L also achieves better accuracy performance (i.e., 49.5%/52.3%) than other detectors with a similar inference speed. We carefully conducted experiments to validate the effectiveness of each component. Our code is made available at https://github.com/meituan/YOLOv6. 18 authors · Sep 7, 2022
2 Hallucination-Free? Assessing the Reliability of Leading AI Legal Research Tools Legal practice has witnessed a sharp rise in products incorporating artificial intelligence (AI). Such tools are designed to assist with a wide range of core legal tasks, from search and summarization of caselaw to document drafting. But the large language models used in these tools are prone to "hallucinate," or make up false information, making their use risky in high-stakes domains. Recently, certain legal research providers have touted methods such as retrieval-augmented generation (RAG) as "eliminating" (Casetext, 2023) or "avoid[ing]" hallucinations (Thomson Reuters, 2023), or guaranteeing "hallucination-free" legal citations (LexisNexis, 2023). Because of the closed nature of these systems, systematically assessing these claims is challenging. In this article, we design and report on the first preregistered empirical evaluation of AI-driven legal research tools. We demonstrate that the providers' claims are overstated. While hallucinations are reduced relative to general-purpose chatbots (GPT-4), we find that the AI research tools made by LexisNexis (Lexis+ AI) and Thomson Reuters (Westlaw AI-Assisted Research and Ask Practical Law AI) each hallucinate between 17% and 33% of the time. We also document substantial differences between systems in responsiveness and accuracy. Our article makes four key contributions. It is the first to assess and report the performance of RAG-based proprietary legal AI tools. Second, it introduces a comprehensive, preregistered dataset for identifying and understanding vulnerabilities in these systems. Third, it proposes a clear typology for differentiating between hallucinations and accurate legal responses. Last, it provides evidence to inform the responsibilities of legal professionals in supervising and verifying AI outputs, which remains a central open question for the responsible integration of AI into law. 6 authors · May 30, 2024
- espiownage: Tracking Transients in Steelpan Drum Strikes Using Surveillance Technology We present an improvement in the ability to meaningfully track features in high speed videos of Caribbean steelpan drums illuminated by Electronic Speckle Pattern Interferometry (ESPI). This is achieved through the use of up-to-date computer vision libraries for object detection and image segmentation as well as a significant effort toward cleaning the dataset previously used to train systems for this application. Besides improvements on previous metric scores by 10% or more, noteworthy in this project are the introduction of a segmentation-regression map for the entire drum surface yielding interference fringe counts comparable to those obtained via object detection, as well as the accelerated workflow for coordinating the data-cleaning-and-model-training feedback loop for rapid iteration allowing this project to be conducted on a timescale of only 18 days. 3 authors · Oct 23, 2021
- Detecting Dataset Drift and Non-IID Sampling via k-Nearest Neighbors We present a straightforward statistical test to detect certain violations of the assumption that the data are Independent and Identically Distributed (IID). The specific form of violation considered is common across real-world applications: whether the examples are ordered in the dataset such that almost adjacent examples tend to have more similar feature values (e.g. due to distributional drift, or attractive interactions between datapoints). Based on a k-Nearest Neighbors estimate, our approach can be used to audit any multivariate numeric data as well as other data types (image, text, audio, etc.) that can be numerically represented, perhaps with model embeddings. Compared with existing methods to detect drift or auto-correlation, our approach is both applicable to more types of data and also able to detect a wider variety of IID violations in practice. Code: https://github.com/cleanlab/cleanlab 3 authors · May 25, 2023
- Weakly Supervised Object Detection in Artworks We propose a method for the weakly supervised detection of objects in paintings. At training time, only image-level annotations are needed. This, combined with the efficiency of our multiple-instance learning method, enables one to learn new classes on-the-fly from globally annotated databases, avoiding the tedious task of manually marking objects. We show on several databases that dropping the instance-level annotations only yields mild performance losses. We also introduce a new database, IconArt, on which we perform detection experiments on classes that could not be learned on photographs, such as Jesus Child or Saint Sebastian. To the best of our knowledge, these are the first experiments dealing with the automatic (and in our case weakly supervised) detection of iconographic elements in paintings. We believe that such a method is of great benefit for helping art historians to explore large digital databases. 4 authors · Oct 5, 2018
- CLAUDETTE: an Automated Detector of Potentially Unfair Clauses in Online Terms of Service Terms of service of on-line platforms too often contain clauses that are potentially unfair to the consumer. We present an experimental study where machine learning is employed to automatically detect such potentially unfair clauses. Results show that the proposed system could provide a valuable tool for lawyers and consumers alike. 7 authors · May 3, 2018
- Torch.manual_seed(3407) is all you need: On the influence of random seeds in deep learning architectures for computer vision In this paper I investigate the effect of random seed selection on the accuracy when using popular deep learning architectures for computer vision. I scan a large amount of seeds (up to 10^4) on CIFAR 10 and I also scan fewer seeds on Imagenet using pre-trained models to investigate large scale datasets. The conclusions are that even if the variance is not very large, it is surprisingly easy to find an outlier that performs much better or much worse than the average. 1 authors · Sep 16, 2021
7 Evaluating Frontier Models for Dangerous Capabilities To understand the risks posed by a new AI system, we must understand what it can and cannot do. Building on prior work, we introduce a programme of new "dangerous capability" evaluations and pilot them on Gemini 1.0 models. Our evaluations cover four areas: (1) persuasion and deception; (2) cyber-security; (3) self-proliferation; and (4) self-reasoning. We do not find evidence of strong dangerous capabilities in the models we evaluated, but we flag early warning signs. Our goal is to help advance a rigorous science of dangerous capability evaluation, in preparation for future models. 27 authors · Mar 20, 2024 1
- Fruit recognition from images using deep learning In this paper we introduce a new, high-quality, dataset of images containing fruits. We also present the results of some numerical experiment for training a neural network to detect fruits. We discuss the reason why we chose to use fruits in this project by proposing a few applications that could use this kind of neural network. 2 authors · Dec 2, 2017
- PatentMatch: A Dataset for Matching Patent Claims & Prior Art Patent examiners need to solve a complex information retrieval task when they assess the novelty and inventive step of claims made in a patent application. Given a claim, they search for prior art, which comprises all relevant publicly available information. This time-consuming task requires a deep understanding of the respective technical domain and the patent-domain-specific language. For these reasons, we address the computer-assisted search for prior art by creating a training dataset for supervised machine learning called PatentMatch. It contains pairs of claims from patent applications and semantically corresponding text passages of different degrees from cited patent documents. Each pair has been labeled by technically-skilled patent examiners from the European Patent Office. Accordingly, the label indicates the degree of semantic correspondence (matching), i.e., whether the text passage is prejudicial to the novelty of the claimed invention or not. Preliminary experiments using a baseline system show that PatentMatch can indeed be used for training a binary text pair classifier on this challenging information retrieval task. The dataset is available online: https://hpi.de/naumann/s/patentmatch. 4 authors · Dec 27, 2020
- Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images Deep neural networks (DNNs) have recently been achieving state-of-the-art performance on a variety of pattern-recognition tasks, most notably visual classification problems. Given that DNNs are now able to classify objects in images with near-human-level performance, questions naturally arise as to what differences remain between computer and human vision. A recent study revealed that changing an image (e.g. of a lion) in a way imperceptible to humans can cause a DNN to label the image as something else entirely (e.g. mislabeling a lion a library). Here we show a related result: it is easy to produce images that are completely unrecognizable to humans, but that state-of-the-art DNNs believe to be recognizable objects with 99.99% confidence (e.g. labeling with certainty that white noise static is a lion). Specifically, we take convolutional neural networks trained to perform well on either the ImageNet or MNIST datasets and then find images with evolutionary algorithms or gradient ascent that DNNs label with high confidence as belonging to each dataset class. It is possible to produce images totally unrecognizable to human eyes that DNNs believe with near certainty are familiar objects, which we call "fooling images" (more generally, fooling examples). Our results shed light on interesting differences between human vision and current DNNs, and raise questions about the generality of DNN computer vision. 3 authors · Dec 5, 2014
- Talent-Interview: Web-Client Cheating Detection for Online Exams Online exams are more attractive after the Covid-19 pandemic. Furthermore, during recruitment, online exams are used. However, there are more cheating possibilities for online exams. Assigning a proctor for each exam increases cost. At this point, automatic proctor systems detect possible cheating status. This article proposes an end-to-end system and submodules to get better results for online proctoring. Object detection, face recognition, human voice detection, and segmentation are used in our system. Furthermore, our proposed model works on the PCs of users, meaning a client-based system. So, server cost is eliminated. As far as we know, it is the first time the client-based online proctoring system has been used for recruitment. Online exams are more attractive after the Covid-19 pandemic. Furthermore, during recruitment, online exams are used. However, there are more cheating possibilities for online exams. Assigning a proctor for each exam increases cost. At this point, automatic proctor systems detect possible cheating status. This article proposes an end-to-end system and submodules to get better results for online proctoring. Object detection, face recognition, human voice detection, and segmentation are used in our system. Furthermore, our proposed model works on the PCs of users, meaning a client-based system. So, server cost is eliminated. As far as we know, it is the first time the client-based online proctoring system has been used for recruitment. Furthermore, this cheating system works at https://www.talent-interview.com/tr/. 2 authors · Nov 17, 2023
1 Probing neural language models for understanding of words of estimative probability Words of estimative probability (WEP) are expressions of a statement's plausibility (probably, maybe, likely, doubt, likely, unlikely, impossible...). Multiple surveys demonstrate the agreement of human evaluators when assigning numerical probability levels to WEP. For example, highly likely corresponds to a median chance of 0.90+-0.08 in Fagen-Ulmschneider (2015)'s survey. In this work, we measure the ability of neural language processing models to capture the consensual probability level associated to each WEP. Firstly, we use the UNLI dataset (Chen et al., 2020) which associates premises and hypotheses with their perceived joint probability p, to construct prompts, e.g. "[PREMISE]. [WEP], [HYPOTHESIS]." and assess whether language models can predict whether the WEP consensual probability level is close to p. Secondly, we construct a dataset of WEP-based probabilistic reasoning, to test whether language models can reason with WEP compositions. When prompted "[EVENTA] is likely. [EVENTB] is impossible.", a causal language model should not express that [EVENTA&B] is likely. We show that both tasks are unsolved by off-the-shelf English language models, but that fine-tuning leads to transferable improvement. 2 authors · Nov 7, 2022
- MURA: Large Dataset for Abnormality Detection in Musculoskeletal Radiographs We introduce MURA, a large dataset of musculoskeletal radiographs containing 40,561 images from 14,863 studies, where each study is manually labeled by radiologists as either normal or abnormal. To evaluate models robustly and to get an estimate of radiologist performance, we collect additional labels from six board-certified Stanford radiologists on the test set, consisting of 207 musculoskeletal studies. On this test set, the majority vote of a group of three radiologists serves as gold standard. We train a 169-layer DenseNet baseline model to detect and localize abnormalities. Our model achieves an AUROC of 0.929, with an operating point of 0.815 sensitivity and 0.887 specificity. We compare our model and radiologists on the Cohen's kappa statistic, which expresses the agreement of our model and of each radiologist with the gold standard. Model performance is comparable to the best radiologist performance in detecting abnormalities on finger and wrist studies. However, model performance is lower than best radiologist performance in detecting abnormalities on elbow, forearm, hand, humerus, and shoulder studies. We believe that the task is a good challenge for future research. To encourage advances, we have made our dataset freely available at https://stanfordmlgroup.github.io/competitions/mura . 14 authors · Dec 11, 2017
- Priority prediction of Asian Hornet sighting report using machine learning methods As infamous invaders to the North American ecosystem, the Asian giant hornet (Vespa mandarinia) is devastating not only to native bee colonies, but also to local apiculture. One of the most effective way to combat the harmful species is to locate and destroy their nests. By mobilizing the public to actively report possible sightings of the Asian giant hornet, the governmentcould timely send inspectors to confirm and possibly destroy the nests. However, such confirmation requires lab expertise, where manually checking the reports one by one is extremely consuming of human resources. Further given the limited knowledge of the public about the Asian giant hornet and the randomness of report submission, only few of the numerous reports proved positive, i.e. existing nests. How to classify or prioritize the reports efficiently and automatically, so as to determine the dispatch of personnel, is of great significance to the control of the Asian giant hornet. In this paper, we propose a method to predict the priority of sighting reports based on machine learning. We model the problem of optimal prioritization of sighting reports as a problem of classification and prediction. We extracted a variety of rich features in the report: location, time, image(s), and textual description. Based on these characteristics, we propose a classification model based on logistic regression to predict the credibility of a certain report. Furthermore, our model quantifies the impact between reports to get the priority ranking of the reports. Extensive experiments on the public dataset from the WSDA (the Washington State Department of Agriculture) have proved the effectiveness of our method. 5 authors · Jun 28, 2021
- Stock Market Prediction using Natural Language Processing -- A Survey The stock market is a network which provides a platform for almost all major economic transactions. While investing in the stock market is a good idea, investing in individual stocks may not be, especially for the casual investor. Smart stock-picking requires in-depth research and plenty of dedication. Predicting this stock value offers enormous arbitrage profit opportunities. This attractiveness of finding a solution has prompted researchers to find a way past problems like volatility, seasonality, and dependence on time. This paper surveys recent literature in the domain of natural language processing and machine learning techniques used to predict stock market movements. The main contributions of this paper include the sophisticated categorizations of many recent articles and the illustration of the recent trends of research in stock market prediction and its related areas. 2 authors · Aug 26, 2022
- Lighthouse: A User-Friendly Library for Reproducible Video Moment Retrieval and Highlight Detection We propose Lighthouse, a user-friendly library for reproducible video moment retrieval and highlight detection (MR-HD). Although researchers proposed various MR-HD approaches, the research community holds two main issues. The first is a lack of comprehensive and reproducible experiments across various methods, datasets, and video-text features. This is because no unified training and evaluation codebase covers multiple settings. The second is user-unfriendly design. Because previous works use different libraries, researchers set up individual environments. In addition, most works release only the training codes, requiring users to implement the whole inference process of MR-HD. Lighthouse addresses these issues by implementing a unified reproducible codebase that includes six models, three features, and five datasets. In addition, it provides an inference API and web demo to make these methods easily accessible for researchers and developers. Our experiments demonstrate that Lighthouse generally reproduces the reported scores in the reference papers. The code is available at https://github.com/line/lighthouse. 4 authors · Aug 5, 2024
- Does Object Recognition Work for Everyone? The paper analyzes the accuracy of publicly available object-recognition systems on a geographically diverse dataset. This dataset contains household items and was designed to have a more representative geographical coverage than commonly used image datasets in object recognition. We find that the systems perform relatively poorly on household items that commonly occur in countries with a low household income. Qualitative analyses suggest the drop in performance is primarily due to appearance differences within an object class (e.g., dish soap) and due to items appearing in a different context (e.g., toothbrushes appearing outside of bathrooms). The results of our study suggest that further work is needed to make object-recognition systems work equally well for people across different countries and income levels. 4 authors · Jun 6, 2019
1 The Trilemma of Truth in Large Language Models We often attribute human characteristics to large language models (LLMs) and claim that they "know" certain things. LLMs have an internal probabilistic knowledge that represents information retained during training. How can we assess the veracity of this knowledge? We examine two common methods for probing the veracity of LLMs and discover several assumptions that are flawed. To address these flawed assumptions, we introduce sAwMIL (short for Sparse Aware Multiple-Instance Learning), a probing method that utilizes the internal activations of LLMs to separate statements into true, false, and neither. sAwMIL is based on multiple-instance learning and conformal prediction. We evaluate sAwMIL on 5 validity criteria across 16 open-source LLMs, including both default and chat-based variants, as well as on 3 new datasets. Among the insights we provide are: (1) the veracity signal is often concentrated in the third quarter of an LLM's depth; (2) truth and falsehood signals are not always symmetric; (3) linear probes perform better on chat models than on default models; (4) nonlinear probes may be required to capture veracity signals for some LLMs with reinforcement learning from human feedback or knowledge distillation; and (5) LLMs capture a third type of signal that is distinct from true and false and is neither true nor false. These findings provide a reliable method for verifying what LLMs "know" and how certain they are of their probabilistic internal knowledge. 2 authors · Jun 30
13 Do I Know This Entity? Knowledge Awareness and Hallucinations in Language Models Hallucinations in large language models are a widespread problem, yet the mechanisms behind whether models will hallucinate are poorly understood, limiting our ability to solve this problem. Using sparse autoencoders as an interpretability tool, we discover that a key part of these mechanisms is entity recognition, where the model detects if an entity is one it can recall facts about. Sparse autoencoders uncover meaningful directions in the representation space, these detect whether the model recognizes an entity, e.g. detecting it doesn't know about an athlete or a movie. This suggests that models can have self-knowledge: internal representations about their own capabilities. These directions are causally relevant: capable of steering the model to refuse to answer questions about known entities, or to hallucinate attributes of unknown entities when it would otherwise refuse. We demonstrate that despite the sparse autoencoders being trained on the base model, these directions have a causal effect on the chat model's refusal behavior, suggesting that chat finetuning has repurposed this existing mechanism. Furthermore, we provide an initial exploration into the mechanistic role of these directions in the model, finding that they disrupt the attention of downstream heads that typically move entity attributes to the final token. 4 authors · Nov 21, 2024 3
- Causal Inference in the Presence of Latent Variables and Selection Bias We show that there is a general, informative and reliable procedure for discovering causal relations when, for all the investigator knows, both latent variables and selection bias may be at work. Given information about conditional independence and dependence relations between measured variables, even when latent variables and selection bias may be present, there are sufficient conditions for reliably concluding that there is a causal path from one variable to another, and sufficient conditions for reliably concluding when no such causal path exists. 3 authors · Feb 20, 2013
- A Survey of Human Activity Recognition in Smart Homes Based on IoT Sensors Algorithms: Taxonomies, Challenges, and Opportunities with Deep Learning Recent advances in Internet of Things (IoT) technologies and the reduction in the cost of sensors have encouraged the development of smart environments, such as smart homes. Smart homes can offer home assistance services to improve the quality of life, autonomy and health of their residents, especially for the elderly and dependent. To provide such services, a smart home must be able to understand the daily activities of its residents. Techniques for recognizing human activity in smart homes are advancing daily. But new challenges are emerging every day. In this paper, we present recent algorithms, works, challenges and taxonomy of the field of human activity recognition in a smart home through ambient sensors. Moreover, since activity recognition in smart homes is a young field, we raise specific problems, missing and needed contributions. But also propose directions, research opportunities and solutions to accelerate advances in this field. 5 authors · Oct 18, 2021
- A Local Dwarf Galaxy Search Using Machine Learning We present a machine learning search for local, low-mass galaxies (z < 0.02 and 10^6 M_odot < M_* < 10^9 M_odot) using the combined photometric data from the DESI Imaging Legacy Surveys and the WISE survey. We introduce the spectrally confirmed training sample, discuss evaluation metrics, investigate the features, compare different machine learning algorithms, and find that a 7-class neural network classification model is highly effective in separating the signal (local, low-mass galaxies) from various contaminants, reaching a precision of 95% and a recall of 76%. The principal contaminants are nearby sub-L^* galaxies at 0.02 < z < 0.05 and nearby massive galaxies at 0.05 < z < 0.2. We find that the features encoding surface brightness information are essential to achieving a correct classification. Our final catalog, which we make available, consists of 112,859 local, low-mass galaxy candidates, where 36,408 have high probability (p_{rm signal} > 0.95), covering the entire Legacy Surveys DR9 footprint. Using DESI-EDR public spectra and data from the SAGA and ELVES surveys, we find that our model has a precision of sim 100%, 96%, and 97%, respectively, and a recall of sim 51%, 68% and 53%, respectively. The results of those independent spectral verification demonstrate the effectiveness and efficiency of our machine learning classification model. 4 authors · Feb 28
- NTIRE 2020 Challenge on Real-World Image Super-Resolution: Methods and Results This paper reviews the NTIRE 2020 challenge on real world super-resolution. It focuses on the participating methods and final results. The challenge addresses the real world setting, where paired true high and low-resolution images are unavailable. For training, only one set of source input images is therefore provided along with a set of unpaired high-quality target images. In Track 1: Image Processing artifacts, the aim is to super-resolve images with synthetically generated image processing artifacts. This allows for quantitative benchmarking of the approaches \wrt a ground-truth image. In Track 2: Smartphone Images, real low-quality smart phone images have to be super-resolved. In both tracks, the ultimate goal is to achieve the best perceptual quality, evaluated using a human study. This is the second challenge on the subject, following AIM 2019, targeting to advance the state-of-the-art in super-resolution. To measure the performance we use the benchmark protocol from AIM 2019. In total 22 teams competed in the final testing phase, demonstrating new and innovative solutions to the problem. 46 authors · May 5, 2020
- Size and Shape Constraints of (486958) Arrokoth from Stellar Occultations We present the results from four stellar occultations by (486958) Arrokoth, the flyby target of the New Horizons extended mission. Three of the four efforts led to positive detections of the body, and all constrained the presence of rings and other debris, finding none. Twenty-five mobile stations were deployed for 2017 June 3 and augmented by fixed telescopes. There were no positive detections from this effort. The event on 2017 July 10 was observed by SOFIA with one very short chord. Twenty-four deployed stations on 2017 July 17 resulted in five chords that clearly showed a complicated shape consistent with a contact binary with rough dimensions of 20 by 30 km for the overall outline. A visible albedo of 10% was derived from these data. Twenty-two systems were deployed for the fourth event on 2018 Aug 4 and resulted in two chords. The combination of the occultation data and the flyby results provides a significant refinement of the rotation period, now estimated to be 15.9380 pm 0.0005 hours. The occultation data also provided high-precision astrometric constraints on the position of the object that were crucial for supporting the navigation for the New Horizons flyby. This work demonstrates an effective method for obtaining detailed size and shape information and probing for rings and dust on distant Kuiper Belt objects as well as being an important source of positional data that can aid in spacecraft navigation that is particularly useful for small and distant bodies. 133 authors · Dec 31, 2019
- Early Warning Signals and the Prosecutor's Fallacy Early warning signals have been proposed to forecast the possibility of a critical transition, such as the eutrophication of a lake, the collapse of a coral reef, or the end of a glacial period. Because such transitions often unfold on temporal and spatial scales that can be difficult to approach by experimental manipulation, research has often relied on historical observations as a source of natural experiments. Here we examine a critical difference between selecting systems for study based on the fact that we have observed a critical transition and those systems for which we wish to forecast the approach of a transition. This difference arises by conditionally selecting systems known to experience a transition of some sort and failing to account for the bias this introduces -- a statistical error often known as the Prosecutor's Fallacy. By analysing simulated systems that have experienced transitions purely by chance, we reveal an elevated rate of false positives in common warning signal statistics. We further demonstrate a model-based approach that is less subject to this bias than these more commonly used summary statistics. We note that experimental studies with replicates avoid this pitfall entirely. 2 authors · Oct 3, 2012
- Do Answers to Boolean Questions Need Explanations? Yes Existing datasets that contain boolean questions, such as BoolQ and TYDI QA , provide the user with a YES/NO response to the question. However, a one word response is not sufficient for an explainable system. We promote explainability by releasing a new set of annotations marking the evidence in existing TyDi QA and BoolQ datasets. We show that our annotations can be used to train a model that extracts improved evidence spans compared to models that rely on existing resources. We confirm our findings with a user study which shows that our extracted evidence spans enhance the user experience. We also provide further insight into the challenges of answering boolean questions, such as passages containing conflicting YES and NO answers, and varying degrees of relevance of the predicted evidence. 5 authors · Dec 14, 2021
- Improved YOLOv12 with LLM-Generated Synthetic Data for Enhanced Apple Detection and Benchmarking Against YOLOv11 and YOLOv10 This study evaluated the performance of the YOLOv12 object detection model, and compared against the performances YOLOv11 and YOLOv10 for apple detection in commercial orchards based on the model training completed entirely on synthetic images generated by Large Language Models (LLMs). The YOLOv12n configuration achieved the highest precision at 0.916, the highest recall at 0.969, and the highest mean Average Precision (mAP@50) at 0.978. In comparison, the YOLOv11 series was led by YOLO11x, which achieved the highest precision at 0.857, recall at 0.85, and mAP@50 at 0.91. For the YOLOv10 series, YOLOv10b and YOLOv10l both achieved the highest precision at 0.85, with YOLOv10n achieving the highest recall at 0.8 and mAP@50 at 0.89. These findings demonstrated that YOLOv12, when trained on realistic LLM-generated datasets surpassed its predecessors in key performance metrics. The technique also offered a cost-effective solution by reducing the need for extensive manual data collection in the agricultural field. In addition, this study compared the computational efficiency of all versions of YOLOv12, v11 and v10, where YOLOv11n reported the lowest inference time at 4.7 ms, compared to YOLOv12n's 5.6 ms and YOLOv10n's 5.9 ms. Although YOLOv12 is new and more accurate than YOLOv11, and YOLOv10, YOLO11n still stays the fastest YOLO model among YOLOv10, YOLOv11 and YOLOv12 series of models. (Index: YOLOv12, YOLOv11, YOLOv10, YOLOv13, YOLOv14, YOLOv15, YOLOE, YOLO Object detection) 2 authors · Feb 26
- Exploring the Limitations of Detecting Machine-Generated Text Recent improvements in the quality of the generations by large language models have spurred research into identifying machine-generated text. Systems proposed for the task often achieve high performance. However, humans and machines can produce text in different styles and in different domains, and it remains unclear whether machine generated-text detection models favour particular styles or domains. In this paper, we critically examine the classification performance for detecting machine-generated text by evaluating on texts with varying writing styles. We find that classifiers are highly sensitive to stylistic changes and differences in text complexity, and in some cases degrade entirely to random classifiers. We further find that detection systems are particularly susceptible to misclassify easy-to-read texts while they have high performance for complex texts. 6 authors · Jun 16, 2024
1 Challenges and Solutions to Build a Data Pipeline to Identify Anomalies in Enterprise System Performance We discuss how VMware is solving the following challenges to harness data to operate our ML-based anomaly detection system to detect performance issues in our Software Defined Data Center (SDDC) enterprise deployments: (i) label scarcity and label bias due to heavy dependency on unscalable human annotators, and (ii) data drifts due to ever-changing workload patterns, software stack and underlying hardware. Our anomaly detection system has been deployed in production for many years and has successfully detected numerous major performance issues. We demonstrate that by addressing these data challenges, we not only improve the accuracy of our performance anomaly detection model by 30%, but also ensure that the model performance to never degrade over time. 7 authors · Dec 13, 2021
1 Modeling of learning curves with applications to pos tagging An algorithm to estimate the evolution of learning curves on the whole of a training data base, based on the results obtained from a portion and using a functional strategy, is introduced. We approximate iteratively the sought value at the desired time, independently of the learning technique used and once a point in the process, called prediction level, has been passed. The proposal proves to be formally correct with respect to our working hypotheses and includes a reliable proximity condition. This allows the user to fix a convergence threshold with respect to the accuracy finally achievable, which extends the concept of stopping criterion and seems to be effective even in the presence of distorting observations. Our aim is to evaluate the training effort, supporting decision making in order to reduce the need for both human and computational resources during the learning process. The proposal is of interest in at least three operational procedures. The first is the anticipation of accuracy gain, with the purpose of measuring how much work is needed to achieve a certain degree of performance. The second relates the comparison of efficiency between systems at training time, with the objective of completing this task only for the one that best suits our requirements. The prediction of accuracy is also a valuable item of information for customizing systems, since we can estimate in advance the impact of settings on both the performance and the development costs. Using the generation of part-of-speech taggers as an example application, the experimental results are consistent with our expectations. 3 authors · Feb 4, 2024
- Context Matters for Image Descriptions for Accessibility: Challenges for Referenceless Evaluation Metrics Few images on the Web receive alt-text descriptions that would make them accessible to blind and low vision (BLV) users. Image-based NLG systems have progressed to the point where they can begin to address this persistent societal problem, but these systems will not be fully successful unless we evaluate them on metrics that guide their development correctly. Here, we argue against current referenceless metrics -- those that don't rely on human-generated ground-truth descriptions -- on the grounds that they do not align with the needs of BLV users. The fundamental shortcoming of these metrics is that they do not take context into account, whereas contextual information is highly valued by BLV users. To substantiate these claims, we present a study with BLV participants who rated descriptions along a variety of dimensions. An in-depth analysis reveals that the lack of context-awareness makes current referenceless metrics inadequate for advancing image accessibility. As a proof-of-concept, we provide a contextual version of the referenceless metric CLIPScore which begins to address the disconnect to the BLV data. An accessible HTML version of this paper is available at https://elisakreiss.github.io/contextual-description-evaluation/paper/reflessmetrics.html 6 authors · May 21, 2022
- Generation Of Colors using Bidirectional Long Short Term Memory Networks Human vision can distinguish between a vast spectrum of colours, estimated to be between 2 to 7 million discernible shades. However, this impressive range does not inherently imply that all these colours have been precisely named and described within our lexicon. We often associate colours with familiar objects and concepts in our daily lives. This research endeavors to bridge the gap between our visual perception of countless shades and our ability to articulate and name them accurately. A novel model has been developed to achieve this goal, leveraging Bidirectional Long Short-Term Memory (BiLSTM) networks with Active learning. This model operates on a proprietary dataset meticulously curated for this study. The primary objective of this research is to create a versatile tool for categorizing and naming previously unnamed colours or identifying intermediate shades that elude traditional colour terminology. The findings underscore the potential of this innovative approach in revolutionizing our understanding of colour perception and language. Through rigorous experimentation and analysis, this study illuminates a promising avenue for Natural Language Processing (NLP) applications in diverse industries. By facilitating the exploration of the vast colour spectrum the potential applications of NLP are extended beyond conventional boundaries. 1 authors · Nov 11, 2023
- LegalVis: Exploring and Inferring Precedent Citations in Legal Documents To reduce the number of pending cases and conflicting rulings in the Brazilian Judiciary, the National Congress amended the Constitution, allowing the Brazilian Supreme Court (STF) to create binding precedents (BPs), i.e., a set of understandings that both Executive and lower Judiciary branches must follow. The STF's justices frequently cite the 58 existing BPs in their decisions, and it is of primary relevance that judicial experts could identify and analyze such citations. To assist in this problem, we propose LegalVis, a web-based visual analytics system designed to support the analysis of legal documents that cite or could potentially cite a BP. We model the problem of identifying potential citations (i.e., non-explicit) as a classification problem. However, a simple score is not enough to explain the results; that is why we use an interpretability machine learning method to explain the reason behind each identified citation. For a compelling visual exploration of documents and BPs, LegalVis comprises three interactive visual components: the first presents an overview of the data showing temporal patterns, the second allows filtering and grouping relevant documents by topic, and the last one shows a document's text aiming to interpret the model's output by pointing out which paragraphs are likely to mention the BP, even if not explicitly specified. We evaluated our identification model and obtained an accuracy of 96%; we also made a quantitative and qualitative analysis of the results. The usefulness and effectiveness of LegalVis were evaluated through two usage scenarios and feedback from six domain experts. 4 authors · Mar 3, 2022
- Factuality Detection using Machine Translation -- a Use Case for German Clinical Text Factuality can play an important role when automatically processing clinical text, as it makes a difference if particular symptoms are explicitly not present, possibly present, not mentioned, or affirmed. In most cases, a sufficient number of examples is necessary to handle such phenomena in a supervised machine learning setting. However, as clinical text might contain sensitive information, data cannot be easily shared. In the context of factuality detection, this work presents a simple solution using machine translation to translate English data to German to train a transformer-based factuality detection model. 4 authors · Aug 17, 2023
2 Can GPT-4 Perform Neural Architecture Search? We investigate the potential of GPT-4~gpt4 to perform Neural Architecture Search (NAS) -- the task of designing effective neural architectures. Our proposed approach, GPT-4 Enhanced Neural archItectUre Search (GENIUS), leverages the generative capabilities of GPT-4 as a black-box optimiser to quickly navigate the architecture search space, pinpoint promising candidates, and iteratively refine these candidates to improve performance. We assess GENIUS across several benchmarks, comparing it with existing state-of-the-art NAS techniques to illustrate its effectiveness. Rather than targeting state-of-the-art performance, our objective is to highlight GPT-4's potential to assist research on a challenging technical problem through a simple prompting scheme that requires relatively limited domain expertiseCode available at \href{https://github.com/mingkai-zheng/GENIUS{https://github.com/mingkai-zheng/GENIUS}.}. More broadly, we believe our preliminary results point to future research that harnesses general purpose language models for diverse optimisation tasks. We also highlight important limitations to our study, and note implications for AI safety. 7 authors · Apr 21, 2023
1 Capture the Flag: Uncovering Data Insights with Large Language Models The extraction of a small number of relevant insights from vast amounts of data is a crucial component of data-driven decision-making. However, accomplishing this task requires considerable technical skills, domain expertise, and human labor. This study explores the potential of using Large Language Models (LLMs) to automate the discovery of insights in data, leveraging recent advances in reasoning and code generation techniques. We propose a new evaluation methodology based on a "capture the flag" principle, measuring the ability of such models to recognize meaningful and pertinent information (flags) in a dataset. We further propose two proof-of-concept agents, with different inner workings, and compare their ability to capture such flags in a real-world sales dataset. While the work reported here is preliminary, our results are sufficiently interesting to mandate future exploration by the community. 9 authors · Dec 21, 2023 1
- Objective Assessment of Social Skills Using Automated Language Analysis for Identification of Schizophrenia and Bipolar Disorder Several studies have shown that speech and language features, automatically extracted from clinical interviews or spontaneous discourse, have diagnostic value for mental disorders such as schizophrenia and bipolar disorder. They typically make use of a large feature set to train a classifier for distinguishing between two groups of interest, i.e. a clinical and control group. However, a purely data-driven approach runs the risk of overfitting to a particular data set, especially when sample sizes are limited. Here, we first down-select the set of language features to a small subset that is related to a well-validated test of functional ability, the Social Skills Performance Assessment (SSPA). This helps establish the concurrent validity of the selected features. We use only these features to train a simple classifier to distinguish between groups of interest. Linear regression reveals that a subset of language features can effectively model the SSPA, with a correlation coefficient of 0.75. Furthermore, the same feature set can be used to build a strong binary classifier to distinguish between healthy controls and a clinical group (AUC = 0.96) and also between patients within the clinical group with schizophrenia and bipolar I disorder (AUC = 0.83). 6 authors · Apr 23, 2019
- Learning to Recognize Musical Genre from Audio We here summarize our experience running a challenge with open data for musical genre recognition. Those notes motivate the task and the challenge design, show some statistics about the submissions, and present the results. 4 authors · Mar 13, 2018
- Theoretical Behavior of XAI Methods in the Presence of Suppressor Variables In recent years, the community of 'explainable artificial intelligence' (XAI) has created a vast body of methods to bridge a perceived gap between model 'complexity' and 'interpretability'. However, a concrete problem to be solved by XAI methods has not yet been formally stated. As a result, XAI methods are lacking theoretical and empirical evidence for the 'correctness' of their explanations, limiting their potential use for quality-control and transparency purposes. At the same time, Haufe et al. (2014) showed, using simple toy examples, that even standard interpretations of linear models can be highly misleading. Specifically, high importance may be attributed to so-called suppressor variables lacking any statistical relation to the prediction target. This behavior has been confirmed empirically for a large array of XAI methods in Wilming et al. (2022). Here, we go one step further by deriving analytical expressions for the behavior of a variety of popular XAI methods on a simple two-dimensional binary classification problem involving Gaussian class-conditional distributions. We show that the majority of the studied approaches will attribute non-zero importance to a non-class-related suppressor feature in the presence of correlated noise. This poses important limitations on the interpretations and conclusions that the outputs of these XAI methods can afford. 4 authors · Jun 2, 2023
- Inference Scaling scriptsizeFLaws: The Limits of LLM Resampling with Imperfect Verifiers Recent research has generated hope that inference scaling could allow weaker language models to match or exceed the accuracy of stronger models, such as by repeatedly sampling solutions to a coding problem until it passes unit tests. The central thesis of this paper is that there is no free lunch for inference scaling: indefinite accuracy improvement through resampling can only be realized if the "verifier" (in this case, a set of unit tests) is perfect. When the verifier is imperfect, as it almost always is in domains such as reasoning or coding (for example, unit tests have imperfect coverage), there is a nonzero probability of false positives: incorrect solutions that pass the verifier. Resampling cannot decrease this probability, so it imposes an upper bound to the accuracy of resampling-based inference scaling even with an infinite compute budget. We find that there is a very strong correlation between the model's single-sample accuracy (i.e. accuracy without unit tests) and its false positive rate on coding benchmarks HumanEval and MBPP, whose unit tests have limited coverage. Therefore, no amount of inference scaling of weaker models can enable them to match the single-sample accuracy of a sufficiently strong model (Fig. 1a). When we consider that false positives have a negative utility compared to abstaining from producing a solution, it bends the inference scaling curve further downward. Empirically, we find that the optimal number of samples can be less than 10 under realistic assumptions (Fig. 1b). Finally, we show that beyond accuracy, false positives may have other undesirable qualities, such as poor adherence to coding style conventions. 3 authors · Nov 26, 2024
- The Test of Tests: A Framework For Differentially Private Hypothesis Testing We present a generic framework for creating differentially private versions of any hypothesis test in a black-box way. We analyze the resulting tests analytically and experimentally. Most crucially, we show good practical performance for small data sets, showing that at epsilon = 1 we only need 5-6 times as much data as in the fully public setting. We compare our work to the one existing framework of this type, as well as to several individually-designed private hypothesis tests. Our framework is higher power than other generic solutions and at least competitive with (and often better than) individually-designed tests. 4 authors · Feb 8, 2023
- VER-Bench: Evaluating MLLMs on Reasoning with Fine-Grained Visual Evidence With the rapid development of MLLMs, evaluating their visual capabilities has become increasingly crucial. Current benchmarks primarily fall into two main types: basic perception benchmarks, which focus on local details but lack deep reasoning (e.g., "what is in the image?"), and mainstream reasoning benchmarks, which concentrate on prominent image elements but may fail to assess subtle clues requiring intricate analysis. However, profound visual understanding and complex reasoning depend more on interpreting subtle, inconspicuous local details than on perceiving salient, macro-level objects. These details, though occupying minimal image area, often contain richer, more critical information for robust analysis. To bridge this gap, we introduce the VER-Bench, a novel framework to evaluate MLLMs' ability to: 1) identify fine-grained visual clues, often occupying on average just 0.25% of the image area; 2) integrate these clues with world knowledge for complex reasoning. Comprising 374 carefully designed questions across Geospatial, Temporal, Situational, Intent, System State, and Symbolic reasoning, each question in VER-Bench is accompanied by structured evidence: visual clues and question-related reasoning derived from them. VER-Bench reveals current models' limitations in extracting subtle visual evidence and constructing evidence-based arguments, highlighting the need to enhance models's capabilities in fine-grained visual evidence extraction, integration, and reasoning for genuine visual understanding and human-like analysis. Dataset and additional materials are available https://github.com/verbta/ACMMM-25-Materials. 7 authors · Aug 6
- Quantitative Analysis of AI-Generated Texts in Academic Research: A Study of AI Presence in Arxiv Submissions using AI Detection Tool Many people are interested in ChatGPT since it has become a prominent AIGC model that provides high-quality responses in various contexts, such as software development and maintenance. Misuse of ChatGPT might cause significant issues, particularly in public safety and education, despite its immense potential. The majority of researchers choose to publish their work on Arxiv. The effectiveness and originality of future work depend on the ability to detect AI components in such contributions. To address this need, this study will analyze a method that can see purposely manufactured content that academic organizations use to post on Arxiv. For this study, a dataset was created using physics, mathematics, and computer science articles. Using the newly built dataset, the following step is to put originality.ai through its paces. The statistical analysis shows that Originality.ai is very accurate, with a rate of 98%. 1 authors · Feb 9, 2024
- Plugin estimators for selective classification with out-of-distribution detection Real-world classifiers can benefit from the option of abstaining from predicting on samples where they have low confidence. Such abstention is particularly useful on samples which are close to the learned decision boundary, or which are outliers with respect to the training sample. These settings have been the subject of extensive but disjoint study in the selective classification (SC) and out-of-distribution (OOD) detection literature. Recent work on selective classification with OOD detection (SCOD) has argued for the unified study of these problems; however, the formal underpinnings of this problem are still nascent, and existing techniques are heuristic in nature. In this paper, we propose new plugin estimators for SCOD that are theoretically grounded, effective, and generalise existing approaches from the SC and OOD detection literature. In the course of our analysis, we formally explicate how na\"{i}ve use of existing SC and OOD detection baselines may be inadequate for SCOD. We empirically demonstrate that our approaches yields competitive SC and OOD detection performance compared to baselines from both literatures. 4 authors · Jan 29, 2023
3 Measuring Massive Multitask Language Understanding We propose a new test to measure a text model's multitask accuracy. The test covers 57 tasks including elementary mathematics, US history, computer science, law, and more. To attain high accuracy on this test, models must possess extensive world knowledge and problem solving ability. We find that while most recent models have near random-chance accuracy, the very largest GPT-3 model improves over random chance by almost 20 percentage points on average. However, on every one of the 57 tasks, the best models still need substantial improvements before they can reach expert-level accuracy. Models also have lopsided performance and frequently do not know when they are wrong. Worse, they still have near-random accuracy on some socially important subjects such as morality and law. By comprehensively evaluating the breadth and depth of a model's academic and professional understanding, our test can be used to analyze models across many tasks and to identify important shortcomings. 7 authors · Sep 7, 2020
- ASPED: An Audio Dataset for Detecting Pedestrians We introduce the new audio analysis task of pedestrian detection and present a new large-scale dataset for this task. While the preliminary results prove the viability of using audio approaches for pedestrian detection, they also show that this challenging task cannot be easily solved with standard approaches. 6 authors · Sep 12, 2023
- A Large Dataset of Object Scans We have created a dataset of more than ten thousand 3D scans of real objects. To create the dataset, we recruited 70 operators, equipped them with consumer-grade mobile 3D scanning setups, and paid them to scan objects in their environments. The operators scanned objects of their choosing, outside the laboratory and without direct supervision by computer vision professionals. The result is a large and diverse collection of object scans: from shoes, mugs, and toys to grand pianos, construction vehicles, and large outdoor sculptures. We worked with an attorney to ensure that data acquisition did not violate privacy constraints. The acquired data was irrevocably placed in the public domain and is available freely at http://redwood-data.org/3dscan . 4 authors · Feb 8, 2016
- Granite Vision: a lightweight, open-source multimodal model for enterprise Intelligence We introduce Granite Vision, a lightweight large language model with vision capabilities, specifically designed to excel in enterprise use cases, particularly in visual document understanding. Our model is trained on a comprehensive instruction-following dataset, including document-related tasks, such as content extraction from tables, charts, diagrams, sketches, and infographics, as well as general image tasks. The architecture of Granite Vision is centered around visual modality alignment with a decoder-only, 2 billion parameter Granite large language model. Additionally, we introduce a dedicated safety classification approach in test-time that leverages a sparse set of attention vectors to identify potential harmful inputs. Despite its lightweight architecture, Granite Vision achieves strong results in standard benchmarks related to visual document understanding, as well as on the LiveXiv benchmark, which is designed to avoid test set contamination by using a constantly updated corpus of recently published Arxiv papers. We are releasing the model under the Apache-2 license, allowing for both research and commercial use, while offering complete visibility into the training data and other relevant details. See https://huggingface.co/ibm-granite/ for model weights. 63 authors · Feb 14
- Anomaly Detection using Autoencoders in High Performance Computing Systems Anomaly detection in supercomputers is a very difficult problem due to the big scale of the systems and the high number of components. The current state of the art for automated anomaly detection employs Machine Learning methods or statistical regression models in a supervised fashion, meaning that the detection tool is trained to distinguish among a fixed set of behaviour classes (healthy and unhealthy states). We propose a novel approach for anomaly detection in High Performance Computing systems based on a Machine (Deep) Learning technique, namely a type of neural network called autoencoder. The key idea is to train a set of autoencoders to learn the normal (healthy) behaviour of the supercomputer nodes and, after training, use them to identify abnormal conditions. This is different from previous approaches which where based on learning the abnormal condition, for which there are much smaller datasets (since it is very hard to identify them to begin with). We test our approach on a real supercomputer equipped with a fine-grained, scalable monitoring infrastructure that can provide large amount of data to characterize the system behaviour. The results are extremely promising: after the training phase to learn the normal system behaviour, our method is capable of detecting anomalies that have never been seen before with a very good accuracy (values ranging between 88% and 96%). 5 authors · Nov 13, 2018
- Towards A Rigorous Science of Interpretable Machine Learning As machine learning systems become ubiquitous, there has been a surge of interest in interpretable machine learning: systems that provide explanation for their outputs. These explanations are often used to qualitatively assess other criteria such as safety or non-discrimination. However, despite the interest in interpretability, there is very little consensus on what interpretable machine learning is and how it should be measured. In this position paper, we first define interpretability and describe when interpretability is needed (and when it is not). Next, we suggest a taxonomy for rigorous evaluation and expose open questions towards a more rigorous science of interpretable machine learning. 2 authors · Feb 27, 2017
- NegBERT: A Transfer Learning Approach for Negation Detection and Scope Resolution Negation is an important characteristic of language, and a major component of information extraction from text. This subtask is of considerable importance to the biomedical domain. Over the years, multiple approaches have been explored to address this problem: Rule-based systems, Machine Learning classifiers, Conditional Random Field Models, CNNs and more recently BiLSTMs. In this paper, we look at applying Transfer Learning to this problem. First, we extensively review previous literature addressing Negation Detection and Scope Resolution across the 3 datasets that have gained popularity over the years: the BioScope Corpus, the Sherlock dataset, and the SFU Review Corpus. We then explore the decision choices involved with using BERT, a popular transfer learning model, for this task, and report state-of-the-art results for scope resolution across all 3 datasets. Our model, referred to as NegBERT, achieves a token level F1 score on scope resolution of 92.36 on the Sherlock dataset, 95.68 on the BioScope Abstracts subcorpus, 91.24 on the BioScope Full Papers subcorpus, 90.95 on the SFU Review Corpus, outperforming the previous state-of-the-art systems by a significant margin. We also analyze the model's generalizability to datasets on which it is not trained. 2 authors · Nov 11, 2019
1 SemEval 2017 Task 10: ScienceIE - Extracting Keyphrases and Relations from Scientific Publications We describe the SemEval task of extracting keyphrases and relations between them from scientific documents, which is crucial for understanding which publications describe which processes, tasks and materials. Although this was a new task, we had a total of 26 submissions across 3 evaluation scenarios. We expect the task and the findings reported in this paper to be relevant for researchers working on understanding scientific content, as well as the broader knowledge base population and information extraction communities. 5 authors · Apr 10, 2017
- Halu-J: Critique-Based Hallucination Judge Large language models (LLMs) frequently generate non-factual content, known as hallucinations. Existing retrieval-augmented-based hallucination detection approaches typically address this by framing it as a classification task, evaluating hallucinations based on their consistency with retrieved evidence. However, this approach usually lacks detailed explanations for these evaluations and does not assess the reliability of these explanations. Furthermore, deficiencies in retrieval systems can lead to irrelevant or partially relevant evidence retrieval, impairing the detection process. Moreover, while real-world hallucination detection requires analyzing multiple pieces of evidence, current systems usually treat all evidence uniformly without considering its relevance to the content. To address these challenges, we introduce Halu-J, a critique-based hallucination judge with 7 billion parameters. Halu-J enhances hallucination detection by selecting pertinent evidence and providing detailed critiques. Our experiments indicate that Halu-J outperforms GPT-4o in multiple-evidence hallucination detection and matches its capability in critique generation and evidence selection. We also introduce ME-FEVER, a new dataset designed for multiple-evidence hallucination detection. Our code and dataset can be found in https://github.com/GAIR-NLP/factool . 4 authors · Jul 17, 2024
- Embracing data abundance: BookTest Dataset for Reading Comprehension There is a practically unlimited amount of natural language data available. Still, recent work in text comprehension has focused on datasets which are small relative to current computing possibilities. This article is making a case for the community to move to larger data and as a step in that direction it is proposing the BookTest, a new dataset similar to the popular Children's Book Test (CBT), however more than 60 times larger. We show that training on the new data improves the accuracy of our Attention-Sum Reader model on the original CBT test data by a much larger margin than many recent attempts to improve the model architecture. On one version of the dataset our ensemble even exceeds the human baseline provided by Facebook. We then show in our own human study that there is still space for further improvement. 3 authors · Oct 4, 2016
- Incidental Scene Text Understanding: Recent Progresses on ICDAR 2015 Robust Reading Competition Challenge 4 Different from focused texts present in natural images, which are captured with user's intention and intervention, incidental texts usually exhibit much more diversity, variability and complexity, thus posing significant difficulties and challenges for scene text detection and recognition algorithms. The ICDAR 2015 Robust Reading Competition Challenge 4 was launched to assess the performance of existing scene text detection and recognition methods on incidental texts as well as to stimulate novel ideas and solutions. This report is dedicated to briefly introduce our strategies for this challenging problem and compare them with prior arts in this field. 7 authors · Nov 30, 2015
- NELA-GT-2019: A Large Multi-Labelled News Dataset for The Study of Misinformation in News Articles In this paper, we present an updated version of the NELA-GT-2018 dataset (N{\o}rregaard, Horne, and Adal{\i} 2019), entitled NELA-GT-2019. NELA-GT-2019 contains 1.12M news articles from 260 sources collected between January 1st 2019 and December 31st 2019. Just as with NELA-GT-2018, these sources come from a wide range of mainstream news sources and alternative news sources. Included with the dataset are source-level ground truth labels from 7 different assessment sites covering multiple dimensions of veracity. The NELA-GT-2019 dataset can be found at: https://doi.org/10.7910/DVN/O7FWPO 3 authors · Mar 18, 2020
- An Evaluation Framework for Legal Document Summarization A law practitioner has to go through numerous lengthy legal case proceedings for their practices of various categories, such as land dispute, corruption, etc. Hence, it is important to summarize these documents, and ensure that summaries contain phrases with intent matching the category of the case. To the best of our knowledge, there is no evaluation metric that evaluates a summary based on its intent. We propose an automated intent-based summarization metric, which shows a better agreement with human evaluation as compared to other automated metrics like BLEU, ROUGE-L etc. in terms of human satisfaction. We also curate a dataset by annotating intent phrases in legal documents, and show a proof of concept as to how this system can be automated. Additionally, all the code and data to generate reproducible results is available on Github. 6 authors · May 17, 2022
1 What's the Meaning of Superhuman Performance in Today's NLU? In the last five years, there has been a significant focus in Natural Language Processing (NLP) on developing larger Pretrained Language Models (PLMs) and introducing benchmarks such as SuperGLUE and SQuAD to measure their abilities in language understanding, reasoning, and reading comprehension. These PLMs have achieved impressive results on these benchmarks, even surpassing human performance in some cases. This has led to claims of superhuman capabilities and the provocative idea that certain tasks have been solved. In this position paper, we take a critical look at these claims and ask whether PLMs truly have superhuman abilities and what the current benchmarks are really evaluating. We show that these benchmarks have serious limitations affecting the comparison between humans and PLMs and provide recommendations for fairer and more transparent benchmarks. 12 authors · May 15, 2023
- Large Language Models for Disease Diagnosis: A Scoping Review Automatic disease diagnosis has become increasingly valuable in clinical practice. The advent of large language models (LLMs) has catalyzed a paradigm shift in artificial intelligence, with growing evidence supporting the efficacy of LLMs in diagnostic tasks. Despite the increasing attention in this field, a holistic view is still lacking. Many critical aspects remain unclear, such as the diseases and clinical data to which LLMs have been applied, the LLM techniques employed, and the evaluation methods used. In this article, we perform a comprehensive review of LLM-based methods for disease diagnosis. Our review examines the existing literature across various dimensions, including disease types and associated clinical specialties, clinical data, LLM techniques, and evaluation methods. Additionally, we offer recommendations for applying and evaluating LLMs for diagnostic tasks. Furthermore, we assess the limitations of current research and discuss future directions. To our knowledge, this is the first comprehensive review for LLM-based disease diagnosis. 16 authors · Aug 26, 2024
- Worse than Random? An Embarrassingly Simple Probing Evaluation of Large Multimodal Models in Medical VQA Large Multimodal Models (LMMs) have shown remarkable progress in the field of medical Visual Question Answering (Med-VQA), achieving high accuracy on existing benchmarks. However, their reliability under robust evaluation is questionable. This study reveals that state-of-the-art models, when subjected to simple probing evaluation, perform worse than random guessing on medical diagnosis questions. To address this critical evaluation problem, we introduce the Probing Evaluation for Medical Diagnosis (ProbMed) dataset to rigorously assess LMM performance in medical imaging through probing evaluation and procedural diagnosis. Particularly, probing evaluation features pairing original questions with negation questions with hallucinated attributes, while procedural diagnosis requires reasoning across various diagnostic dimensions for each image, including modality recognition, organ identification, clinical findings, abnormalities, and positional grounding. Our evaluation reveals that top-performing models like GPT-4V and Gemini Pro perform worse than random guessing on specialized diagnostic questions, indicating significant limitations in handling fine-grained medical inquiries. Besides, models like LLaVA-Med struggle even with more general questions, and results from CheXagent demonstrate the transferability of expertise across different modalities of the same organ, showing that specialized domain knowledge is still crucial for improving performance. This study underscores the urgent need for more robust evaluation to ensure the reliability of LMMs in critical fields like medical diagnosis, and current LMMs are still far from applicable to those fields. 4 authors · May 30, 2024
- ClueWeb22: 10 Billion Web Documents with Visual and Semantic Information ClueWeb22, the newest iteration of the ClueWeb line of datasets, provides 10 billion web pages affiliated with rich information. Its design was influenced by the need for a high quality, large scale web corpus to support a range of academic and industry research, for example, in information systems, retrieval-augmented AI systems, and model pretraining. Compared with earlier ClueWeb corpora, the ClueWeb22 corpus is larger, more varied, of higher-quality, and aligned with the document distributions in commercial web search. Besides raw HTML, ClueWeb22 includes rich information about the web pages provided by industry-standard document understanding systems, including the visual representation of pages rendered by a web browser, parsed HTML structure information from a neural network parser, and pre-processed cleaned document text to lower the barrier to entry. Many of these signals have been widely used in industry but are available to the research community for the first time at this scale. 5 authors · Nov 28, 2022
1 The FathomNet2023 Competition Dataset Ocean scientists have been collecting visual data to study marine organisms for decades. These images and videos are extremely valuable both for basic science and environmental monitoring tasks. There are tools for automatically processing these data, but none that are capable of handling the extreme variability in sample populations, image quality, and habitat characteristics that are common in visual sampling of the ocean. Such distribution shifts can occur over very short physical distances and in narrow time windows. Creating models that are able to recognize when an image or video sequence contains a new organism, an unusual collection of animals, or is otherwise out-of-sample is critical to fully leverage visual data in the ocean. The FathomNet2023 competition dataset presents a realistic scenario where the set of animals in the target data differs from the training data. The challenge is both to identify the organisms in a target image and assess whether it is out-of-sample. 6 authors · Jul 17, 2023
1 In Rain or Shine: Understanding and Overcoming Dataset Bias for Improving Robustness Against Weather Corruptions for Autonomous Vehicles Several popular computer vision (CV) datasets, specifically employed for Object Detection (OD) in autonomous driving tasks exhibit biases due to a range of factors including weather and lighting conditions. These biases may impair a model's generalizability, rendering it ineffective for OD in novel and unseen datasets. Especially, in autonomous driving, it may prove extremely high risk and unsafe for the vehicle and its surroundings. This work focuses on understanding these datasets better by identifying such "good-weather" bias. Methods to mitigate such bias which allows the OD models to perform better and improve the robustness are also demonstrated. A simple yet effective OD framework for studying bias mitigation is proposed. Using this framework, the performance on popular datasets is analyzed and a significant difference in model performance is observed. Additionally, a knowledge transfer technique and a synthetic image corruption technique are proposed to mitigate the identified bias. Finally, using the DAWN dataset, the findings are validated on the OD task, demonstrating the effectiveness of our techniques in mitigating real-world "good-weather" bias. The experiments show that the proposed techniques outperform baseline methods by averaged fourfold improvement. 3 authors · Apr 3, 2022
- A 23 MW data centre is all you need The field of machine learning has achieved striking progress in recent years, witnessing breakthrough results on language modelling, protein folding and nitpickingly fine-grained dog breed classification. Some even succeeded at playing computer games and board games, a feat both of engineering and of setting their employers' expectations. The central contribution of this work is to carefully examine whether this progress, and technology more broadly, can be expected to continue indefinitely. Through a rigorous application of statistical theory and failure to extrapolate beyond the training data, we answer firmly in the negative and provide details: technology will peak at 3:07 am (BST) on 20th July, 2032. We then explore the implications of this finding, discovering that individuals awake at this ungodly hour with access to a sufficiently powerful computer possess an opportunity for myriad forms of long-term linguistic 'lock in'. All we need is a large (>> 1W) data centre to seize this pivotal moment. By setting our analogue alarm clocks, we propose a tractable algorithm to ensure that, for the future of humanity, the British spelling of colour becomes the default spelling across more than 80% of the global word processing software market. 3 authors · Mar 31, 2022
- Beyond the Selected Completely At Random Assumption for Learning from Positive and Unlabeled Data Most positive and unlabeled data is subject to selection biases. The labeled examples can, for example, be selected from the positive set because they are easier to obtain or more obviously positive. This paper investigates how learning can be ena BHbled in this setting. We propose and theoretically analyze an empirical-risk-based method for incorporating the labeling mechanism. Additionally, we investigate under which assumptions learning is possible when the labeling mechanism is not fully understood and propose a practical method to enable this. Our empirical analysis supports the theoretical results and shows that taking into account the possibility of a selection bias, even when the labeling mechanism is unknown, improves the trained classifiers. 3 authors · Sep 10, 2018
2 Enhanced Hallucination Detection in Neural Machine Translation through Simple Detector Aggregation Hallucinated translations pose significant threats and safety concerns when it comes to the practical deployment of machine translation systems. Previous research works have identified that detectors exhibit complementary performance different detectors excel at detecting different types of hallucinations. In this paper, we propose to address the limitations of individual detectors by combining them and introducing a straightforward method for aggregating multiple detectors. Our results demonstrate the efficacy of our aggregated detector, providing a promising step towards evermore reliable machine translation systems. 5 authors · Feb 20, 2024
- Preserving Statistical Validity in Adaptive Data Analysis A great deal of effort has been devoted to reducing the risk of spurious scientific discoveries, from the use of sophisticated validation techniques, to deep statistical methods for controlling the false discovery rate in multiple hypothesis testing. However, there is a fundamental disconnect between the theoretical results and the practice of data analysis: the theory of statistical inference assumes a fixed collection of hypotheses to be tested, or learning algorithms to be applied, selected non-adaptively before the data are gathered, whereas in practice data is shared and reused with hypotheses and new analyses being generated on the basis of data exploration and the outcomes of previous analyses. In this work we initiate a principled study of how to guarantee the validity of statistical inference in adaptive data analysis. As an instance of this problem, we propose and investigate the question of estimating the expectations of m adaptively chosen functions on an unknown distribution given n random samples. We show that, surprisingly, there is a way to estimate an exponential in n number of expectations accurately even if the functions are chosen adaptively. This gives an exponential improvement over standard empirical estimators that are limited to a linear number of estimates. Our result follows from a general technique that counter-intuitively involves actively perturbing and coordinating the estimates, using techniques developed for privacy preservation. We give additional applications of this technique to our question. 6 authors · Nov 10, 2014
1 Mcity Data Engine: Iterative Model Improvement Through Open-Vocabulary Data Selection With an ever-increasing availability of data, it has become more and more challenging to select and label appropriate samples for the training of machine learning models. It is especially difficult to detect long-tail classes of interest in large amounts of unlabeled data. This holds especially true for Intelligent Transportation Systems (ITS), where vehicle fleets and roadside perception systems generate an abundance of raw data. While industrial, proprietary data engines for such iterative data selection and model training processes exist, researchers and the open-source community suffer from a lack of an openly available system. We present the Mcity Data Engine, which provides modules for the complete data-based development cycle, beginning at the data acquisition phase and ending at the model deployment stage. The Mcity Data Engine focuses on rare and novel classes through an open-vocabulary data selection process. All code is publicly available on GitHub under an MIT license: https://github.com/mcity/mcity_data_engine 6 authors · Apr 30
36 Robust Speech Recognition via Large-Scale Weak Supervision We study the capabilities of speech processing systems trained simply to predict large amounts of transcripts of audio on the internet. When scaled to 680,000 hours of multilingual and multitask supervision, the resulting models generalize well to standard benchmarks and are often competitive with prior fully supervised results but in a zero-shot transfer setting without the need for any fine-tuning. When compared to humans, the models approach their accuracy and robustness. We are releasing models and inference code to serve as a foundation for further work on robust speech processing. 6 authors · Dec 6, 2022 6
- As Good As A Coin Toss: Human detection of AI-generated images, videos, audio, and audiovisual stimuli As synthetic media becomes progressively more realistic and barriers to using it continue to lower, the technology has been increasingly utilized for malicious purposes, from financial fraud to nonconsensual pornography. Today, the principal defense against being misled by synthetic media relies on the ability of the human observer to visually and auditorily discern between real and fake. However, it remains unclear just how vulnerable people actually are to deceptive synthetic media in the course of their day to day lives. We conducted a perceptual study with 1276 participants to assess how accurate people were at distinguishing synthetic images, audio only, video only, and audiovisual stimuli from authentic. To reflect the circumstances under which people would likely encounter synthetic media in the wild, testing conditions and stimuli emulated a typical online platform, while all synthetic media used in the survey was sourced from publicly accessible generative AI technology. We find that overall, participants struggled to meaningfully discern between synthetic and authentic content. We also find that detection performance worsens when the stimuli contains synthetic content as compared to authentic content, images featuring human faces as compared to non face objects, a single modality as compared to multimodal stimuli, mixed authenticity as compared to being fully synthetic for audiovisual stimuli, and features foreign languages as compared to languages the observer is fluent in. Finally, we also find that prior knowledge of synthetic media does not meaningfully impact their detection performance. Collectively, these results indicate that people are highly susceptible to being tricked by synthetic media in their daily lives and that human perceptual detection capabilities can no longer be relied upon as an effective counterdefense. 4 authors · Mar 25, 2024
1 Measuring Data We identify the task of measuring data to quantitatively characterize the composition of machine learning data and datasets. Similar to an object's height, width, and volume, data measurements quantify different attributes of data along common dimensions that support comparison. Several lines of research have proposed what we refer to as measurements, with differing terminology; we bring some of this work together, particularly in fields of computer vision and language, and build from it to motivate measuring data as a critical component of responsible AI development. Measuring data aids in systematically building and analyzing machine learning (ML) data towards specific goals and gaining better control of what modern ML systems will learn. We conclude with a discussion of the many avenues of future work, the limitations of data measurements, and how to leverage these measurement approaches in research and practice. 10 authors · Dec 9, 2022
- Ragnarök: A Reusable RAG Framework and Baselines for TREC 2024 Retrieval-Augmented Generation Track Did you try out the new Bing Search? Or maybe you fiddled around with Google AI~Overviews? These might sound familiar because the modern-day search stack has recently evolved to include retrieval-augmented generation (RAG) systems. They allow searching and incorporating real-time data into large language models (LLMs) to provide a well-informed, attributed, concise summary in contrast to the traditional search paradigm that relies on displaying a ranked list of documents. Therefore, given these recent advancements, it is crucial to have an arena to build, test, visualize, and systematically evaluate RAG-based search systems. With this in mind, we propose the TREC 2024 RAG Track to foster innovation in evaluating RAG systems. In our work, we lay out the steps we've made towards making this track a reality -- we describe the details of our reusable framework, Ragnar\"ok, explain the curation of the new MS MARCO V2.1 collection choice, release the development topics for the track, and standardize the I/O definitions which assist the end user. Next, using Ragnar\"ok, we identify and provide key industrial baselines such as OpenAI's GPT-4o or Cohere's Command R+. Further, we introduce a web-based user interface for an interactive arena allowing benchmarking pairwise RAG systems by crowdsourcing. We open-source our Ragnar\"ok framework and baselines to achieve a unified standard for future RAG systems. 8 authors · Jun 24, 2024
- 1st Workshop on Maritime Computer Vision (MaCVi) 2023: Challenge Results The 1^{st} Workshop on Maritime Computer Vision (MaCVi) 2023 focused on maritime computer vision for Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicle (USV), and organized several subchallenges in this domain: (i) UAV-based Maritime Object Detection, (ii) UAV-based Maritime Object Tracking, (iii) USV-based Maritime Obstacle Segmentation and (iv) USV-based Maritime Obstacle Detection. The subchallenges were based on the SeaDronesSee and MODS benchmarks. This report summarizes the main findings of the individual subchallenges and introduces a new benchmark, called SeaDronesSee Object Detection v2, which extends the previous benchmark by including more classes and footage. We provide statistical and qualitative analyses, and assess trends in the best-performing methodologies of over 130 submissions. The methods are summarized in the appendix. The datasets, evaluation code and the leaderboard are publicly available at https://seadronessee.cs.uni-tuebingen.de/macvi. 73 authors · Nov 24, 2022
- A Survey on Detection of LLMs-Generated Content The burgeoning capabilities of advanced large language models (LLMs) such as ChatGPT have led to an increase in synthetic content generation with implications across a variety of sectors, including media, cybersecurity, public discourse, and education. As such, the ability to detect LLMs-generated content has become of paramount importance. We aim to provide a detailed overview of existing detection strategies and benchmarks, scrutinizing their differences and identifying key challenges and prospects in the field, advocating for more adaptable and robust models to enhance detection accuracy. We also posit the necessity for a multi-faceted approach to defend against various attacks to counter the rapidly advancing capabilities of LLMs. To the best of our knowledge, this work is the first comprehensive survey on the detection in the era of LLMs. We hope it will provide a broad understanding of the current landscape of LLMs-generated content detection, offering a guiding reference for researchers and practitioners striving to uphold the integrity of digital information in an era increasingly dominated by synthetic content. The relevant papers are summarized and will be consistently updated at https://github.com/Xianjun-Yang/Awesome_papers_on_LLMs_detection.git. 7 authors · Oct 24, 2023
- ABOUT ML: Annotation and Benchmarking on Understanding and Transparency of Machine Learning Lifecycles We present the "Annotation and Benchmarking on Understanding and Transparency of Machine Learning Lifecycles" (ABOUT ML) project as an initiative to operationalize ML transparency and work towards a standard ML documentation practice. We make the case for the project's relevance and effectiveness in consolidating disparate efforts across a variety of stakeholders, as well as bringing in the perspectives of currently missing voices that will be valuable in shaping future conversations. We describe the details of the initiative and the gaps we hope this project will help address. 2 authors · Dec 12, 2019
- Speed/accuracy trade-offs for modern convolutional object detectors The goal of this paper is to serve as a guide for selecting a detection architecture that achieves the right speed/memory/accuracy balance for a given application and platform. To this end, we investigate various ways to trade accuracy for speed and memory usage in modern convolutional object detection systems. A number of successful systems have been proposed in recent years, but apples-to-apples comparisons are difficult due to different base feature extractors (e.g., VGG, Residual Networks), different default image resolutions, as well as different hardware and software platforms. We present a unified implementation of the Faster R-CNN [Ren et al., 2015], R-FCN [Dai et al., 2016] and SSD [Liu et al., 2015] systems, which we view as "meta-architectures" and trace out the speed/accuracy trade-off curve created by using alternative feature extractors and varying other critical parameters such as image size within each of these meta-architectures. On one extreme end of this spectrum where speed and memory are critical, we present a detector that achieves real time speeds and can be deployed on a mobile device. On the opposite end in which accuracy is critical, we present a detector that achieves state-of-the-art performance measured on the COCO detection task. 11 authors · Nov 30, 2016
- Semmeldetector: Application of Machine Learning in Commercial Bakeries The Semmeldetector, is a machine learning application that utilizes object detection models to detect, classify and count baked goods in images. Our application allows commercial bakers to track unsold baked goods, which allows them to optimize production and increase resource efficiency. We compiled a dataset comprising 1151 images that distinguishes between 18 different types of baked goods to train our detection models. To facilitate model training, we used a Copy-Paste augmentation pipeline to expand our dataset. We trained the state-of-the-art object detection model YOLOv8 on our detection task. We tested the impact of different training data, model scale, and online image augmentation pipelines on model performance. Our overall best performing model, achieved an [email protected] of 89.1% on our test set. Based on our results, we conclude that machine learning can be a valuable tool even for unforeseen industries like bakeries, even with very limited datasets. 3 authors · Jun 6, 2024
- AXNav: Replaying Accessibility Tests from Natural Language Developers and quality assurance testers often rely on manual testing to test accessibility features throughout the product lifecycle. Unfortunately, manual testing can be tedious, often has an overwhelming scope, and can be difficult to schedule amongst other development milestones. Recently, Large Language Models (LLMs) have been used for a variety of tasks including automation of UIs, however to our knowledge no one has yet explored their use in controlling assistive technologies for the purposes of supporting accessibility testing. In this paper, we explore the requirements of a natural language based accessibility testing workflow, starting with a formative study. From this we build a system that takes as input a manual accessibility test (e.g., ``Search for a show in VoiceOver'') and uses an LLM combined with pixel-based UI Understanding models to execute the test and produce a chaptered, navigable video. In each video, to help QA testers we apply heuristics to detect and flag accessibility issues (e.g., Text size not increasing with Large Text enabled, VoiceOver navigation loops). We evaluate this system through a 10 participant user study with accessibility QA professionals who indicated that the tool would be very useful in their current work and performed tests similarly to how they would manually test the features. The study also reveals insights for future work on using LLMs for accessibility testing. 6 authors · Oct 3, 2023
- MUSAN: A Music, Speech, and Noise Corpus This report introduces a new corpus of music, speech, and noise. This dataset is suitable for training models for voice activity detection (VAD) and music/speech discrimination. Our corpus is released under a flexible Creative Commons license. The dataset consists of music from several genres, speech from twelve languages, and a wide assortment of technical and non-technical noises. We demonstrate use of this corpus for music/speech discrimination on Broadcast news and VAD for speaker identification. 3 authors · Oct 28, 2015
1 How Discriminative Are Your Qrels? How To Study the Statistical Significance of Document Adjudication Methods Creating test collections for offline retrieval evaluation requires human effort to judge documents' relevance. This expensive activity motivated much work in developing methods for constructing benchmarks with fewer assessment costs. In this respect, adjudication methods actively decide both which documents and the order in which experts review them, in order to better exploit the assessment budget or to lower it. Researchers evaluate the quality of those methods by measuring the correlation between the known gold ranking of systems under the full collection and the observed ranking of systems under the lower-cost one. This traditional analysis ignores whether and how the low-cost judgements impact on the statistically significant differences among systems with respect to the full collection. We fill this void by proposing a novel methodology to evaluate how the low-cost adjudication methods preserve the pairwise significant differences between systems as the full collection. In other terms, while traditional approaches look for stability in answering the question "is system A better than system B?", our proposed approach looks for stability in answering the question "is system A significantly better than system B?", which is the ultimate questions researchers need to answer to guarantee the generalisability of their results. Among other results, we found that the best methods in terms of ranking of systems correlation do not always match those preserving statistical significance. 3 authors · Aug 18, 2023
2 Yo'LLaVA: Your Personalized Language and Vision Assistant Large Multimodal Models (LMMs) have shown remarkable capabilities across a variety of tasks (e.g., image captioning, visual question answering). While broad, their knowledge remains generic (e.g., recognizing a dog), and they are unable to handle personalized subjects (e.g., recognizing a user's pet dog). Human reasoning, in contrast, typically operates within the context of specific subjects in our surroundings. For example, one might ask, "What should I buy for my dog's birthday?"; as opposed to a generic inquiry about "What should I buy for a dog's birthday?". Similarly, when looking at a friend's image, the interest lies in seeing their activities (e.g., "my friend is holding a cat"), rather than merely observing generic human actions (e.g., "a man is holding a cat"). In this paper, we introduce the novel task of personalizing LMMs, so that they can have conversations about a specific subject. We propose Yo'LLaVA, which learns to embed a personalized subject into a set of latent tokens given a handful of example images of the subject. Our qualitative and quantitative analyses reveal that Yo'LLaVA can learn the concept more efficiently using fewer tokens and more effectively encode the visual attributes compared to strong prompting baselines (e.g., LLaVA). 6 authors · Jun 13, 2024
1 Oktoberfest Food Dataset We release a realistic, diverse, and challenging dataset for object detection on images. The data was recorded at a beer tent in Germany and consists of 15 different categories of food and drink items. We created more than 2,500 object annotations by hand for 1,110 images captured by a video camera above the checkout. We further make available the remaining 600GB of (unlabeled) data containing days of footage. Additionally, we provide our trained models as a benchmark. Possible applications include automated checkout systems which could significantly speed up the process. 6 authors · Nov 22, 2019
22 An Early Evaluation of GPT-4V(ision) In this paper, we evaluate different abilities of GPT-4V including visual understanding, language understanding, visual puzzle solving, and understanding of other modalities such as depth, thermal, video, and audio. To estimate GPT-4V's performance, we manually construct 656 test instances and carefully evaluate the results of GPT-4V. The highlights of our findings are as follows: (1) GPT-4V exhibits impressive performance on English visual-centric benchmarks but fails to recognize simple Chinese texts in the images; (2) GPT-4V shows inconsistent refusal behavior when answering questions related to sensitive traits such as gender, race, and age; (3) GPT-4V obtains worse results than GPT-4 (API) on language understanding tasks including general language understanding benchmarks and visual commonsense knowledge evaluation benchmarks; (4) Few-shot prompting can improve GPT-4V's performance on both visual understanding and language understanding; (5) GPT-4V struggles to find the nuances between two similar images and solve the easy math picture puzzles; (6) GPT-4V shows non-trivial performance on the tasks of similar modalities to image, such as video and thermal. Our experimental results reveal the ability and limitations of GPT-4V and we hope our paper can provide some insights into the application and research of GPT-4V. 7 authors · Oct 25, 2023 1
- Vital Videos: A dataset of face videos with PPG and blood pressure ground truths We collected a large dataset consisting of nearly 900 unique participants. For every participant we recorded two 30 second uncompressed videos, synchronized PPG waveforms and a single blood pressure measurement. Gender, age and skin color were also registered for every participant. The dataset includes roughly equal numbers of males and females, as well as participants of all ages. While the skin color distribution could have been more balanced, the dataset contains individuals from every skin color. The data was collected in a diverse set of locations to ensure a wide variety of backgrounds and lighting conditions. In an effort to assist in the research and development of remote vital sign measurement we are now opening up access to this dataset. 1 authors · Jun 2, 2023
- Aspect-based Analysis of Advertising Appeals for Search Engine Advertising Writing an ad text that attracts people and persuades them to click or act is essential for the success of search engine advertising. Therefore, ad creators must consider various aspects of advertising appeals (A^3) such as the price, product features, and quality. However, products and services exhibit unique effective A^3 for different industries. In this work, we focus on exploring the effective A^3 for different industries with the aim of assisting the ad creation process. To this end, we created a dataset of advertising appeals and used an existing model that detects various aspects for ad texts. Our experiments demonstrated that different industries have their own effective A^3 and that the identification of the A^3 contributes to the estimation of advertising performance. 6 authors · Apr 25, 2022
26 LLM-DetectAIve: a Tool for Fine-Grained Machine-Generated Text Detection The widespread accessibility of large language models (LLMs) to the general public has significantly amplified the dissemination of machine-generated texts (MGTs). Advancements in prompt manipulation have exacerbated the difficulty in discerning the origin of a text (human-authored vs machinegenerated). This raises concerns regarding the potential misuse of MGTs, particularly within educational and academic domains. In this paper, we present LLM-DetectAIve -- a system designed for fine-grained MGT detection. It is able to classify texts into four categories: human-written, machine-generated, machine-written machine-humanized, and human-written machine-polished. Contrary to previous MGT detectors that perform binary classification, introducing two additional categories in LLM-DetectiAIve offers insights into the varying degrees of LLM intervention during the text creation. This might be useful in some domains like education, where any LLM intervention is usually prohibited. Experiments show that LLM-DetectAIve can effectively identify the authorship of textual content, proving its usefulness in enhancing integrity in education, academia, and other domains. LLM-DetectAIve is publicly accessible at https://huggingface.co/spaces/raj-tomar001/MGT-New. The video describing our system is available at https://youtu.be/E8eT_bE7k8c. 24 authors · Aug 8, 2024 7
- deep-significance - Easy and Meaningful Statistical Significance Testing in the Age of Neural Networks A lot of Machine Learning (ML) and Deep Learning (DL) research is of an empirical nature. Nevertheless, statistical significance testing (SST) is still not widely used. This endangers true progress, as seeming improvements over a baseline might be statistical flukes, leading follow-up research astray while wasting human and computational resources. Here, we provide an easy-to-use package containing different significance tests and utility functions specifically tailored towards research needs and usability. 3 authors · Apr 14, 2022
1 Spurious Correlations in Machine Learning: A Survey Machine learning systems are known to be sensitive to spurious correlations between biased features of the inputs (e.g., background, texture, and secondary objects) and the corresponding labels. These features and their correlations with the labels are known as "spurious" because they tend to change with shifts in real-world data distributions, which can negatively impact the model's generalization and robustness. In this survey, we provide a comprehensive review of this issue, along with a taxonomy of current state-of-the-art methods for addressing spurious correlations in machine learning models. Additionally, we summarize existing datasets, benchmarks, and metrics to aid future research. The paper concludes with a discussion of the recent advancements and future research challenges in this field, aiming to provide valuable insights for researchers in the related domains. 6 authors · Feb 19, 2024
1 A new type of Neutrino Detector for Sterile Neutrino Search at Nuclear Reactors and Nuclear Nonproliferation Applications We describe a new detector, called NuLat, to study electron anti-neutrinos a few meters from a nuclear reactor, and search for anomalous neutrino oscillations. Such oscillations could be caused by sterile neutrinos, and might explain the "Reactor Antineutrino Anomaly". NuLat, is made possible by a natural synergy between the miniTimeCube and mini-LENS programs described in this paper. It features a "Raghavan Optical Lattice" (ROL) consisting of 3375 boron or ^6Li loaded plastic scintillator cubical cells 6.3\,cm (2.500") on a side. Cell boundaries have a 0.127\,mm (0.005") air gap, resulting in total internal reflection guiding most of the light down the 3 cardinal directions. The ROL detector technology for NuLat gives excellent spatial and energy resolution and allows for in-depth event topology studies. These features allow us to discern inverse beta decay (IBD) signals and the putative oscillation pattern, even in the presence of other backgrounds. We discuss here test venues, efficiency, sensitivity and project status. 24 authors · Jan 27, 2015
- Experiments on Anomaly Detection in Autonomous Driving by Forward-Backward Style Transfers Great progress has been achieved in the community of autonomous driving in the past few years. As a safety-critical problem, however, anomaly detection is a huge hurdle towards a large-scale deployment of autonomous vehicles in the real world. While many approaches, such as uncertainty estimation or segmentation-based image resynthesis, are extremely promising, there is more to be explored. Especially inspired by works on anomaly detection based on image resynthesis, we propose a novel approach for anomaly detection through style transfer. We leverage generative models to map an image from its original style domain of road traffic to an arbitrary one and back to generate pixelwise anomaly scores. However, our experiments have proven our hypothesis wrong, and we were unable to produce significant results. Nevertheless, we want to share our findings, so that others can learn from our experiments. 4 authors · Jul 13, 2022
- Beyond Eviction Prediction: Leveraging Local Spatiotemporal Public Records to Inform Action There has been considerable recent interest in scoring properties on the basis of eviction risk. The success of methods for eviction prediction is typically evaluated using different measures of predictive accuracy. However, the underlying goal of such prediction is to direct appropriate assistance to households that may be at greater risk so they remain stably housed. Thus, we must ask the question of how useful such predictions are in targeting outreach efforts - informing action. In this paper, we investigate this question using a novel dataset that matches information on properties, evictions, and owners. We perform an eviction prediction task to produce risk scores and then use these risk scores to plan targeted outreach policies. We show that the risk scores are, in fact, useful, enabling a theoretical team of caseworkers to reach more eviction-prone properties in the same amount of time, compared to outreach policies that are either neighborhood-based or focus on buildings with a recent history of evictions. We also discuss the importance of neighborhood and ownership features in both risk prediction and targeted outreach. 4 authors · Jan 27, 2024
- Probing Classifiers: Promises, Shortcomings, and Advances Probing classifiers have emerged as one of the prominent methodologies for interpreting and analyzing deep neural network models of natural language processing. The basic idea is simple -- a classifier is trained to predict some linguistic property from a model's representations -- and has been used to examine a wide variety of models and properties. However, recent studies have demonstrated various methodological limitations of this approach. This article critically reviews the probing classifiers framework, highlighting their promises, shortcomings, and advances. 1 authors · Feb 24, 2021
1 Improving neural networks by preventing co-adaptation of feature detectors When a large feedforward neural network is trained on a small training set, it typically performs poorly on held-out test data. This "overfitting" is greatly reduced by randomly omitting half of the feature detectors on each training case. This prevents complex co-adaptations in which a feature detector is only helpful in the context of several other specific feature detectors. Instead, each neuron learns to detect a feature that is generally helpful for producing the correct answer given the combinatorially large variety of internal contexts in which it must operate. Random "dropout" gives big improvements on many benchmark tasks and sets new records for speech and object recognition. 5 authors · Jul 3, 2012
- Cleaning and Structuring the Label Space of the iMet Collection 2020 The iMet 2020 dataset is a valuable resource in the space of fine-grained art attribution recognition, but we believe it has yet to reach its true potential. We document the unique properties of the dataset and observe that many of the attribute labels are noisy, more than is implied by the dataset description. Oftentimes, there are also semantic relationships between the labels (e.g., identical, mutual exclusion, subsumption, overlap with uncertainty) which we believe are underutilized. We propose an approach to cleaning and structuring the iMet 2020 labels, and discuss the implications and value of doing so. Further, we demonstrate the benefits of our proposed approach through several experiments. Our code and cleaned labels are available at https://github.com/sunniesuhyoung/iMet2020cleaned. 2 authors · Jun 1, 2021
- Real or Fake Text?: Investigating Human Ability to Detect Boundaries Between Human-Written and Machine-Generated Text As text generated by large language models proliferates, it becomes vital to understand how humans engage with such text, and whether or not they are able to detect when the text they are reading did not originate with a human writer. Prior work on human detection of generated text focuses on the case where an entire passage is either human-written or machine-generated. In this paper, we study a more realistic setting where text begins as human-written and transitions to being generated by state-of-the-art neural language models. We show that, while annotators often struggle at this task, there is substantial variance in annotator skill and that given proper incentives, annotators can improve at this task over time. Furthermore, we conduct a detailed comparison study and analyze how a variety of variables (model size, decoding strategy, fine-tuning, prompt genre, etc.) affect human detection performance. Finally, we collect error annotations from our participants and use them to show that certain textual genres influence models to make different types of errors and that certain sentence-level features correlate highly with annotator selection. We release the RoFT dataset: a collection of over 21,000 human annotations paired with error classifications to encourage future work in human detection and evaluation of generated text. 5 authors · Dec 24, 2022
- A Review of Automated Speech and Language Features for Assessment of Cognitive and Thought Disorders It is widely accepted that information derived from analyzing speech (the acoustic signal) and language production (words and sentences) serves as a useful window into the health of an individual's cognitive ability. In fact, most neuropsychological testing batteries have a component related to speech and language where clinicians elicit speech from patients for subjective evaluation across a broad set of dimensions. With advances in speech signal processing and natural language processing, there has been recent interest in developing tools to detect more subtle changes in cognitive-linguistic function. This work relies on extracting a set of features from recorded and transcribed speech for objective assessments of speech and language, early diagnosis of neurological disease, and tracking of disease after diagnosis. With an emphasis on cognitive and thought disorders, in this paper we provide a review of existing speech and language features used in this domain, discuss their clinical application, and highlight their advantages and disadvantages. Broadly speaking, the review is split into two categories: language features based on natural language processing and speech features based on speech signal processing. Within each category, we consider features that aim to measure complementary dimensions of cognitive-linguistics, including language diversity, syntactic complexity, semantic coherence, and timing. We conclude the review with a proposal of new research directions to further advance the field. 3 authors · Jun 3, 2019
- Regression with Sensor Data Containing Incomplete Observations This paper addresses a regression problem in which output label values are the results of sensing the magnitude of a phenomenon. A low value of such labels can mean either that the actual magnitude of the phenomenon was low or that the sensor made an incomplete observation. This leads to a bias toward lower values in labels and the resultant learning because labels may have lower values due to incomplete observations, even if the actual magnitude of the phenomenon was high. Moreover, because an incomplete observation does not provide any tags indicating incompleteness, we cannot eliminate or impute them. To address this issue, we propose a learning algorithm that explicitly models incomplete observations corrupted with an asymmetric noise that always has a negative value. We show that our algorithm is unbiased as if it were learned from uncorrupted data that does not involve incomplete observations. We demonstrate the advantages of our algorithm through numerical experiments. 2 authors · Apr 26, 2023
2 AI training resources for GLAM: a snapshot We take a snapshot of current resources available for teaching and learning AI with a focus on the Galleries, Libraries, Archives and Museums (GLAM) community. The review was carried out in 2021 and 2022. The review provides an overview of material we identified as being relevant, offers a description of this material and makes recommendations for future work in this area. 6 authors · May 10, 2022
- Stop Clickbait: Detecting and Preventing Clickbaits in Online News Media Most of the online news media outlets rely heavily on the revenues generated from the clicks made by their readers, and due to the presence of numerous such outlets, they need to compete with each other for reader attention. To attract the readers to click on an article and subsequently visit the media site, the outlets often come up with catchy headlines accompanying the article links, which lure the readers to click on the link. Such headlines are known as Clickbaits. While these baits may trick the readers into clicking, in the long run, clickbaits usually don't live up to the expectation of the readers, and leave them disappointed. In this work, we attempt to automatically detect clickbaits and then build a browser extension which warns the readers of different media sites about the possibility of being baited by such headlines. The extension also offers each reader an option to block clickbaits she doesn't want to see. Then, using such reader choices, the extension automatically blocks similar clickbaits during her future visits. We run extensive offline and online experiments across multiple media sites and find that the proposed clickbait detection and the personalized blocking approaches perform very well achieving 93% accuracy in detecting and 89% accuracy in blocking clickbaits. 4 authors · Oct 31, 2016
4 Towards Best Practices of Activation Patching in Language Models: Metrics and Methods Mechanistic interpretability seeks to understand the internal mechanisms of machine learning models, where localization -- identifying the important model components -- is a key step. Activation patching, also known as causal tracing or interchange intervention, is a standard technique for this task (Vig et al., 2020), but the literature contains many variants with little consensus on the choice of hyperparameters or methodology. In this work, we systematically examine the impact of methodological details in activation patching, including evaluation metrics and corruption methods. In several settings of localization and circuit discovery in language models, we find that varying these hyperparameters could lead to disparate interpretability results. Backed by empirical observations, we give conceptual arguments for why certain metrics or methods may be preferred. Finally, we provide recommendations for the best practices of activation patching going forwards. 2 authors · Sep 27, 2023
- A low-cost ultraviolet-to-infrared absolute quantum efficiency characterization system of detectors We present a low-cost ultraviolet to infrared absolute quantum efficiency detector characterization system developed using commercial off-the-shelf components. The key components of the experiment include a light source,a regulated power supply, a monochromator, an integrating sphere, and a calibrated photodiode. We provide a step-by-step procedure to construct the photon and quantum efficiency transfer curves of imaging sensors. We present results for the GSENSE 2020 BSI CMOS sensor and the Sony IMX 455 BSI CMOS sensor. As a reference for similar characterizations, we provide a list of parts and associated costs along with images of our setup. 11 authors · Jul 26, 2022
- Farmer's Assistant: A Machine Learning Based Application for Agricultural Solutions Farmers face several challenges when growing crops like uncertain irrigation, poor soil quality, etc. Especially in India, a major fraction of farmers do not have the knowledge to select appropriate crops and fertilizers. Moreover, crop failure due to disease causes a significant loss to the farmers, as well as the consumers. While there have been recent developments in the automated detection of these diseases using Machine Learning techniques, the utilization of Deep Learning has not been fully explored. Additionally, such models are not easy to use because of the high-quality data used in their training, lack of computational power, and poor generalizability of the models. To this end, we create an open-source easy-to-use web application to address some of these issues which may help improve crop production. In particular, we support crop recommendation, fertilizer recommendation, plant disease prediction, and an interactive news-feed. In addition, we also use interpretability techniques in an attempt to explain the prediction made by our disease detection model. 4 authors · Apr 24, 2022
- Learning to Determine the Quality of News Headlines Today, most newsreaders read the online version of news articles rather than traditional paper-based newspapers. Also, news media publishers rely heavily on the income generated from subscriptions and website visits made by newsreaders. Thus, online user engagement is a very important issue for online newspapers. Much effort has been spent on writing interesting headlines to catch the attention of online users. On the other hand, headlines should not be misleading (e.g., clickbaits); otherwise, readers would be disappointed when reading the content. In this paper, we propose four indicators to determine the quality of published news headlines based on their click count and dwell time, which are obtained by website log analysis. Then, we use soft target distribution of the calculated quality indicators to train our proposed deep learning model which can predict the quality of unpublished news headlines. The proposed model not only processes the latent features of both headline and body of the article to predict its headline quality but also considers the semantic relation between headline and body as well. To evaluate our model, we use a real dataset from a major Canadian newspaper. Results show our proposed model outperforms other state-of-the-art NLP models. 4 authors · Nov 25, 2019
1 RACE: Large-scale ReAding Comprehension Dataset From Examinations We present RACE, a new dataset for benchmark evaluation of methods in the reading comprehension task. Collected from the English exams for middle and high school Chinese students in the age range between 12 to 18, RACE consists of near 28,000 passages and near 100,000 questions generated by human experts (English instructors), and covers a variety of topics which are carefully designed for evaluating the students' ability in understanding and reasoning. In particular, the proportion of questions that requires reasoning is much larger in RACE than that in other benchmark datasets for reading comprehension, and there is a significant gap between the performance of the state-of-the-art models (43%) and the ceiling human performance (95%). We hope this new dataset can serve as a valuable resource for research and evaluation in machine comprehension. The dataset is freely available at http://www.cs.cmu.edu/~glai1/data/race/ and the code is available at https://github.com/qizhex/RACE_AR_baselines. 5 authors · Apr 15, 2017
- Functional Map of the World We present a new dataset, Functional Map of the World (fMoW), which aims to inspire the development of machine learning models capable of predicting the functional purpose of buildings and land use from temporal sequences of satellite images and a rich set of metadata features. The metadata provided with each image enables reasoning about location, time, sun angles, physical sizes, and other features when making predictions about objects in the image. Our dataset consists of over 1 million images from over 200 countries. For each image, we provide at least one bounding box annotation containing one of 63 categories, including a "false detection" category. We present an analysis of the dataset along with baseline approaches that reason about metadata and temporal views. Our data, code, and pretrained models have been made publicly available. 4 authors · Nov 21, 2017
- On building machine learning pipelines for Android malware detection: a procedural survey of practices, challenges and opportunities As the smartphone market leader, Android has been a prominent target for malware attacks. The number of malicious applications (apps) identified for it has increased continually over the past decade, creating an immense challenge for all parties involved. For market holders and researchers, in particular, the large number of samples has made manual malware detection unfeasible, leading to an influx of research that investigate Machine Learning (ML) approaches to automate this process. However, while some of the proposed approaches achieve high performance, rapidly evolving Android malware has made them unable to maintain their accuracy over time. This has created a need in the community to conduct further research, and build more flexible ML pipelines. Doing so, however, is currently hindered by a lack of systematic overview of the existing literature, to learn from and improve upon the existing solutions. Existing survey papers often focus only on parts of the ML process (e.g., data collection or model deployment), while omitting other important stages, such as model evaluation and explanation. In this paper, we address this problem with a review of 42 highly-cited papers, spanning a decade of research (from 2011 to 2021). We introduce a novel procedural taxonomy of the published literature, covering how they have used ML algorithms, what features they have engineered, which dimensionality reduction techniques they have employed, what datasets they have employed for training, and what their evaluation and explanation strategies are. Drawing from this taxonomy, we also identify gaps in knowledge and provide ideas for improvement and future work. 6 authors · Jun 12, 2023
3 KALE-LM: Unleash The Power Of AI For Science Via Knowledge And Logic Enhanced Large Model Artificial intelligence is gradually demonstrating its immense potential, and increasing attention is being given to how AI can be harnessed to advance scientific research. In this vision paper, we present our perspectives on how AI can better assist scientific inquiry and explore corresponding technical approach. We have proposed and open-sourced a large model of our KALE-LM model series, Llama3-KALE-LM-Chem-8B, which has achieved outstanding performance in tasks related to the field of chemistry. We hope that our work serves as a strong starting point, helping to realize more intelligent AI and promoting the advancement of human science and technology, as well as societal development. 12 authors · Sep 27, 2024
1 Thinking Fast and Slow in AI This paper proposes a research direction to advance AI which draws inspiration from cognitive theories of human decision making. The premise is that if we gain insights about the causes of some human capabilities that are still lacking in AI (for instance, adaptability, generalizability, common sense, and causal reasoning), we may obtain similar capabilities in an AI system by embedding these causal components. We hope that the high-level description of our vision included in this paper, as well as the several research questions that we propose to consider, can stimulate the AI research community to define, try and evaluate new methodologies, frameworks, and evaluation metrics, in the spirit of achieving a better understanding of both human and machine intelligence. 11 authors · Oct 12, 2020
- People cannot distinguish GPT-4 from a human in a Turing test We evaluated 3 systems (ELIZA, GPT-3.5 and GPT-4) in a randomized, controlled, and preregistered Turing test. Human participants had a 5 minute conversation with either a human or an AI, and judged whether or not they thought their interlocutor was human. GPT-4 was judged to be a human 54% of the time, outperforming ELIZA (22%) but lagging behind actual humans (67%). The results provide the first robust empirical demonstration that any artificial system passes an interactive 2-player Turing test. The results have implications for debates around machine intelligence and, more urgently, suggest that deception by current AI systems may go undetected. Analysis of participants' strategies and reasoning suggests that stylistic and socio-emotional factors play a larger role in passing the Turing test than traditional notions of intelligence. 2 authors · May 9, 2024
1 Analytical Derivation and Comparison of Alarm Similarity Measures An industrial process includes many devices, variables, and sub-processes that are physically or electronically interconnected. These interconnections imply some level of correlation between different process variables. Since most of the alarms in a process plant are defined on process variables, alarms are also correlated. However, this can be a nuisance to operators, for one fault might trigger a, sometimes large, number of alarms. So, it is essential to find and correct correlated alarms. In this paper, we study different methods and techniques proposed to measure correlation or similarity between alarms. The similarity indices are first analytically calculated and then studied and compared. The results are also validated using Monte-Carlo simulation. 4 authors · Mar 23, 2020
- In-domain representation learning for remote sensing Given the importance of remote sensing, surprisingly little attention has been paid to it by the representation learning community. To address it and to establish baselines and a common evaluation protocol in this domain, we provide simplified access to 5 diverse remote sensing datasets in a standardized form. Specifically, we investigate in-domain representation learning to develop generic remote sensing representations and explore which characteristics are important for a dataset to be a good source for remote sensing representation learning. The established baselines achieve state-of-the-art performance on these datasets. 4 authors · Nov 15, 2019
- Detecting Harmful Content On Online Platforms: What Platforms Need Vs. Where Research Efforts Go The proliferation of harmful content on online platforms is a major societal problem, which comes in many different forms including hate speech, offensive language, bullying and harassment, misinformation, spam, violence, graphic content, sexual abuse, self harm, and many other. Online platforms seek to moderate such content to limit societal harm, to comply with legislation, and to create a more inclusive environment for their users. Researchers have developed different methods for automatically detecting harmful content, often focusing on specific sub-problems or on narrow communities, as what is considered harmful often depends on the platform and on the context. We argue that there is currently a dichotomy between what types of harmful content online platforms seek to curb, and what research efforts there are to automatically detect such content. We thus survey existing methods as well as content moderation policies by online platforms in this light and we suggest directions for future work. 11 authors · Feb 27, 2021
3 Toward Reliable Biomedical Hypothesis Generation: Evaluating Truthfulness and Hallucination in Large Language Models Large language models (LLMs) have shown significant potential in scientific disciplines such as biomedicine, particularly in hypothesis generation, where they can analyze vast literature, identify patterns, and suggest research directions. However, a key challenge lies in evaluating the truthfulness of generated hypotheses, as verifying their accuracy often requires substantial time and resources. Additionally, the hallucination problem in LLMs can lead to the generation of hypotheses that appear plausible but are ultimately incorrect, undermining their reliability. To facilitate the systematic study of these challenges, we introduce TruthHypo, a benchmark for assessing the capabilities of LLMs in generating truthful biomedical hypotheses, and KnowHD, a knowledge-based hallucination detector to evaluate how well hypotheses are grounded in existing knowledge. Our results show that LLMs struggle to generate truthful hypotheses. By analyzing hallucinations in reasoning steps, we demonstrate that the groundedness scores provided by KnowHD serve as an effective metric for filtering truthful hypotheses from the diverse outputs of LLMs. Human evaluations further validate the utility of KnowHD in identifying truthful hypotheses and accelerating scientific discovery. Our data and source code are available at https://github.com/Teddy-XiongGZ/TruthHypo. 8 authors · May 20 2
- AISHELL-1: An Open-Source Mandarin Speech Corpus and A Speech Recognition Baseline An open-source Mandarin speech corpus called AISHELL-1 is released. It is by far the largest corpus which is suitable for conducting the speech recognition research and building speech recognition systems for Mandarin. The recording procedure, including audio capturing devices and environments are presented in details. The preparation of the related resources, including transcriptions and lexicon are described. The corpus is released with a Kaldi recipe. Experimental results implies that the quality of audio recordings and transcriptions are promising. 5 authors · Sep 16, 2017
- Machine Learning for Shipwreck Segmentation from Side Scan Sonar Imagery: Dataset and Benchmark Open-source benchmark datasets have been a critical component for advancing machine learning for robot perception in terrestrial applications. Benchmark datasets enable the widespread development of state-of-the-art machine learning methods, which require large datasets for training, validation, and thorough comparison to competing approaches. Underwater environments impose several operational challenges that hinder efforts to collect large benchmark datasets for marine robot perception. Furthermore, a low abundance of targets of interest relative to the size of the search space leads to increased time and cost required to collect useful datasets for a specific task. As a result, there is limited availability of labeled benchmark datasets for underwater applications. We present the AI4Shipwrecks dataset, which consists of 24 distinct shipwreck sites totaling 286 high-resolution labeled side scan sonar images to advance the state-of-the-art in autonomous sonar image understanding. We leverage the unique abundance of targets in Thunder Bay National Marine Sanctuary in Lake Huron, MI, to collect and compile a sonar imagery benchmark dataset through surveys with an autonomous underwater vehicle (AUV). We consulted with expert marine archaeologists for the labeling of robotically gathered data. We then leverage this dataset to perform benchmark experiments for comparison of state-of-the-art supervised segmentation methods, and we present insights on opportunities and open challenges for the field. The dataset and benchmarking tools will be released as an open-source benchmark dataset to spur innovation in machine learning for Great Lakes and ocean exploration. The dataset and accompanying software are available at https://umfieldrobotics.github.io/ai4shipwrecks/. 7 authors · Jan 25, 2024
- Biomolecular Analysis of Soil Samples and Rock Imagery for Tracing Evidence of Life Using a Mobile Robot The search for evidence of past life on Mars presents a tremendous challenge that requires the usage of very advanced robotic technologies to overcome it. Current digital microscopic imagers and spectrometers used for astrobiological examination suffer from limitations such as insufficient resolution, narrow detection range, and lack of portability. To overcome these challenges, this research study presents modifications to the Phoenix rover to expand its capability for detecting biosignatures on Mars. This paper examines the modifications implemented on the Phoenix rover to enhance its capability to detect a broader spectrum of biosignatures. One of the notable improvements comprises the integration of advanced digital microscopic imagers and spectrometers, enabling high-resolution examination of soil samples. Additionally, the mechanical components of the device have been reinforced to enhance maneuverability and optimize subsurface sampling capabilities. Empirical investigations have demonstrated that Phoenix has the capability to navigate diverse geological environments and procure samples for the purpose of biomolecular analysis. The biomolecular instrumentation and hybrid analytical methods showcased in this study demonstrate considerable potential for future astrobiology missions on Mars. The potential for enhancing the system lies in the possibility of broadening the range of detectable biomarkers and biosignatures. 5 authors · Nov 27, 2024
1 Implementing An Artificial Quantum Perceptron A Perceptron is a fundamental building block of a neural network. The flexibility and scalability of perceptron make it ubiquitous in building intelligent systems. Studies have shown the efficacy of a single neuron in making intelligent decisions. Here, we examined and compared two perceptrons with distinct mechanisms, and developed a quantum version of one of those perceptrons. As a part of this modeling, we implemented the quantum circuit for an artificial perception, generated a dataset, and simulated the training. Through these experiments, we show that there is an exponential growth advantage and test different qubit versions. Our findings show that this quantum model of an individual perceptron can be used as a pattern classifier. For the second type of model, we provide an understanding to design and simulate a spike-dependent quantum perceptron. Our code is available at https://github.com/ashutosh1919/quantum-perceptron 2 authors · Dec 2, 2024
- On a Seldom Oversight in Fermi's Calculations: Seventy Years Later We discuss an unfortunate mistake, for a Dirac free particle, in the last Fermi lecture notes on quantum mechanics, in a course given at the University of Chicago in winter and spring of 1954. As is demonstrated, the correct result can be obtained by a simple matrix multiplication. An attempt to collect a relevant bibliography is made. 1 authors · Jul 9, 2023
1 NLP Evaluation in trouble: On the Need to Measure LLM Data Contamination for each Benchmark In this position paper, we argue that the classical evaluation on Natural Language Processing (NLP) tasks using annotated benchmarks is in trouble. The worst kind of data contamination happens when a Large Language Model (LLM) is trained on the test split of a benchmark, and then evaluated in the same benchmark. The extent of the problem is unknown, as it is not straightforward to measure. Contamination causes an overestimation of the performance of a contaminated model in a target benchmark and associated task with respect to their non-contaminated counterparts. The consequences can be very harmful, with wrong scientific conclusions being published while other correct ones are discarded. This position paper defines different levels of data contamination and argues for a community effort, including the development of automatic and semi-automatic measures to detect when data from a benchmark was exposed to a model, and suggestions for flagging papers with conclusions that are compromised by data contamination. 6 authors · Oct 27, 2023
2 Reading the unreadable: Creating a dataset of 19th century English newspapers using image-to-text language models Oscar Wilde said, "The difference between literature and journalism is that journalism is unreadable, and literature is not read." Unfortunately, The digitally archived journalism of Oscar Wilde's 19th century often has no or poor quality Optical Character Recognition (OCR), reducing the accessibility of these archives and making them unreadable both figuratively and literally. This paper helps address the issue by performing OCR on "The Nineteenth Century Serials Edition" (NCSE), an 84k-page collection of 19th-century English newspapers and periodicals, using Pixtral 12B, a pre-trained image-to-text language model. The OCR capability of Pixtral was compared to 4 other OCR approaches, achieving a median character error rate of 1%, 5x lower than the next best model. The resulting NCSE v2.0 dataset features improved article identification, high-quality OCR, and text classified into four types and seventeen topics. The dataset contains 1.4 million entries, and 321 million words. Example use cases demonstrate analysis of topic similarity, readability, and event tracking. NCSE v2.0 is freely available to encourage historical and sociological research. As a result, 21st-century readers can now share Oscar Wilde's disappointment with 19th-century journalistic standards, reading the unreadable from the comfort of their own computers. 1 authors · Feb 18
1 ANNA: A Deep Learning Based Dataset in Heterogeneous Traffic for Autonomous Vehicles Recent breakthroughs in artificial intelligence offer tremendous promise for the development of self-driving applications. Deep Neural Networks, in particular, are being utilized to support the operation of semi-autonomous cars through object identification and semantic segmentation. To assess the inadequacy of the current dataset in the context of autonomous and semi-autonomous cars, we created a new dataset named ANNA. This study discusses a custom-built dataset that includes some unidentified vehicles in the perspective of Bangladesh, which are not included in the existing dataset. A dataset validity check was performed by evaluating models using the Intersection Over Union (IOU) metric. The results demonstrated that the model trained on our custom dataset was more precise and efficient than the models trained on the KITTI or COCO dataset concerning Bangladeshi traffic. The research presented in this paper also emphasizes the importance of developing accurate and efficient object detection algorithms for the advancement of autonomous vehicles. 6 authors · Jan 20, 2024
2 Pseudo vs. True Defect Classification in Printed Circuits Boards using Wavelet Features In recent years, Printed Circuit Boards (PCB) have become the backbone of a large number of consumer electronic devices leading to a surge in their production. This has made it imperative to employ automatic inspection systems to identify manufacturing defects in PCB before they are installed in the respective systems. An important task in this regard is the classification of defects as either true or pseudo defects, which decides if the PCB is to be re-manufactured or not. This work proposes a novel approach to detect most common defects in the PCBs. The problem has been approached by employing highly discriminative features based on multi-scale wavelet transform, which are further boosted by using a kernalized version of the support vector machines (SVM). A real world printed circuit board dataset has been used for quantitative analysis. Experimental results demonstrated the efficacy of the proposed method. 4 authors · Oct 24, 2013
- NELA-GT-2018: A Large Multi-Labelled News Dataset for The Study of Misinformation in News Articles In this paper, we present a dataset of 713k articles collected between 02/2018-11/2018. These articles are collected directly from 194 news and media outlets including mainstream, hyper-partisan, and conspiracy sources. We incorporate ground truth ratings of the sources from 8 different assessment sites covering multiple dimensions of veracity, including reliability, bias, transparency, adherence to journalistic standards, and consumer trust. The NELA-GT-2018 dataset can be found at https://doi.org/10.7910/DVN/ULHLCB. 3 authors · Apr 2, 2019
- How to use and interpret activation patching Activation patching is a popular mechanistic interpretability technique, but has many subtleties regarding how it is applied and how one may interpret the results. We provide a summary of advice and best practices, based on our experience using this technique in practice. We include an overview of the different ways to apply activation patching and a discussion on how to interpret the results. We focus on what evidence patching experiments provide about circuits, and on the choice of metric and associated pitfalls. 2 authors · Apr 23, 2024
- SmurfCat at SemEval-2024 Task 6: Leveraging Synthetic Data for Hallucination Detection In this paper, we present our novel systems developed for the SemEval-2024 hallucination detection task. Our investigation spans a range of strategies to compare model predictions with reference standards, encompassing diverse baselines, the refinement of pre-trained encoders through supervised learning, and an ensemble approaches utilizing several high-performing models. Through these explorations, we introduce three distinct methods that exhibit strong performance metrics. To amplify our training data, we generate additional training samples from unlabelled training subset. Furthermore, we provide a detailed comparative analysis of our approaches. Notably, our premier method achieved a commendable 9th place in the competition's model-agnostic track and 17th place in model-aware track, highlighting its effectiveness and potential. 6 authors · Apr 9, 2024
- Measuring the Quality of Answers in Political Q&As with Large Language Models This article proposes a new approach for assessing the quality of answers in political question-and-answer sessions. We measure the quality of an answer based on how easily and accurately it can be recognized in a random set of candidate answers given the question's text. This measure reflects the answer's relevance and depth of engagement with the question. Like semantic search, we can implement this approach by training a language model on the corpus of observed questions and answers without additional human-labeled data. We showcase and validate our methodology within the context of the Question Period in the Canadian House of Commons. Our analysis reveals that while some answers have a weak semantic connection to questions, hinting at some evasion or obfuscation, they are generally at least moderately relevant, far exceeding what we would expect from random replies. We also find a meaningful correlation between answer quality and the party affiliation of the members of Parliament asking the questions. 2 authors · Apr 12, 2024
11 Visual Chronicles: Using Multimodal LLMs to Analyze Massive Collections of Images We present a system using Multimodal LLMs (MLLMs) to analyze a large database with tens of millions of images captured at different times, with the aim of discovering patterns in temporal changes. Specifically, we aim to capture frequent co-occurring changes ("trends") across a city over a certain period. Unlike previous visual analyses, our analysis answers open-ended queries (e.g., "what are the frequent types of changes in the city?") without any predetermined target subjects or training labels. These properties cast prior learning-based or unsupervised visual analysis tools unsuitable. We identify MLLMs as a novel tool for their open-ended semantic understanding capabilities. Yet, our datasets are four orders of magnitude too large for an MLLM to ingest as context. So we introduce a bottom-up procedure that decomposes the massive visual analysis problem into more tractable sub-problems. We carefully design MLLM-based solutions to each sub-problem. During experiments and ablation studies with our system, we find it significantly outperforms baselines and is able to discover interesting trends from images captured in large cities (e.g., "addition of outdoor dining,", "overpass was painted blue," etc.). See more results and interactive demos at https://boyangdeng.com/visual-chronicles. 7 authors · Apr 11 2
1 Do-Not-Answer: A Dataset for Evaluating Safeguards in LLMs With the rapid evolution of large language models (LLMs), new and hard-to-predict harmful capabilities are emerging. This requires developers to be able to identify risks through the evaluation of "dangerous capabilities" in order to responsibly deploy LLMs. In this work, we collect the first open-source dataset to evaluate safeguards in LLMs, and deploy safer open-source LLMs at a low cost. Our dataset is curated and filtered to consist only of instructions that responsible language models should not follow. We annotate and assess the responses of six popular LLMs to these instructions. Based on our annotation, we proceed to train several BERT-like classifiers, and find that these small classifiers can achieve results that are comparable with GPT-4 on automatic safety evaluation. Warning: this paper contains example data that may be offensive, harmful, or biased. 5 authors · Aug 25, 2023
- A Text Classification Framework for Simple and Effective Early Depression Detection Over Social Media Streams With the rise of the Internet, there is a growing need to build intelligent systems that are capable of efficiently dealing with early risk detection (ERD) problems on social media, such as early depression detection, early rumor detection or identification of sexual predators. These systems, nowadays mostly based on machine learning techniques, must be able to deal with data streams since users provide their data over time. In addition, these systems must be able to decide when the processed data is sufficient to actually classify users. Moreover, since ERD tasks involve risky decisions by which people's lives could be affected, such systems must also be able to justify their decisions. However, most standard and state-of-the-art supervised machine learning models are not well suited to deal with this scenario. This is due to the fact that they either act as black boxes or do not support incremental classification/learning. In this paper we introduce SS3, a novel supervised learning model for text classification that naturally supports these aspects. SS3 was designed to be used as a general framework to deal with ERD problems. We evaluated our model on the CLEF's eRisk2017 pilot task on early depression detection. Most of the 30 contributions submitted to this competition used state-of-the-art methods. Experimental results show that our classifier was able to outperform these models and standard classifiers, despite being less computationally expensive and having the ability to explain its rationale. 3 authors · May 18, 2019
- CogniBench: A Legal-inspired Framework and Dataset for Assessing Cognitive Faithfulness of Large Language Models Faithfulness hallucinations are claims generated by a Large Language Model (LLM) not supported by contexts provided to the LLM. Lacking assessment standards, existing benchmarks focus on "factual statements" that rephrase source materials while overlooking "cognitive statements" that involve making inferences from the given context. Consequently, evaluating and detecting the hallucination of cognitive statements remains challenging. Inspired by how evidence is assessed in the legal domain, we design a rigorous framework to assess different levels of faithfulness of cognitive statements and introduce the CogniBench dataset where we reveal insightful statistics. To keep pace with rapidly evolving LLMs, we further develop an automatic annotation pipeline that scales easily across different models. This results in a large-scale CogniBench-L dataset, which facilitates training accurate detectors for both factual and cognitive hallucinations. We release our model and datasets at: https://github.com/FUTUREEEEEE/CogniBench 8 authors · May 27
1 Chain of Thought Monitorability: A New and Fragile Opportunity for AI Safety AI systems that "think" in human language offer a unique opportunity for AI safety: we can monitor their chains of thought (CoT) for the intent to misbehave. Like all other known AI oversight methods, CoT monitoring is imperfect and allows some misbehavior to go unnoticed. Nevertheless, it shows promise and we recommend further research into CoT monitorability and investment in CoT monitoring alongside existing safety methods. Because CoT monitorability may be fragile, we recommend that frontier model developers consider the impact of development decisions on CoT monitorability. 41 authors · Jul 15
- Generalized Disparate Impact for Configurable Fairness Solutions in ML We make two contributions in the field of AI fairness over continuous protected attributes. First, we show that the Hirschfeld-Gebelein-Renyi (HGR) indicator (the only one currently available for such a case) is valuable but subject to a few crucial limitations regarding semantics, interpretability, and robustness. Second, we introduce a family of indicators that are: 1) complementary to HGR in terms of semantics; 2) fully interpretable and transparent; 3) robust over finite samples; 4) configurable to suit specific applications. Our approach also allows us to define fine-grained constraints to permit certain types of dependence and forbid others selectively. By expanding the available options for continuous protected attributes, our approach represents a significant contribution to the area of fair artificial intelligence. 3 authors · May 29, 2023
1 Categorizing the Visual Environment and Analyzing the Visual Attention of Dogs Dogs have a unique evolutionary relationship with humans and serve many important roles e.g. search and rescue, blind assistance, emotional support. However, few datasets exist to categorize visual features and objects available to dogs, as well as how dogs direct their visual attention within their environment. We collect and study a dataset with over 11,698 gazes to categorize the objects available to be gazed at by 11 dogs in everyday outdoor environments i.e. a walk around a college campus and urban area. We explore the availability of these object categories and the visual attention of dogs over these categories using a head mounted eye tracking apparatus. A small portion (approx. 600 images or < 20% of total dataset) of the collected data is used to fine tune a MaskRCNN for the novel image domain to segment objects present in the scene, enabling further statistical analysis on the visual gaze tendencies of dogs. The MaskRCNN, with eye tracking apparatus, serves as an end to end model for automatically classifying the visual fixations of dogs. The fine tuned MaskRCNN performs far better than chance. There are few individual differences between the 11 dogs and we observe greater visual fixations on buses, plants, pavement, and construction equipment. This work takes a step towards understanding visual behavior of dogs and their interaction with the physical world. 4 authors · Nov 20, 2023
- Magnitude of arithmetic scalar and matrix categories We develop tools for explicitly constructing categories enriched over generating data and that compose via ordinary scalar and matrix arithmetic arithmetic operations. We characterize meaningful size maps, weightings, and magnitude that reveal features analogous to outliers that these same notions have previously been shown to reveal in the context of metric spaces. Throughout, we provide examples of such "outlier detection" relevant to the analysis of computer programs, neural networks, cyber-physical systems, and networks of communications channels. 1 authors · Apr 17, 2023
- Illuminating search spaces by mapping elites Many fields use search algorithms, which automatically explore a search space to find high-performing solutions: chemists search through the space of molecules to discover new drugs; engineers search for stronger, cheaper, safer designs, scientists search for models that best explain data, etc. The goal of search algorithms has traditionally been to return the single highest-performing solution in a search space. Here we describe a new, fundamentally different type of algorithm that is more useful because it provides a holistic view of how high-performing solutions are distributed throughout a search space. It creates a map of high-performing solutions at each point in a space defined by dimensions of variation that a user gets to choose. This Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) algorithm illuminates search spaces, allowing researchers to understand how interesting attributes of solutions combine to affect performance, either positively or, equally of interest, negatively. For example, a drug company may wish to understand how performance changes as the size of molecules and their cost-to-produce vary. MAP-Elites produces a large diversity of high-performing, yet qualitatively different solutions, which can be more helpful than a single, high-performing solution. Interestingly, because MAP-Elites explores more of the search space, it also tends to find a better overall solution than state-of-the-art search algorithms. We demonstrate the benefits of this new algorithm in three different problem domains ranging from producing modular neural networks to designing simulated and real soft robots. Because MAP- Elites (1) illuminates the relationship between performance and dimensions of interest in solutions, (2) returns a set of high-performing, yet diverse solutions, and (3) improves finding a single, best solution, it will advance science and engineering. 2 authors · Apr 19, 2015
1 WIT-UAS: A Wildland-fire Infrared Thermal Dataset to Detect Crew Assets From Aerial Views We present the Wildland-fire Infrared Thermal (WIT-UAS) dataset for long-wave infrared sensing of crew and vehicle assets amidst prescribed wildland fire environments. While such a dataset is crucial for safety monitoring in wildland fire applications, to the authors' awareness, no such dataset focusing on assets near fire is publicly available. Presumably, this is due to the barrier to entry of collaborating with fire management personnel. We present two related data subsets: WIT-UAS-ROS consists of full ROS bag files containing sensor and robot data of UAS flight over the fire, and WIT-UAS-Image contains hand-labeled long-wave infrared (LWIR) images extracted from WIT-UAS-ROS. Our dataset is the first to focus on asset detection in a wildland fire environment. We show that thermal detection models trained without fire data frequently detect false positives by classifying fire as people. By adding our dataset to training, we show that the false positive rate is reduced significantly. Yet asset detection in wildland fire environments is still significantly more challenging than detection in urban environments, due to dense obscuring trees, greater heat variation, and overbearing thermal signal of the fire. We publicize this dataset to encourage the community to study more advanced models to tackle this challenging environment. The dataset, code and pretrained models are available at https://github.com/castacks/WIT-UAS-Dataset. 7 authors · Dec 14, 2023
- Efficient Pipeline for Camera Trap Image Review Biologists all over the world use camera traps to monitor biodiversity and wildlife population density. The computer vision community has been making strides towards automating the species classification challenge in camera traps, but it has proven difficult to to apply models trained in one region to images collected in different geographic areas. In some cases, accuracy falls off catastrophically in new region, due to both changes in background and the presence of previously-unseen species. We propose a pipeline that takes advantage of a pre-trained general animal detector and a smaller set of labeled images to train a classification model that can efficiently achieve accurate results in a new region. 3 authors · Jul 15, 2019
- Is Underwater Image Enhancement All Object Detectors Need? Underwater object detection is a crucial and challenging problem in marine engineering and aquatic robot. The difficulty is partly because of the degradation of underwater images caused by light selective absorption and scattering. Intuitively, enhancing underwater images can benefit high-level applications like underwater object detection. However, it is still unclear whether all object detectors need underwater image enhancement as pre-processing. We therefore pose the questions "Does underwater image enhancement really improve underwater object detection?" and "How does underwater image enhancement contribute to underwater object detection?". With these two questions, we conduct extensive studies. Specifically, we use 18 state-of-the-art underwater image enhancement algorithms, covering traditional, CNN-based, and GAN-based algorithms, to pre-process underwater object detection data. Then, we retrain 7 popular deep learning-based object detectors using the corresponding results enhanced by different algorithms, obtaining 126 underwater object detection models. Coupled with 7 object detection models retrained using raw underwater images, we employ these 133 models to comprehensively analyze the effect of underwater image enhancement on underwater object detection. We expect this study can provide sufficient exploration to answer the aforementioned questions and draw more attention of the community to the joint problem of underwater image enhancement and underwater object detection. The pre-trained models and results are publicly available and will be regularly updated. Project page: https://github.com/BIGWangYuDong/lqit/tree/main/configs/detection/uw_enhancement_affect_detection. 7 authors · Nov 30, 2023
- A Public Image Database for Benchmark of Plant Seedling Classification Algorithms A database of images of approximately 960 unique plants belonging to 12 species at several growth stages is made publicly available. It comprises annotated RGB images with a physical resolution of roughly 10 pixels per mm. To standardise the evaluation of classification results obtained with the database, a benchmark based on f_{1} scores is proposed. The dataset is available at https://vision.eng.au.dk/plant-seedlings-dataset 5 authors · Nov 15, 2017
- Fine-Grained Visual Classification of Aircraft This paper introduces FGVC-Aircraft, a new dataset containing 10,000 images of aircraft spanning 100 aircraft models, organised in a three-level hierarchy. At the finer level, differences between models are often subtle but always visually measurable, making visual recognition challenging but possible. A benchmark is obtained by defining corresponding classification tasks and evaluation protocols, and baseline results are presented. The construction of this dataset was made possible by the work of aircraft enthusiasts, a strategy that can extend to the study of number of other object classes. Compared to the domains usually considered in fine-grained visual classification (FGVC), for example animals, aircraft are rigid and hence less deformable. They, however, present other interesting modes of variation, including purpose, size, designation, structure, historical style, and branding. 5 authors · Jun 21, 2013
- DetermiNet: A Large-Scale Diagnostic Dataset for Complex Visually-Grounded Referencing using Determiners State-of-the-art visual grounding models can achieve high detection accuracy, but they are not designed to distinguish between all objects versus only certain objects of interest. In natural language, in order to specify a particular object or set of objects of interest, humans use determiners such as "my", "either" and "those". Determiners, as an important word class, are a type of schema in natural language about the reference or quantity of the noun. Existing grounded referencing datasets place much less emphasis on determiners, compared to other word classes such as nouns, verbs and adjectives. This makes it difficult to develop models that understand the full variety and complexity of object referencing. Thus, we have developed and released the DetermiNet dataset , which comprises 250,000 synthetically generated images and captions based on 25 determiners. The task is to predict bounding boxes to identify objects of interest, constrained by the semantics of the given determiner. We find that current state-of-the-art visual grounding models do not perform well on the dataset, highlighting the limitations of existing models on reference and quantification tasks. 3 authors · Sep 7, 2023
1 The Technological Emergence of AutoML: A Survey of Performant Software and Applications in the Context of Industry With most technical fields, there exists a delay between fundamental academic research and practical industrial uptake. Whilst some sciences have robust and well-established processes for commercialisation, such as the pharmaceutical practice of regimented drug trials, other fields face transitory periods in which fundamental academic advancements diffuse gradually into the space of commerce and industry. For the still relatively young field of Automated/Autonomous Machine Learning (AutoML/AutonoML), that transitory period is under way, spurred on by a burgeoning interest from broader society. Yet, to date, little research has been undertaken to assess the current state of this dissemination and its uptake. Thus, this review makes two primary contributions to knowledge around this topic. Firstly, it provides the most up-to-date and comprehensive survey of existing AutoML tools, both open-source and commercial. Secondly, it motivates and outlines a framework for assessing whether an AutoML solution designed for real-world application is 'performant'; this framework extends beyond the limitations of typical academic criteria, considering a variety of stakeholder needs and the human-computer interactions required to service them. Thus, additionally supported by an extensive assessment and comparison of academic and commercial case-studies, this review evaluates mainstream engagement with AutoML in the early 2020s, identifying obstacles and opportunities for accelerating future uptake. 4 authors · Nov 8, 2022
- Evaluating Superhuman Models with Consistency Checks If machine learning models were to achieve superhuman abilities at various reasoning or decision-making tasks, how would we go about evaluating such models, given that humans would necessarily be poor proxies for ground truth? In this paper, we propose a framework for evaluating superhuman models via consistency checks. Our premise is that while the correctness of superhuman decisions may be impossible to evaluate, we can still surface mistakes if the model's decisions fail to satisfy certain logical, human-interpretable rules. We instantiate our framework on three tasks where correctness of decisions is hard to evaluate due to either superhuman model abilities, or to otherwise missing ground truth: evaluating chess positions, forecasting future events, and making legal judgments. We show that regardless of a model's (possibly superhuman) performance on these tasks, we can discover logical inconsistencies in decision making. For example: a chess engine assigning opposing valuations to semantically identical boards; GPT-4 forecasting that sports records will evolve non-monotonically over time; or an AI judge assigning bail to a defendant only after we add a felony to their criminal record. 3 authors · Jun 16, 2023
- Text Annotation Handbook: A Practical Guide for Machine Learning Projects This handbook is a hands-on guide on how to approach text annotation tasks. It provides a gentle introduction to the topic, an overview of theoretical concepts as well as practical advice. The topics covered are mostly technical, but business, ethical and regulatory issues are also touched upon. The focus lies on readability and conciseness rather than completeness and scientific rigor. Experience with annotation and knowledge of machine learning are useful but not required. The document may serve as a primer or reference book for a wide range of professions such as team leaders, project managers, IT architects, software developers and machine learning engineers. 8 authors · Oct 18, 2023
- Measure and Improve Robustness in NLP Models: A Survey As NLP models achieved state-of-the-art performances over benchmarks and gained wide applications, it has been increasingly important to ensure the safe deployment of these models in the real world, e.g., making sure the models are robust against unseen or challenging scenarios. Despite robustness being an increasingly studied topic, it has been separately explored in applications like vision and NLP, with various definitions, evaluation and mitigation strategies in multiple lines of research. In this paper, we aim to provide a unifying survey of how to define, measure and improve robustness in NLP. We first connect multiple definitions of robustness, then unify various lines of work on identifying robustness failures and evaluating models' robustness. Correspondingly, we present mitigation strategies that are data-driven, model-driven, and inductive-prior-based, with a more systematic view of how to effectively improve robustness in NLP models. Finally, we conclude by outlining open challenges and future directions to motivate further research in this area. 3 authors · Dec 15, 2021
- Evaluating Large-Vocabulary Object Detectors: The Devil is in the Details By design, average precision (AP) for object detection aims to treat all classes independently: AP is computed independently per category and averaged. On one hand, this is desirable as it treats all classes equally. On the other hand, it ignores cross-category confidence calibration, a key property in real-world use cases. Unfortunately, under important conditions (i.e., large vocabulary, high instance counts) the default implementation of AP is neither category independent, nor does it directly reward properly calibrated detectors. In fact, we show that on LVIS the default implementation produces a gameable metric, where a simple, un-intuitive re-ranking policy can improve AP by a large margin. To address these limitations, we introduce two complementary metrics. First, we present a simple fix to the default AP implementation, ensuring that it is independent across categories as originally intended. We benchmark recent LVIS detection advances and find that many reported gains do not translate to improvements under our new evaluation, suggesting recent improvements may arise from difficult to interpret changes to cross-category rankings. Given the importance of reliably benchmarking cross-category rankings, we consider a pooled version of AP (AP-Pool) that rewards properly calibrated detectors by directly comparing cross-category rankings. Finally, we revisit classical approaches for calibration and find that explicitly calibrating detectors improves state-of-the-art on AP-Pool by 1.7 points 5 authors · Feb 1, 2021
- Distribution Density, Tails, and Outliers in Machine Learning: Metrics and Applications We develop techniques to quantify the degree to which a given (training or testing) example is an outlier in the underlying distribution. We evaluate five methods to score examples in a dataset by how well-represented the examples are, for different plausible definitions of "well-represented", and apply these to four common datasets: MNIST, Fashion-MNIST, CIFAR-10, and ImageNet. Despite being independent approaches, we find all five are highly correlated, suggesting that the notion of being well-represented can be quantified. Among other uses, we find these methods can be combined to identify (a) prototypical examples (that match human expectations); (b) memorized training examples; and, (c) uncommon submodes of the dataset. Further, we show how we can utilize our metrics to determine an improved ordering for curriculum learning, and impact adversarial robustness. We release all metric values on training and test sets we studied. 3 authors · Oct 29, 2019
- AMORE-UPF at SemEval-2018 Task 4: BiLSTM with Entity Library This paper describes our winning contribution to SemEval 2018 Task 4: Character Identification on Multiparty Dialogues. It is a simple, standard model with one key innovation, an entity library. Our results show that this innovation greatly facilitates the identification of infrequent characters. Because of the generic nature of our model, this finding is potentially relevant to any task that requires effective learning from sparse or unbalanced data. 5 authors · May 14, 2018
1 What's "up" with vision-language models? Investigating their struggle with spatial reasoning Recent vision-language (VL) models are powerful, but can they reliably distinguish "right" from "left"? We curate three new corpora to quantify model comprehension of such basic spatial relations. These tests isolate spatial reasoning more precisely than existing datasets like VQAv2, e.g., our What'sUp benchmark contains sets of photographs varying only the spatial relations of objects, keeping their identity fixed (see Figure 1: models must comprehend not only the usual case of a dog under a table, but also, the same dog on top of the same table). We evaluate 18 VL models, finding that all perform poorly, e.g., BLIP finetuned on VQAv2, which nears human parity on VQAv2, achieves 56% accuracy on our benchmarks vs. humans at 99%. We conclude by studying causes of this surprising behavior, finding: 1) that popular vision-language pretraining corpora like LAION-2B contain little reliable data for learning spatial relationships; and 2) that basic modeling interventions like up-weighting preposition-containing instances or fine-tuning on our corpora are not sufficient to address the challenges our benchmarks pose. We are hopeful that these corpora will facilitate further research, and we release our data and code at https://github.com/amitakamath/whatsup_vlms. 3 authors · Oct 30, 2023
- How well do SOTA legal reasoning models support abductive reasoning? We examine how well the state-of-the-art (SOTA) models used in legal reasoning support abductive reasoning tasks. Abductive reasoning is a form of logical inference in which a hypothesis is formulated from a set of observations, and that hypothesis is used to explain the observations. The ability to formulate such hypotheses is important for lawyers and legal scholars as it helps them articulate logical arguments, interpret laws, and develop legal theories. Our motivation is to consider the belief that deep learning models, especially large language models (LLMs), will soon replace lawyers because they perform well on tasks related to legal text processing. But to do so, we believe, requires some form of abductive hypothesis formation. In other words, while LLMs become more popular and powerful, we want to investigate their capacity for abductive reasoning. To pursue this goal, we start by building a logic-augmented dataset for abductive reasoning with 498,697 samples and then use it to evaluate the performance of a SOTA model in the legal field. Our experimental results show that although these models can perform well on tasks related to some aspects of legal text processing, they still fall short in supporting abductive reasoning tasks. 5 authors · Apr 13, 2023
11 AUTOHALLUSION: Automatic Generation of Hallucination Benchmarks for Vision-Language Models Large vision-language models (LVLMs) hallucinate: certain context cues in an image may trigger the language module's overconfident and incorrect reasoning on abnormal or hypothetical objects. Though a few benchmarks have been developed to investigate LVLM hallucinations, they mainly rely on hand-crafted corner cases whose fail patterns may hardly generalize, and finetuning on them could undermine their validity. These motivate us to develop the first automatic benchmark generation approach, AUTOHALLUSION, that harnesses a few principal strategies to create diverse hallucination examples. It probes the language modules in LVLMs for context cues and uses them to synthesize images by: (1) adding objects abnormal to the context cues; (2) for two co-occurring objects, keeping one and excluding the other; or (3) removing objects closely tied to the context cues. It then generates image-based questions whose ground-truth answers contradict the language module's prior. A model has to overcome contextual biases and distractions to reach correct answers, while incorrect or inconsistent answers indicate hallucinations. AUTOHALLUSION enables us to create new benchmarks at the minimum cost and thus overcomes the fragility of hand-crafted benchmarks. It also reveals common failure patterns and reasons, providing key insights to detect, avoid, or control hallucinations. Comprehensive evaluations of top-tier LVLMs, e.g., GPT-4V(ision), Gemini Pro Vision, Claude 3, and LLaVA-1.5, show a 97.7% and 98.7% success rate of hallucination induction on synthetic and real-world datasets of AUTOHALLUSION, paving the way for a long battle against hallucinations. 12 authors · Jun 16, 2024 4
3 Consciousness in Artificial Intelligence: Insights from the Science of Consciousness Whether current or near-term AI systems could be conscious is a topic of scientific interest and increasing public concern. This report argues for, and exemplifies, a rigorous and empirically grounded approach to AI consciousness: assessing existing AI systems in detail, in light of our best-supported neuroscientific theories of consciousness. We survey several prominent scientific theories of consciousness, including recurrent processing theory, global workspace theory, higher-order theories, predictive processing, and attention schema theory. From these theories we derive "indicator properties" of consciousness, elucidated in computational terms that allow us to assess AI systems for these properties. We use these indicator properties to assess several recent AI systems, and we discuss how future systems might implement them. Our analysis suggests that no current AI systems are conscious, but also suggests that there are no obvious technical barriers to building AI systems which satisfy these indicators. 19 authors · Aug 16, 2023
- Singapore Soundscape Site Selection Survey (S5): Identification of Characteristic Soundscapes of Singapore via Weighted k-means Clustering The ecological validity of soundscape studies usually rests on a choice of soundscapes that are representative of the perceptual space under investigation. For example, a soundscape pleasantness study might investigate locations with soundscapes ranging from "pleasant" to "annoying". The choice of soundscapes is typically researcher-led, but a participant-led process can reduce selection bias and improve result reliability. Hence, we propose a robust participant-led method to pinpoint characteristic soundscapes possessing arbitrary perceptual attributes. We validate our method by identifying Singaporean soundscapes spanning the perceptual quadrants generated from the "Pleasantness" and "Eventfulness" axes of the ISO 12913-2 circumplex model of soundscape perception, as perceived by local experts. From memory and experience, 67 participants first selected locations corresponding to each perceptual quadrant in each major planning region of Singapore. We then performed weighted k-means clustering on the selected locations, with weights for each location derived from previous frequencies and durations spent in each location by each participant. Weights hence acted as proxies for participant confidence. In total, 62 locations were thereby identified as suitable locations with characteristic soundscapes for further research utilizing the ISO 12913-2 perceptual quadrants. Audio-visual recordings and acoustic characterization of the soundscapes will be made in a future study. 6 authors · Jun 7, 2022
- Large Language Models Pass the Turing Test We evaluated 4 systems (ELIZA, GPT-4o, LLaMa-3.1-405B, and GPT-4.5) in two randomised, controlled, and pre-registered Turing tests on independent populations. Participants had 5 minute conversations simultaneously with another human participant and one of these systems before judging which conversational partner they thought was human. When prompted to adopt a humanlike persona, GPT-4.5 was judged to be the human 73% of the time: significantly more often than interrogators selected the real human participant. LLaMa-3.1, with the same prompt, was judged to be the human 56% of the time -- not significantly more or less often than the humans they were being compared to -- while baseline models (ELIZA and GPT-4o) achieved win rates significantly below chance (23% and 21% respectively). The results constitute the first empirical evidence that any artificial system passes a standard three-party Turing test. The results have implications for debates about what kind of intelligence is exhibited by Large Language Models (LLMs), and the social and economic impacts these systems are likely to have. 2 authors · Mar 30
- DDXPlus: A New Dataset For Automatic Medical Diagnosis There has been a rapidly growing interest in Automatic Symptom Detection (ASD) and Automatic Diagnosis (AD) systems in the machine learning research literature, aiming to assist doctors in telemedicine services. These systems are designed to interact with patients, collect evidence about their symptoms and relevant antecedents, and possibly make predictions about the underlying diseases. Doctors would review the interactions, including the evidence and the predictions, collect if necessary additional information from patients, before deciding on next steps. Despite recent progress in this area, an important piece of doctors' interactions with patients is missing in the design of these systems, namely the differential diagnosis. Its absence is largely due to the lack of datasets that include such information for models to train on. In this work, we present a large-scale synthetic dataset of roughly 1.3 million patients that includes a differential diagnosis, along with the ground truth pathology, symptoms and antecedents for each patient. Unlike existing datasets which only contain binary symptoms and antecedents, this dataset also contains categorical and multi-choice symptoms and antecedents useful for efficient data collection. Moreover, some symptoms are organized in a hierarchy, making it possible to design systems able to interact with patients in a logical way. As a proof-of-concept, we extend two existing AD and ASD systems to incorporate the differential diagnosis, and provide empirical evidence that using differentials as training signals is essential for the efficiency of such systems or for helping doctors better understand the reasoning of those systems. 5 authors · May 18, 2022
- YATE: The Role of Test Repair in LLM-Based Unit Test Generation Recent advances in automated test generation utilises language models to produce unit tests. While effective, language models tend to generate many incorrect tests with respect to both syntax and semantics. Although such incorrect tests can be easily detected and discarded, they constitute a "missed opportunity" -- if fixed, they are often valuable as they directly add testing value (they effectively target the underlying program logic to be tested) and indirectly form good seeds for generating additional tests. To this end, we propose a simple technique for repairing some of these incorrect tests through a combination of rule-based static analysis and re-prompting. We evaluate this simple approach, named YATE, on a set of 6 open-source projects and show that it can effectively produce tests that cover on average 32.06% more lines and kill 21.77% more mutants than a plain LLM-based method. We also compare YATE with four other LLM-based methods, namely HITS, SYMPROMPT, TESTSPARK and COVERUP and show that it produces tests that cover substantially more code. YATE achieves 22% higher line coverage, 20% higher branch coverage and kill 20% more mutants at a comparable cost (number of calls to LLMs). 5 authors · Jul 24
- Latent Compass: Creation by Navigation In Marius von Senden's Space and Sight, a newly sighted blind patient describes the experience of a corner as lemon-like, because corners "prick" sight like lemons prick the tongue. Prickliness, here, is a dimension in the feature space of sensory experience, an effect of the perceived on the perceiver that arises where the two interact. In the account of the newly sighted, an effect familiar from one interaction translates to a novel context. Perception serves as the vehicle for generalization, in that an effect shared across different experiences produces a concrete abstraction grounded in those experiences. Cezanne and the post-impressionists, fluent in the language of experience translation, realized that the way to paint a concrete form that best reflected reality was to paint not what they saw, but what it was like to see. We envision a future of creation using AI where what it is like to see is replicable, transferrable, manipulable - part of the artist's palette that is both grounded in a particular context, and generalizable beyond it. An active line of research maps human-interpretable features onto directions in GAN latent space. Supervised and self-supervised approaches that search for anticipated directions or use off-the-shelf classifiers to drive image manipulation in embedding space are limited in the variety of features they can uncover. Unsupervised approaches that discover useful new directions show that the space of perceptually meaningful directions is nowhere close to being fully mapped. As this space is broad and full of creative potential, we want tools for direction discovery that capture the richness and generalizability of human perception. Our approach puts creators in the discovery loop during real-time tool use, in order to identify directions that are perceptually meaningful to them, and generate interpretable image translations along those directions. 3 authors · Dec 19, 2020
- YOLOX: Exceeding YOLO Series in 2021 In this report, we present some experienced improvements to YOLO series, forming a new high-performance detector -- YOLOX. We switch the YOLO detector to an anchor-free manner and conduct other advanced detection techniques, i.e., a decoupled head and the leading label assignment strategy SimOTA to achieve state-of-the-art results across a large scale range of models: For YOLO-Nano with only 0.91M parameters and 1.08G FLOPs, we get 25.3% AP on COCO, surpassing NanoDet by 1.8% AP; for YOLOv3, one of the most widely used detectors in industry, we boost it to 47.3% AP on COCO, outperforming the current best practice by 3.0% AP; for YOLOX-L with roughly the same amount of parameters as YOLOv4-CSP, YOLOv5-L, we achieve 50.0% AP on COCO at a speed of 68.9 FPS on Tesla V100, exceeding YOLOv5-L by 1.8% AP. Further, we won the 1st Place on Streaming Perception Challenge (Workshop on Autonomous Driving at CVPR 2021) using a single YOLOX-L model. We hope this report can provide useful experience for developers and researchers in practical scenes, and we also provide deploy versions with ONNX, TensorRT, NCNN, and Openvino supported. Source code is at https://github.com/Megvii-BaseDetection/YOLOX. 5 authors · Jul 18, 2021
- MuSciClaims: Multimodal Scientific Claim Verification Assessing scientific claims requires identifying, extracting, and reasoning with multimodal data expressed in information-rich figures in scientific literature. Despite the large body of work in scientific QA, figure captioning, and other multimodal reasoning tasks over chart-based data, there are no readily usable multimodal benchmarks that directly test claim verification abilities. To remedy this gap, we introduce a new benchmark MuSciClaims accompanied by diagnostics tasks. We automatically extract supported claims from scientific articles, which we manually perturb to produce contradicted claims. The perturbations are designed to test for a specific set of claim verification capabilities. We also introduce a suite of diagnostic tasks that help understand model failures. Our results show most vision-language models are poor (~0.3-0.5 F1), with even the best model only achieving 0.72 F1. They are also biased towards judging claims as supported, likely misunderstanding nuanced perturbations within the claims. Our diagnostics show models are bad at localizing correct evidence within figures, struggle with aggregating information across modalities, and often fail to understand basic components of the figure. 6 authors · Jun 4
1 Lessons from a Chimp: AI "Scheming" and the Quest for Ape Language We examine recent research that asks whether current AI systems may be developing a capacity for "scheming" (covertly and strategically pursuing misaligned goals). We compare current research practices in this field to those adopted in the 1970s to test whether non-human primates could master natural language. We argue that there are lessons to be learned from that historical research endeavour, which was characterised by an overattribution of human traits to other agents, an excessive reliance on anecdote and descriptive analysis, and a failure to articulate a strong theoretical framework for the research. We recommend that research into AI scheming actively seeks to avoid these pitfalls. We outline some concrete steps that can be taken for this research programme to advance in a productive and scientifically rigorous fashion. 12 authors · Jul 4
- Taking AI Welfare Seriously In this report, we argue that there is a realistic possibility that some AI systems will be conscious and/or robustly agentic in the near future. That means that the prospect of AI welfare and moral patienthood, i.e. of AI systems with their own interests and moral significance, is no longer an issue only for sci-fi or the distant future. It is an issue for the near future, and AI companies and other actors have a responsibility to start taking it seriously. We also recommend three early steps that AI companies and other actors can take: They can (1) acknowledge that AI welfare is an important and difficult issue (and ensure that language model outputs do the same), (2) start assessing AI systems for evidence of consciousness and robust agency, and (3) prepare policies and procedures for treating AI systems with an appropriate level of moral concern. To be clear, our argument in this report is not that AI systems definitely are, or will be, conscious, robustly agentic, or otherwise morally significant. Instead, our argument is that there is substantial uncertainty about these possibilities, and so we need to improve our understanding of AI welfare and our ability to make wise decisions about this issue. Otherwise there is a significant risk that we will mishandle decisions about AI welfare, mistakenly harming AI systems that matter morally and/or mistakenly caring for AI systems that do not. 10 authors · Nov 4, 2024
- The More Secure, The Less Equally Usable: Gender and Ethnicity (Un)fairness of Deep Face Recognition along Security Thresholds Face biometrics are playing a key role in making modern smart city applications more secure and usable. Commonly, the recognition threshold of a face recognition system is adjusted based on the degree of security for the considered use case. The likelihood of a match can be for instance decreased by setting a high threshold in case of a payment transaction verification. Prior work in face recognition has unfortunately showed that error rates are usually higher for certain demographic groups. These disparities have hence brought into question the fairness of systems empowered with face biometrics. In this paper, we investigate the extent to which disparities among demographic groups change under different security levels. Our analysis includes ten face recognition models, three security thresholds, and six demographic groups based on gender and ethnicity. Experiments show that the higher the security of the system is, the higher the disparities in usability among demographic groups are. Compelling unfairness issues hence exist and urge countermeasures in real-world high-stakes environments requiring severe security levels. 3 authors · Sep 30, 2022
- Rethinking Benchmark and Contamination for Language Models with Rephrased Samples Large language models are increasingly trained on all the data ever produced by humans. Many have raised concerns about the trustworthiness of public benchmarks due to potential contamination in pre-training or fine-tuning datasets. While most data decontamination efforts apply string matching (e.g., n-gram overlap) to remove benchmark data, we show that these methods are insufficient, and simple variations of test data (e.g., paraphrasing, translation) can easily bypass these decontamination measures. Furthermore, we demonstrate that if such variation of test data is not eliminated, a 13B model can easily overfit a test benchmark and achieve drastically high performance, on par with GPT-4. We validate such observations in widely used benchmarks such as MMLU, GSK8k, and HumanEval. To address this growing risk, we propose a stronger LLM-based decontamination method and apply it to widely used pre-training and fine-tuning datasets, revealing significant previously unknown test overlap. For example, in pre-training sets such as RedPajama-Data-1T and StarCoder-Data, we identified that 8-18\% of the HumanEval benchmark overlaps. Interestingly, we also find such contamination in synthetic dataset generated by GPT-3.5/4, suggesting a potential risk of unintentional contamination. We urge the community to adopt stronger decontamination approaches when using public benchmarks. Moreover, we call for the community to actively develop fresh one-time exams to evaluate models accurately. Our decontamination tool is publicly available at https://github.com/lm-sys/llm-decontaminator. 5 authors · Nov 8, 2023 1
- Distinguishing Ignorance from Error in LLM Hallucinations Large language models (LLMs) are susceptible to hallucinations-outputs that are ungrounded, factually incorrect, or inconsistent with prior generations. We focus on close-book Question Answering (CBQA), where previous work has not fully addressed the distinction between two possible kinds of hallucinations, namely, whether the model (1) does not hold the correct answer in its parameters or (2) answers incorrectly despite having the required knowledge. We argue that distinguishing these cases is crucial for detecting and mitigating hallucinations. Specifically, case (2) may be mitigated by intervening in the model's internal computation, as the knowledge resides within the model's parameters. In contrast, in case (1) there is no parametric knowledge to leverage for mitigation, so it should be addressed by resorting to an external knowledge source or abstaining. To help distinguish between the two cases, we introduce Wrong Answer despite having Correct Knowledge (WACK), an approach for constructing model-specific datasets for the second hallucination type. Our probing experiments indicate that the two kinds of hallucinations are represented differently in the model's inner states. Next, we show that datasets constructed using WACK exhibit variations across models, demonstrating that even when models share knowledge of certain facts, they still vary in the specific examples that lead to hallucinations. Finally, we show that training a probe on our WACK datasets leads to better hallucination detection of case (2) hallucinations than using the common generic one-size-fits-all datasets. The code is available at https://github.com/technion-cs-nlp/hallucination-mitigation . 4 authors · Oct 29, 2024
- Mitigating Hallucinations in YOLO-based Object Detection Models: A Revisit to Out-of-Distribution Detection Object detection systems must reliably perceive objects of interest without being overly confident to ensure safe decision-making in dynamic environments. Filtering techniques based on out-of-distribution (OoD) detection are commonly added as an extra safeguard to filter hallucinations caused by overconfidence in novel objects. Nevertheless, evaluating YOLO-family detectors and their filters under existing OoD benchmarks often leads to unsatisfactory performance. This paper studies the underlying reasons for performance bottlenecks and proposes a methodology to improve performance fundamentally. Our first contribution is a calibration of all existing evaluation results: Although images in existing OoD benchmark datasets are claimed not to have objects within in-distribution (ID) classes (i.e., categories defined in the training dataset), around 13% of objects detected by the object detector are actually ID objects. Dually, the ID dataset containing OoD objects can also negatively impact the decision boundary of filters. These ultimately lead to a significantly imprecise performance estimation. Our second contribution is to consider the task of hallucination reduction as a joint pipeline of detectors and filters. By developing a methodology to carefully synthesize an OoD dataset that semantically resembles the objects to be detected, and using the crafted OoD dataset in the fine-tuning of YOLO detectors to suppress the objectness score, we achieve a 88% reduction in overall hallucination error with a combined fine-tuned detection and filtering system on the self-driving benchmark BDD-100K. Our code and dataset are available at: https://gricad-gitlab.univ-grenoble-alpes.fr/dnn-safety/m-hood. 5 authors · Mar 10
1 Delving into the Utilisation of ChatGPT in Scientific Publications in Astronomy Rapid progress in the capabilities of machine learning approaches in natural language processing has culminated in the rise of large language models over the last two years. Recent works have shown unprecedented adoption of these for academic writing, especially in some fields, but their pervasiveness in astronomy has not been studied sufficiently. To remedy this, we extract words that ChatGPT uses more often than humans when generating academic text and search a total of 1 million articles for them. This way, we assess the frequency of word occurrence in published works in astronomy tracked by the NASA Astrophysics Data System since 2000. We then perform a statistical analysis of the occurrences. We identify a list of words favoured by ChatGPT and find a statistically significant increase for these words against a control group in 2024, which matches the trend in other disciplines. These results suggest a widespread adoption of these models in the writing of astronomy papers. We encourage organisations, publishers, and researchers to work together to identify ethical and pragmatic guidelines to maximise the benefits of these systems while maintaining scientific rigour. 4 authors · Jun 25, 2024
- SLAM for Visually Impaired Navigation: A Systematic Literature Review of the Current State of Research In recent decades, several assistive technologies have been developed for visually impaired and blind (VIB) individuals to improve their ability to navigate independently and safely. At the same time, simultaneous localization and mapping (SLAM) techniques have become sufficiently robust and efficient to be adopted in the development of these assistive technologies. In this paper, we first report the results of an anonymous worldwide survey conducted with VIB people to understand their experiences, needs, and challenges in navigation, differentiating our approach from prior work that often has a limited geographic scope and focuses on specific challenges. We then present a systematic literature review of recent studies on SLAM-based solutions for VIB people. This review explores various SLAM techniques employed in this context. We discuss the advantages and limitations of these techniques for VIB navigation. Moreover, we examined a range of challenging situations addressed in the studies included in this review. We explain how SLAM-based solutions offer potential to improve the ability of visually impaired individuals to navigate effectively. Finally, we present future opportunities and challenges in this domain. 3 authors · Dec 9, 2022
1 Assessing the Use of AutoML for Data-Driven Software Engineering Background. Due to the widespread adoption of Artificial Intelligence (AI) and Machine Learning (ML) for building software applications, companies are struggling to recruit employees with a deep understanding of such technologies. In this scenario, AutoML is soaring as a promising solution to fill the AI/ML skills gap since it promises to automate the building of end-to-end AI/ML pipelines that would normally be engineered by specialized team members. Aims. Despite the growing interest and high expectations, there is a dearth of information about the extent to which AutoML is currently adopted by teams developing AI/ML-enabled systems and how it is perceived by practitioners and researchers. Method. To fill these gaps, in this paper, we present a mixed-method study comprising a benchmark of 12 end-to-end AutoML tools on two SE datasets and a user survey with follow-up interviews to further our understanding of AutoML adoption and perception. Results. We found that AutoML solutions can generate models that outperform those trained and optimized by researchers to perform classification tasks in the SE domain. Also, our findings show that the currently available AutoML solutions do not live up to their names as they do not equally support automation across the stages of the ML development workflow and for all the team members. Conclusions. We derive insights to inform the SE research community on how AutoML can facilitate their activities and tool builders on how to design the next generation of AutoML technologies. 4 authors · Jul 20, 2023
- Adposition and Case Supersenses v2.6: Guidelines for English This document offers a detailed linguistic description of SNACS (Semantic Network of Adposition and Case Supersenses; Schneider et al., 2018), an inventory of 52 semantic labels ("supersenses") that characterize the use of adpositions and case markers at a somewhat coarse level of granularity, as demonstrated in the STREUSLE corpus (https://github.com/nert-nlp/streusle/ ; version 4.5 tracks guidelines version 2.6). Though the SNACS inventory aspires to be universal, this document is specific to English; documentation for other languages will be published separately. Version 2 is a revision of the supersense inventory proposed for English by Schneider et al. (2015, 2016) (henceforth "v1"), which in turn was based on previous schemes. The present inventory was developed after extensive review of the v1 corpus annotations for English, plus previously unanalyzed genitive case possessives (Blodgett and Schneider, 2018), as well as consideration of adposition and case phenomena in Hebrew, Hindi, Korean, and German. Hwang et al. (2017) present the theoretical underpinnings of the v2 scheme. Schneider et al. (2018) summarize the scheme, its application to English corpus data, and an automatic disambiguation task. Liu et al. (2021) offer an English Lexical Semantic Recognition tagger that includes SNACS labels in its output. This documentation can also be browsed alongside corpus data on the Xposition website (Gessler et al., 2022): http://www.xposition.org/ 11 authors · Apr 7, 2017
- Learning to Watermark LLM-generated Text via Reinforcement Learning We study how to watermark LLM outputs, i.e. embedding algorithmically detectable signals into LLM-generated text to track misuse. Unlike the current mainstream methods that work with a fixed LLM, we expand the watermark design space by including the LLM tuning stage in the watermark pipeline. While prior works focus on token-level watermark that embeds signals into the output, we design a model-level watermark that embeds signals into the LLM weights, and such signals can be detected by a paired detector. We propose a co-training framework based on reinforcement learning that iteratively (1) trains a detector to detect the generated watermarked text and (2) tunes the LLM to generate text easily detectable by the detector while keeping its normal utility. We empirically show that our watermarks are more accurate, robust, and adaptable (to new attacks). It also allows watermarked model open-sourcing. In addition, if used together with alignment, the extra overhead introduced is low - only training an extra reward model (i.e. our detector). We hope our work can bring more effort into studying a broader watermark design that is not limited to working with a fixed LLM. We open-source the code: https://github.com/xiaojunxu/learning-to-watermark-llm . 3 authors · Mar 12, 2024
1 Detecting and Mitigating Hallucinations in Machine Translation: Model Internal Workings Alone Do Well, Sentence Similarity Even Better While the problem of hallucinations in neural machine translation has long been recognized, so far the progress on its alleviation is very little. Indeed, recently it turned out that without artificially encouraging models to hallucinate, previously existing methods fall short and even the standard sequence log-probability is more informative. It means that characteristics internal to the model can give much more information than we expect, and before using external models and measures, we first need to ask: how far can we go if we use nothing but the translation model itself ? We propose to use a method that evaluates the percentage of the source contribution to a generated translation. Intuitively, hallucinations are translations "detached" from the source, hence they can be identified by low source contribution. This method improves detection accuracy for the most severe hallucinations by a factor of 2 and is able to alleviate hallucinations at test time on par with the previous best approach that relies on external models. Next, if we move away from internal model characteristics and allow external tools, we show that using sentence similarity from cross-lingual embeddings further improves these results. 4 authors · Dec 16, 2022
- IDK-MRC: Unanswerable Questions for Indonesian Machine Reading Comprehension Machine Reading Comprehension (MRC) has become one of the essential tasks in Natural Language Understanding (NLU) as it is often included in several NLU benchmarks (Liang et al., 2020; Wilie et al., 2020). However, most MRC datasets only have answerable question type, overlooking the importance of unanswerable questions. MRC models trained only on answerable questions will select the span that is most likely to be the answer, even when the answer does not actually exist in the given passage (Rajpurkar et al., 2018). This problem especially remains in medium- to low-resource languages like Indonesian. Existing Indonesian MRC datasets (Purwarianti et al., 2007; Clark et al., 2020) are still inadequate because of the small size and limited question types, i.e., they only cover answerable questions. To fill this gap, we build a new Indonesian MRC dataset called I(n)don'tKnow- MRC (IDK-MRC) by combining the automatic and manual unanswerable question generation to minimize the cost of manual dataset construction while maintaining the dataset quality. Combined with the existing answerable questions, IDK-MRC consists of more than 10K questions in total. Our analysis shows that our dataset significantly improves the performance of Indonesian MRC models, showing a large improvement for unanswerable questions. 2 authors · Oct 25, 2022
2 Propositional Interpretability in Artificial Intelligence Mechanistic interpretability is the program of explaining what AI systems are doing in terms of their internal mechanisms. I analyze some aspects of the program, along with setting out some concrete challenges and assessing progress to date. I argue for the importance of propositional interpretability, which involves interpreting a system's mechanisms and behavior in terms of propositional attitudes: attitudes (such as belief, desire, or subjective probability) to propositions (e.g. the proposition that it is hot outside). Propositional attitudes are the central way that we interpret and explain human beings and they are likely to be central in AI too. A central challenge is what I call thought logging: creating systems that log all of the relevant propositional attitudes in an AI system over time. I examine currently popular methods of interpretability (such as probing, sparse auto-encoders, and chain of thought methods) as well as philosophical methods of interpretation (including those grounded in psychosemantics) to assess their strengths and weaknesses as methods of propositional interpretability. 1 authors · Jan 26
- On The Truthfulness of 'Surprisingly Likely' Responses of Large Language Models The surprisingly likely criterion in the seminal work of Prelec (the Bayesian Truth Serum) guarantees truthfulness in a game-theoretic multi-agent setting, by rewarding rational agents to maximise the expected information gain with their answers w.r.t. their probabilistic beliefs. We investigate the relevance of a similar criterion for responses of LLMs. We hypothesize that if the surprisingly likely criterion works in LLMs, under certain conditions, the responses that maximize the reward under this criterion should be more accurate than the responses that only maximize the posterior probability. Using benchmarks including the TruthfulQA benchmark and using openly available LLMs: GPT-2 and LLaMA-2, we show that the method indeed improves the accuracy significantly (for example, upto 24 percentage points aggregate improvement on TruthfulQA and upto 70 percentage points improvement on individual categories of questions). 1 authors · Nov 13, 2023
- Robustness and Sensitivity of BERT Models Predicting Alzheimer's Disease from Text Understanding robustness and sensitivity of BERT models predicting Alzheimer's disease from text is important for both developing better classification models and for understanding their capabilities and limitations. In this paper, we analyze how a controlled amount of desired and undesired text alterations impacts performance of BERT. We show that BERT is robust to natural linguistic variations in text. On the other hand, we show that BERT is not sensitive to removing clinically important information from text. 1 authors · Sep 24, 2021
- Audio tagging with noisy labels and minimal supervision This paper introduces Task 2 of the DCASE2019 Challenge, titled "Audio tagging with noisy labels and minimal supervision". This task was hosted on the Kaggle platform as "Freesound Audio Tagging 2019". The task evaluates systems for multi-label audio tagging using a large set of noisy-labeled data, and a much smaller set of manually-labeled data, under a large vocabulary setting of 80 everyday sound classes. In addition, the proposed dataset poses an acoustic mismatch problem between the noisy train set and the test set due to the fact that they come from different web audio sources. This can correspond to a realistic scenario given by the difficulty in gathering large amounts of manually labeled data. We present the task setup, the FSDKaggle2019 dataset prepared for this scientific evaluation, and a baseline system consisting of a convolutional neural network. All these resources are freely available. 5 authors · Jun 7, 2019
1 Are we certain it's anomalous? The progress in modelling time series and, more generally, sequences of structured data has recently revamped research in anomaly detection. The task stands for identifying abnormal behaviors in financial series, IT systems, aerospace measurements, and the medical domain, where anomaly detection may aid in isolating cases of depression and attend the elderly. Anomaly detection in time series is a complex task since anomalies are rare due to highly non-linear temporal correlations and since the definition of anomalous is sometimes subjective. Here we propose the novel use of Hyperbolic uncertainty for Anomaly Detection (HypAD). HypAD learns self-supervisedly to reconstruct the input signal. We adopt best practices from the state-of-the-art to encode the sequence by an LSTM, jointly learned with a decoder to reconstruct the signal, with the aid of GAN critics. Uncertainty is estimated end-to-end by means of a hyperbolic neural network. By using uncertainty, HypAD may assess whether it is certain about the input signal but it fails to reconstruct it because this is anomalous; or whether the reconstruction error does not necessarily imply anomaly, as the model is uncertain, e.g. a complex but regular input signal. The novel key idea is that a detectable anomaly is one where the model is certain but it predicts wrongly. HypAD outperforms the current state-of-the-art for univariate anomaly detection on established benchmarks based on data from NASA, Yahoo, Numenta, Amazon, and Twitter. It also yields state-of-the-art performance on a multivariate dataset of anomaly activities in elderly home residences, and it outperforms the baseline on SWaT. Overall, HypAD yields the lowest false alarms at the best performance rate, thanks to successfully identifying detectable anomalies. 7 authors · Nov 16, 2022
- Tailoring Self-Supervision for Supervised Learning Recently, it is shown that deploying a proper self-supervision is a prospective way to enhance the performance of supervised learning. Yet, the benefits of self-supervision are not fully exploited as previous pretext tasks are specialized for unsupervised representation learning. To this end, we begin by presenting three desirable properties for such auxiliary tasks to assist the supervised objective. First, the tasks need to guide the model to learn rich features. Second, the transformations involved in the self-supervision should not significantly alter the training distribution. Third, the tasks are preferred to be light and generic for high applicability to prior arts. Subsequently, to show how existing pretext tasks can fulfill these and be tailored for supervised learning, we propose a simple auxiliary self-supervision task, predicting localizable rotation (LoRot). Our exhaustive experiments validate the merits of LoRot as a pretext task tailored for supervised learning in terms of robustness and generalization capability. Our code is available at https://github.com/wjun0830/Localizable-Rotation. 3 authors · Jul 20, 2022
1 ChangeChip: A Reference-Based Unsupervised Change Detection for PCB Defect Detection The usage of electronic devices increases, and becomes predominant in most aspects of life. Surface Mount Technology (SMT) is the most common industrial method for manufacturing electric devices in which electrical components are mounted directly onto the surface of a Printed Circuit Board (PCB). Although the expansion of electronic devices affects our lives in a productive way, failures or defects in the manufacturing procedure of those devices might also be counterproductive and even harmful in some cases. It is therefore desired and sometimes crucial to ensure zero-defect quality in electronic devices and their production. While traditional Image Processing (IP) techniques are not sufficient to produce a complete solution, other promising methods like Deep Learning (DL) might also be challenging for PCB inspection, mainly because such methods require big adequate datasets which are missing, not available or not updated in the rapidly growing field of PCBs. Thus, PCB inspection is conventionally performed manually by human experts. Unsupervised Learning (UL) methods may potentially be suitable for PCB inspection, having learning capabilities on the one hand, while not relying on large datasets on the other. In this paper, we introduce ChangeChip, an automated and integrated change detection system for defect detection in PCBs, from soldering defects to missing or misaligned electronic elements, based on Computer Vision (CV) and UL. We achieve good quality defect detection by applying an unsupervised change detection between images of a golden PCB (reference) and the inspected PCB under various setting. In this work, we also present CD-PCB, a synthesized labeled dataset of 20 pairs of PCB images for evaluation of defect detection algorithms. 3 authors · Sep 13, 2021
- Natural Language Processing in the Legal Domain In this paper, we summarize the current state of the field of NLP & Law with a specific focus on recent technical and substantive developments. To support our analysis, we construct and analyze a nearly complete corpus of more than six hundred NLP & Law related papers published over the past decade. Our analysis highlights several major trends. Namely, we document an increasing number of papers written, tasks undertaken, and languages covered over the course of the past decade. We observe an increase in the sophistication of the methods which researchers deployed in this applied context. Slowly but surely, Legal NLP is beginning to match not only the methodological sophistication of general NLP but also the professional standards of data availability and code reproducibility observed within the broader scientific community. We believe all of these trends bode well for the future of the field, but many questions in both the academic and commercial sphere still remain open. 5 authors · Feb 23, 2023
- ReCoRD: Bridging the Gap between Human and Machine Commonsense Reading Comprehension We present a large-scale dataset, ReCoRD, for machine reading comprehension requiring commonsense reasoning. Experiments on this dataset demonstrate that the performance of state-of-the-art MRC systems fall far behind human performance. ReCoRD represents a challenge for future research to bridge the gap between human and machine commonsense reading comprehension. ReCoRD is available at http://nlp.jhu.edu/record. 6 authors · Oct 30, 2018
- The Zwicky Transient Facility Bright Transient Survey. III. BTSbot: Automated Identification and Follow-up of Bright Transients with Deep Learning The Bright Transient Survey (BTS) aims to obtain a classification spectrum for all bright (m_peak,leq,18.5,mag) extragalactic transients found in the Zwicky Transient Facility (ZTF) public survey. BTS critically relies on visual inspection ("scanning") to select targets for spectroscopic follow-up, which, while effective, has required a significant time investment over the past sim5 yr of ZTF operations. We present BTSbot, a multi-modal convolutional neural network, which provides a bright transient score to individual ZTF detections using their image data and 25 extracted features. BTSbot is able to eliminate the need for daily human scanning by automatically identifying and requesting spectroscopic follow-up observations of new bright transient candidates. BTSbot recovers all bright transients in our test split and performs on par with scanners in terms of identification speed (on average, sim1 hour quicker than scanners). We also find that BTSbot is not significantly impacted by any data shift by comparing performance across a concealed test split and a sample of very recent BTS candidates. BTSbot has been integrated into Fritz and Kowalski, ZTF's first-party marshal and alert broker, and now sends automatic spectroscopic follow-up requests for the new transients it identifies. During the month of October 2023, BTSbot selected 296 sources in real-time, 93% of which were real extragalactic transients. With BTSbot and other automation tools, the BTS workflow has produced the first fully automatic end-to-end discovery and classification of a transient, representing a significant reduction in the human-time needed to scan. Future development has tremendous potential for creating similar models to identify and request follow-up observations for specific types of transients. 13 authors · Jan 26, 2024
- Building Safe and Reliable AI systems for Safety Critical Tasks with Vision-Language Processing Although AI systems have been applied in various fields and achieved impressive performance, their safety and reliability are still a big concern. This is especially important for safety-critical tasks. One shared characteristic of these critical tasks is their risk sensitivity, where small mistakes can cause big consequences and even endanger life. There are several factors that could be guidelines for the successful deployment of AI systems in sensitive tasks: (i) failure detection and out-of-distribution (OOD) detection; (ii) overfitting identification; (iii) uncertainty quantification for predictions; (iv) robustness to data perturbations. These factors are also challenges of current AI systems, which are major blocks for building safe and reliable AI. Specifically, the current AI algorithms are unable to identify common causes for failure detection. Furthermore, additional techniques are required to quantify the quality of predictions. All these contribute to inaccurate uncertainty quantification, which lowers trust in predictions. Hence obtaining accurate model uncertainty quantification and its further improvement are challenging. To address these issues, many techniques have been proposed, such as regularization methods and learning strategies. As vision and language are the most typical data type and have many open source benchmark datasets, this thesis will focus on vision-language data processing for tasks like classification, image captioning, and vision question answering. In this thesis, we aim to build a safeguard by further developing current techniques to ensure the accurate model uncertainty for safety-critical tasks. 1 authors · Aug 6, 2023
- Taxonomy and Survey on Remote Human Input Systems for Driving Automation Systems Corner cases for driving automation systems can often be detected by the system itself and subsequently resolved by remote humans. There exists a wide variety of technical approaches on how remote humans can resolve such issues. Over multiple domains, no common taxonomy on those approaches has developed yet, though. As the scaling of automated driving systems continues to increase, a uniform taxonomy is desirable to improve communication within the scientific community, but also beyond to policymakers and the general public. In this paper, we provide a survey on recent terminologies and propose a taxonomy for remote human input systems, classifying the different approaches based on their complexity. 4 authors · Sep 17, 2021
- MSDiagnosis: An EMR-based Dataset for Clinical Multi-Step Diagnosis Clinical diagnosis is critical in medical practice, typically requiring a continuous and evolving process that includes primary diagnosis, differential diagnosis, and final diagnosis. However, most existing clinical diagnostic tasks are single-step processes, which does not align with the complex multi-step diagnostic procedures found in real-world clinical settings. In this paper, we propose a multi-step diagnostic task and annotate a clinical diagnostic dataset (MSDiagnosis). This dataset includes primary diagnosis, differential diagnosis, and final diagnosis questions. Additionally, we propose a novel and effective framework. This framework combines forward inference, backward inference, reflection, and refinement, enabling the LLM to self-evaluate and adjust its diagnostic results. To assess the effectiveness of our proposed method, we design and conduct extensive experiments. The experimental results demonstrate the effectiveness of the proposed method. We also provide a comprehensive experimental analysis and suggest future research directions for this task. 7 authors · Aug 19, 2024
- Attention Neural Network for Trash Detection on Water Channels Rivers and canals flowing through cities are often used illegally for dumping the trash. This contaminates freshwater channels as well as causes blockage in sewerage resulting in urban flooding. When this contaminated water reaches agricultural fields, it results in degradation of soil and poses critical environmental as well as economic threats. The dumped trash is often found floating on the water surface. The trash could be disfigured, partially submerged, decomposed into smaller pieces, clumped together with other objects which obscure its shape and creates a challenging detection problem. This paper proposes a method for the detection of visible trash floating on the water surface of the canals in urban areas. We also provide a large dataset, first of its kind, trash in water channels that contains object-level annotations. A novel attention layer is proposed that improves the detection of smaller objects. Towards the end of this paper, we provide a detailed comparison of our method with state-of-the-art object detectors and show that our method significantly improves the detection of smaller objects. The dataset will be made publicly available. 4 authors · Jul 9, 2020
- Mapping Natural Language Commands to Web Elements The web provides a rich, open-domain environment with textual, structural, and spatial properties. We propose a new task for grounding language in this environment: given a natural language command (e.g., "click on the second article"), choose the correct element on the web page (e.g., a hyperlink or text box). We collected a dataset of over 50,000 commands that capture various phenomena such as functional references (e.g. "find who made this site"), relational reasoning (e.g. "article by john"), and visual reasoning (e.g. "top-most article"). We also implemented and analyzed three baseline models that capture different phenomena present in the dataset. 5 authors · Aug 28, 2018
- State of the art applications of deep learning within tracking and detecting marine debris: A survey Deep learning techniques have been explored within the marine litter problem for approximately 20 years but the majority of the research has developed rapidly in the last five years. We provide an in-depth, up to date, summary and analysis of 28 of the most recent and significant contributions of deep learning in marine debris. From cross referencing the research paper results, the YOLO family significantly outperforms all other methods of object detection but there are many respected contributions to this field that have categorically agreed that a comprehensive database of underwater debris is not currently available for machine learning. Using a small dataset curated and labelled by us, we tested YOLOv5 on a binary classification task and found the accuracy was low and the rate of false positives was high; highlighting the importance of a comprehensive database. We conclude this survey with over 40 future research recommendations and open challenges. 3 authors · Mar 26, 2024
- Choosing an Appropriate Platform and Workflow for Processing Camera Trap Data using Artificial Intelligence Camera traps have transformed how ecologists study wildlife species distributions, activity patterns, and interspecific interactions. Although camera traps provide a cost-effective method for monitoring species, the time required for data processing can limit survey efficiency. Thus, the potential of Artificial Intelligence (AI), specifically Deep Learning (DL), to process camera-trap data has gained considerable attention. Using DL for these applications involves training algorithms, such as Convolutional Neural Networks (CNNs), to automatically detect objects and classify species. To overcome technical challenges associated with training CNNs, several research communities have recently developed platforms that incorporate DL in easy-to-use interfaces. We review key characteristics of four AI-powered platforms -- Wildlife Insights (WI), MegaDetector (MD), Machine Learning for Wildlife Image Classification (MLWIC2), and Conservation AI -- including data management tools and AI features. We also provide R code in an open-source GitBook, to demonstrate how users can evaluate model performance, and incorporate AI output in semi-automated workflows. We found that species classifications from WI and MLWIC2 generally had low recall values (animals that were present in the images often were not classified to the correct species). Yet, the precision of WI and MLWIC2 classifications for some species was high (i.e., when classifications were made, they were generally accurate). MD, which classifies images using broader categories (e.g., "blank" or "animal"), also performed well. Thus, we conclude that, although species classifiers were not accurate enough to automate image processing, DL could be used to improve efficiencies by accepting classifications with high confidence values for certain species or by filtering images containing blanks. 6 authors · Feb 4, 2022
- Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection Object detection has been dominated by anchor-based detectors for several years. Recently, anchor-free detectors have become popular due to the proposal of FPN and Focal Loss. In this paper, we first point out that the essential difference between anchor-based and anchor-free detection is actually how to define positive and negative training samples, which leads to the performance gap between them. If they adopt the same definition of positive and negative samples during training, there is no obvious difference in the final performance, no matter regressing from a box or a point. This shows that how to select positive and negative training samples is important for current object detectors. Then, we propose an Adaptive Training Sample Selection (ATSS) to automatically select positive and negative samples according to statistical characteristics of object. It significantly improves the performance of anchor-based and anchor-free detectors and bridges the gap between them. Finally, we discuss the necessity of tiling multiple anchors per location on the image to detect objects. Extensive experiments conducted on MS COCO support our aforementioned analysis and conclusions. With the newly introduced ATSS, we improve state-of-the-art detectors by a large margin to 50.7% AP without introducing any overhead. The code is available at https://github.com/sfzhang15/ATSS 5 authors · Dec 5, 2019
- Zero-shot Model Diagnosis When it comes to deploying deep vision models, the behavior of these systems must be explicable to ensure confidence in their reliability and fairness. A common approach to evaluate deep learning models is to build a labeled test set with attributes of interest and assess how well it performs. However, creating a balanced test set (i.e., one that is uniformly sampled over all the important traits) is often time-consuming, expensive, and prone to mistakes. The question we try to address is: can we evaluate the sensitivity of deep learning models to arbitrary visual attributes without an annotated test set? This paper argues the case that Zero-shot Model Diagnosis (ZOOM) is possible without the need for a test set nor labeling. To avoid the need for test sets, our system relies on a generative model and CLIP. The key idea is enabling the user to select a set of prompts (relevant to the problem) and our system will automatically search for semantic counterfactual images (i.e., synthesized images that flip the prediction in the case of a binary classifier) using the generative model. We evaluate several visual tasks (classification, key-point detection, and segmentation) in multiple visual domains to demonstrate the viability of our methodology. Extensive experiments demonstrate that our method is capable of producing counterfactual images and offering sensitivity analysis for model diagnosis without the need for a test set. 5 authors · Mar 27, 2023
- CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning When building artificial intelligence systems that can reason and answer questions about visual data, we need diagnostic tests to analyze our progress and discover shortcomings. Existing benchmarks for visual question answering can help, but have strong biases that models can exploit to correctly answer questions without reasoning. They also conflate multiple sources of error, making it hard to pinpoint model weaknesses. We present a diagnostic dataset that tests a range of visual reasoning abilities. It contains minimal biases and has detailed annotations describing the kind of reasoning each question requires. We use this dataset to analyze a variety of modern visual reasoning systems, providing novel insights into their abilities and limitations. 6 authors · Dec 20, 2016
1 Selective Vision is the Challenge for Visual Reasoning: A Benchmark for Visual Argument Understanding Visual arguments, often used in advertising or social causes, rely on images to persuade viewers to do or believe something. Understanding these arguments requires selective vision: only specific visual stimuli within an image are relevant to the argument, and relevance can only be understood within the context of a broader argumentative structure. While visual arguments are readily appreciated by human audiences, we ask: are today's AI capable of similar understanding? We collect and release VisArgs, an annotated corpus designed to make explicit the (usually implicit) structures underlying visual arguments. VisArgs includes 1,611 images accompanied by three types of textual annotations: 5,112 visual premises (with region annotations), 5,574 commonsense premises, and reasoning trees connecting them to a broader argument. We propose three tasks over VisArgs to probe machine capacity for visual argument understanding: localization of premises, identification of premises, and deduction of conclusions. Experiments demonstrate that 1) machines cannot fully identify the relevant visual cues. The top-performing model, GPT-4-O, achieved an accuracy of only 78.5%, whereas humans reached 98.0%. All models showed a performance drop, with an average decrease in accuracy of 19.5%, when the comparison set was changed from objects outside the image to irrelevant objects within the image. Furthermore, 2) this limitation is the greatest factor impacting their performance in understanding visual arguments. Most models improved the most when given relevant visual premises as additional inputs, compared to other inputs, for deducing the conclusion of the visual argument. 7 authors · Jun 27, 2024
- Experimenting AI Technologies for Disinformation Combat: the IDMO Project The Italian Digital Media Observatory (IDMO) project, part of a European initiative, focuses on countering disinformation and fake news. This report outlines contributions from Rai-CRITS to the project, including: (i) the creation of novel datasets for testing technologies (ii) development of an automatic model for categorizing Pagella Politica verdicts to facilitate broader analysis (iii) creation of an automatic model for recognizing textual entailment with exceptional accuracy on the FEVER dataset (iv) assessment using GPT-4 to identify textual entailmen (v) a game to raise awareness about fake news at national events. 2 authors · Oct 17, 2023
- YOLOv1 to YOLOv10: The fastest and most accurate real-time object detection systems This is a comprehensive review of the YOLO series of systems. Different from previous literature surveys, this review article re-examines the characteristics of the YOLO series from the latest technical point of view. At the same time, we also analyzed how the YOLO series continued to influence and promote real-time computer vision-related research and led to the subsequent development of computer vision and language models.We take a closer look at how the methods proposed by the YOLO series in the past ten years have affected the development of subsequent technologies and show the applications of YOLO in various fields. We hope this article can play a good guiding role in subsequent real-time computer vision development. 2 authors · Aug 17, 2024
- Object Detection as Probabilistic Set Prediction Accurate uncertainty estimates are essential for deploying deep object detectors in safety-critical systems. The development and evaluation of probabilistic object detectors have been hindered by shortcomings in existing performance measures, which tend to involve arbitrary thresholds or limit the detector's choice of distributions. In this work, we propose to view object detection as a set prediction task where detectors predict the distribution over the set of objects. Using the negative log-likelihood for random finite sets, we present a proper scoring rule for evaluating and training probabilistic object detectors. The proposed method can be applied to existing probabilistic detectors, is free from thresholds, and enables fair comparison between architectures. Three different types of detectors are evaluated on the COCO dataset. Our results indicate that the training of existing detectors is optimized toward non-probabilistic metrics. We hope to encourage the development of new object detectors that can accurately estimate their own uncertainty. Code available at https://github.com/georghess/pmb-nll. 3 authors · Mar 15, 2022
1 When Good and Reproducible Results are a Giant with Feet of Clay: The Importance of Software Quality in NLP Despite its crucial role in research experiments, code correctness is often presumed only on the basis of the perceived quality of results. This assumption comes with the risk of erroneous outcomes and potentially misleading findings. To address this issue, we posit that the current focus on reproducibility should go hand in hand with the emphasis on software quality. We present a case study in which we identify and fix three bugs in widely used implementations of the state-of-the-art Conformer architecture. Through experiments on speech recognition and translation in various languages, we demonstrate that the presence of bugs does not prevent the achievement of good and reproducible results, which however can lead to incorrect conclusions that potentially misguide future research. As a countermeasure, we propose a Code-quality Checklist and release pangoliNN, a library dedicated to testing neural models, with the goal of promoting coding best practices and improving research software quality within the NLP community. 4 authors · Mar 28, 2023
19 Open Problems in Mechanistic Interpretability Mechanistic interpretability aims to understand the computational mechanisms underlying neural networks' capabilities in order to accomplish concrete scientific and engineering goals. Progress in this field thus promises to provide greater assurance over AI system behavior and shed light on exciting scientific questions about the nature of intelligence. Despite recent progress toward these goals, there are many open problems in the field that require solutions before many scientific and practical benefits can be realized: Our methods require both conceptual and practical improvements to reveal deeper insights; we must figure out how best to apply our methods in pursuit of specific goals; and the field must grapple with socio-technical challenges that influence and are influenced by our work. This forward-facing review discusses the current frontier of mechanistic interpretability and the open problems that the field may benefit from prioritizing. 29 authors · Jan 27 2
- Multifaceted Feature Visualization: Uncovering the Different Types of Features Learned By Each Neuron in Deep Neural Networks We can better understand deep neural networks by identifying which features each of their neurons have learned to detect. To do so, researchers have created Deep Visualization techniques including activation maximization, which synthetically generates inputs (e.g. images) that maximally activate each neuron. A limitation of current techniques is that they assume each neuron detects only one type of feature, but we know that neurons can be multifaceted, in that they fire in response to many different types of features: for example, a grocery store class neuron must activate either for rows of produce or for a storefront. Previous activation maximization techniques constructed images without regard for the multiple different facets of a neuron, creating inappropriate mixes of colors, parts of objects, scales, orientations, etc. Here, we introduce an algorithm that explicitly uncovers the multiple facets of each neuron by producing a synthetic visualization of each of the types of images that activate a neuron. We also introduce regularization methods that produce state-of-the-art results in terms of the interpretability of images obtained by activation maximization. By separately synthesizing each type of image a neuron fires in response to, the visualizations have more appropriate colors and coherent global structure. Multifaceted feature visualization thus provides a clearer and more comprehensive description of the role of each neuron. 3 authors · Feb 11, 2016