Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeSPIDeRS: Structured Polarization for Invisible Depth and Reflectance Sensing
Can we capture shape and reflectance in stealth? Such capability would be valuable for many application domains in vision, xR, robotics, and HCI. We introduce Structured Polarization, the first depth and reflectance sensing method using patterns of polarized light (SPIDeRS). The key idea is to modulate the angle of linear polarization (AoLP) of projected light at each pixel. The use of polarization makes it invisible and lets us recover not only depth but also directly surface normals and even reflectance. We implement SPIDeRS with a liquid crystal spatial light modulator (SLM) and a polarimetric camera. We derive a novel method for robustly extracting the projected structured polarization pattern from the polarimetric object appearance. We evaluate the effectiveness of SPIDeRS by applying it to a number of real-world objects. The results show that our method successfully reconstructs object shapes of various materials and is robust to diffuse reflection and ambient light. We also demonstrate relighting using recovered surface normals and reflectance. We believe SPIDeRS opens a new avenue of polarization use in visual sensing.
AvatarMe++: Facial Shape and BRDF Inference with Photorealistic Rendering-Aware GANs
Over the last years, many face analysis tasks have accomplished astounding performance, with applications including face generation and 3D face reconstruction from a single "in-the-wild" image. Nevertheless, to the best of our knowledge, there is no method which can produce render-ready high-resolution 3D faces from "in-the-wild" images and this can be attributed to the: (a) scarcity of available data for training, and (b) lack of robust methodologies that can successfully be applied on very high-resolution data. In this work, we introduce the first method that is able to reconstruct photorealistic render-ready 3D facial geometry and BRDF from a single "in-the-wild" image. We capture a large dataset of facial shape and reflectance, which we have made public. We define a fast facial photorealistic differentiable rendering methodology with accurate facial skin diffuse and specular reflection, self-occlusion and subsurface scattering approximation. With this, we train a network that disentangles the facial diffuse and specular BRDF components from a shape and texture with baked illumination, reconstructed with a state-of-the-art 3DMM fitting method. Our method outperforms the existing arts by a significant margin and reconstructs high-resolution 3D faces from a single low-resolution image, that can be rendered in various applications, and bridge the uncanny valley.
Cosmic reflections I: the structural diversity of simulated and observed low-mass galaxy analogues
Dwarf galaxies serve as powerful laboratories for investigating the underlying physics of galaxy evolution including the impact of baryonic feedback processes and environmental influences. We compare the visual and structural properties of dwarf galaxies in ultra-deep HSC-SSP imaging of the COSMOS field with those measured from realistic HSC-like synthetic observations of dwarfs generated by the Illustris TNG50 and NewHorizon simulations. Using S\'ersic profile fitting and non-parametric morphological metrics (Gini, M_{20}, asymmetry, and concentration), we evaluate the diversity of structural properties in observed and simulated galaxies. Our analysis shows that NewHorizon and TNG50 galaxies lie at opposite extremes of observed structural trends: NewHorizon produces diffuse, extended galaxies with shallow S\'ersic indices, while TNG50 yields compact, concentrated systems with steep indices. Both simulations reproduce observed structural trends more closely at higher stellar masses (M_{star}sim10^{9.5} {rm M_{odot}}) but fail to capture the full diversity of COSMOS dwarfs at lower masses. Non-parametric metrics further show that NewHorizon galaxies exhibit more uneven, clumpy light distributions while TNG50 galaxies have smoother but excessively concentrated profiles. These structural differences reflect underlying differences in their physical prescriptions and are likely driven by differing approaches to ISM physics, supernova feedback and star formation in addition to differences in numerical resolution. Our findings highlight the unique power of low-mass galaxies to constrain differences in simulation physics, especially star formation and feedback. Upcoming surveys from facilities like the Vera C. Rubin Observatory and Euclid will enable more rigorous comparisons with simulations, offering deeper insights into the physical processes shaping galaxy evolution.
Relightable Gaussian Codec Avatars
The fidelity of relighting is bounded by both geometry and appearance representations. For geometry, both mesh and volumetric approaches have difficulty modeling intricate structures like 3D hair geometry. For appearance, existing relighting models are limited in fidelity and often too slow to render in real-time with high-resolution continuous environments. In this work, we present Relightable Gaussian Codec Avatars, a method to build high-fidelity relightable head avatars that can be animated to generate novel expressions. Our geometry model based on 3D Gaussians can capture 3D-consistent sub-millimeter details such as hair strands and pores on dynamic face sequences. To support diverse materials of human heads such as the eyes, skin, and hair in a unified manner, we present a novel relightable appearance model based on learnable radiance transfer. Together with global illumination-aware spherical harmonics for the diffuse components, we achieve real-time relighting with spatially all-frequency reflections using spherical Gaussians. This appearance model can be efficiently relit under both point light and continuous illumination. We further improve the fidelity of eye reflections and enable explicit gaze control by introducing relightable explicit eye models. Our method outperforms existing approaches without compromising real-time performance. We also demonstrate real-time relighting of avatars on a tethered consumer VR headset, showcasing the efficiency and fidelity of our avatars.
UMat: Uncertainty-Aware Single Image High Resolution Material Capture
We propose a learning-based method to recover normals, specularity, and roughness from a single diffuse image of a material, using microgeometry appearance as our primary cue. Previous methods that work on single images tend to produce over-smooth outputs with artifacts, operate at limited resolution, or train one model per class with little room for generalization. Previous methods that work on single images tend to produce over-smooth outputs with artifacts, operate at limited resolution, or train one model per class with little room for generalization. In contrast, in this work, we propose a novel capture approach that leverages a generative network with attention and a U-Net discriminator, which shows outstanding performance integrating global information at reduced computational complexity. We showcase the performance of our method with a real dataset of digitized textile materials and show that a commodity flatbed scanner can produce the type of diffuse illumination required as input to our method. Additionally, because the problem might be illposed -more than a single diffuse image might be needed to disambiguate the specular reflection- or because the training dataset is not representative enough of the real distribution, we propose a novel framework to quantify the model's confidence about its prediction at test time. Our method is the first one to deal with the problem of modeling uncertainty in material digitization, increasing the trustworthiness of the process and enabling more intelligent strategies for dataset creation, as we demonstrate with an active learning experiment.
RelightableHands: Efficient Neural Relighting of Articulated Hand Models
We present the first neural relighting approach for rendering high-fidelity personalized hands that can be animated in real-time under novel illumination. Our approach adopts a teacher-student framework, where the teacher learns appearance under a single point light from images captured in a light-stage, allowing us to synthesize hands in arbitrary illuminations but with heavy compute. Using images rendered by the teacher model as training data, an efficient student model directly predicts appearance under natural illuminations in real-time. To achieve generalization, we condition the student model with physics-inspired illumination features such as visibility, diffuse shading, and specular reflections computed on a coarse proxy geometry, maintaining a small computational overhead. Our key insight is that these features have strong correlation with subsequent global light transport effects, which proves sufficient as conditioning data for the neural relighting network. Moreover, in contrast to bottleneck illumination conditioning, these features are spatially aligned based on underlying geometry, leading to better generalization to unseen illuminations and poses. In our experiments, we demonstrate the efficacy of our illumination feature representations, outperforming baseline approaches. We also show that our approach can photorealistically relight two interacting hands at real-time speeds. https://sh8.io/#/relightable_hands
Controllable Light Diffusion for Portraits
We introduce light diffusion, a novel method to improve lighting in portraits, softening harsh shadows and specular highlights while preserving overall scene illumination. Inspired by professional photographers' diffusers and scrims, our method softens lighting given only a single portrait photo. Previous portrait relighting approaches focus on changing the entire lighting environment, removing shadows (ignoring strong specular highlights), or removing shading entirely. In contrast, we propose a learning based method that allows us to control the amount of light diffusion and apply it on in-the-wild portraits. Additionally, we design a method to synthetically generate plausible external shadows with sub-surface scattering effects while conforming to the shape of the subject's face. Finally, we show how our approach can increase the robustness of higher level vision applications, such as albedo estimation, geometry estimation and semantic segmentation.
PolarFree: Polarization-based Reflection-free Imaging
Reflection removal is challenging due to complex light interactions, where reflections obscure important details and hinder scene understanding. Polarization naturally provides a powerful cue to distinguish between reflected and transmitted light, enabling more accurate reflection removal. However, existing methods often rely on small-scale or synthetic datasets, which fail to capture the diversity and complexity of real-world scenarios. To this end, we construct a large-scale dataset, PolaRGB, for Polarization-based reflection removal of RGB images, which enables us to train models that generalize effectively across a wide range of real-world scenarios. The PolaRGB dataset contains 6,500 well-aligned mixed-transmission image pairs, 8x larger than existing polarization datasets, and is the first to include both RGB and polarization images captured across diverse indoor and outdoor environments with varying lighting conditions. Besides, to fully exploit the potential of polarization cues for reflection removal, we introduce PolarFree, which leverages diffusion process to generate reflection-free cues for accurate reflection removal. Extensive experiments show that PolarFree significantly enhances image clarity in challenging reflective scenarios, setting a new benchmark for polarized imaging and reflection removal. Code and dataset are available at https://github.com/mdyao/PolarFree.
Reflection Removal Using Recurrent Polarization-to-Polarization Network
This paper addresses reflection removal, which is the task of separating reflection components from a captured image and deriving the image with only transmission components. Considering that the existence of the reflection changes the polarization state of a scene, some existing methods have exploited polarized images for reflection removal. While these methods apply polarized images as the inputs, they predict the reflection and the transmission directly as non-polarized intensity images. In contrast, we propose a polarization-to-polarization approach that applies polarized images as the inputs and predicts "polarized" reflection and transmission images using two sequential networks to facilitate the separation task by utilizing the interrelated polarization information between the reflection and the transmission. We further adopt a recurrent framework, where the predicted reflection and transmission images are used to iteratively refine each other. Experimental results on a public dataset demonstrate that our method outperforms other state-of-the-art methods.
DiFaReli: Diffusion Face Relighting
We present a novel approach to single-view face relighting in the wild. Handling non-diffuse effects, such as global illumination or cast shadows, has long been a challenge in face relighting. Prior work often assumes Lambertian surfaces, simplified lighting models or involves estimating 3D shape, albedo, or a shadow map. This estimation, however, is error-prone and requires many training examples with lighting ground truth to generalize well. Our work bypasses the need for accurate estimation of intrinsic components and can be trained solely on 2D images without any light stage data, multi-view images, or lighting ground truth. Our key idea is to leverage a conditional diffusion implicit model (DDIM) for decoding a disentangled light encoding along with other encodings related to 3D shape and facial identity inferred from off-the-shelf estimators. We also propose a novel conditioning technique that eases the modeling of the complex interaction between light and geometry by using a rendered shading reference to spatially modulate the DDIM. We achieve state-of-the-art performance on standard benchmark Multi-PIE and can photorealistically relight in-the-wild images. Please visit our page: https://diffusion-face-relighting.github.io
Towards Flexible Interactive Reflection Removal with Human Guidance
Single image reflection removal is inherently ambiguous, as both the reflection and transmission components requiring separation may follow natural image statistics. Existing methods attempt to address the issue by using various types of low-level and physics-based cues as sources of reflection signals. However, these cues are not universally applicable, since they are only observable in specific capture scenarios. This leads to a significant performance drop when test images do not align with their assumptions. In this paper, we aim to explore a novel flexible interactive reflection removal approach that leverages various forms of sparse human guidance, such as points and bounding boxes, as auxiliary high-level prior to achieve robust reflection removal. However, incorporating the raw user guidance naively into the existing reflection removal network does not result in performance gains. To this end, we innovatively transform raw user input into a unified form -- reflection masks using an Interactive Segmentation Foundation Model. Such a design absorbs the quintessence of the foundational segmentation model and flexible human guidance, thereby mitigating the challenges of reflection separations. Furthermore, to fully utilize user guidance and reduce user annotation costs, we design a mask-guided reflection removal network, comprising our proposed self-adaptive prompt block. This block adaptively incorporates user guidance as anchors and refines transmission features via cross-attention mechanisms. Extensive results on real-world images validate that our method demonstrates state-of-the-art performance on various datasets with the help of flexible and sparse user guidance. Our code and dataset will be publicly available here https://github.com/ShawnChenn/FlexibleReflectionRemoval.
UniDream: Unifying Diffusion Priors for Relightable Text-to-3D Generation
Recent advancements in text-to-3D generation technology have significantly advanced the conversion of textual descriptions into imaginative well-geometrical and finely textured 3D objects. Despite these developments, a prevalent limitation arises from the use of RGB data in diffusion or reconstruction models, which often results in models with inherent lighting and shadows effects that detract from their realism, thereby limiting their usability in applications that demand accurate relighting capabilities. To bridge this gap, we present UniDream, a text-to-3D generation framework by incorporating unified diffusion priors. Our approach consists of three main components: (1) a dual-phase training process to get albedo-normal aligned multi-view diffusion and reconstruction models, (2) a progressive generation procedure for geometry and albedo-textures based on Score Distillation Sample (SDS) using the trained reconstruction and diffusion models, and (3) an innovative application of SDS for finalizing PBR generation while keeping a fixed albedo based on Stable Diffusion model. Extensive evaluations demonstrate that UniDream surpasses existing methods in generating 3D objects with clearer albedo textures, smoother surfaces, enhanced realism, and superior relighting capabilities.
Relightify: Relightable 3D Faces from a Single Image via Diffusion Models
Following the remarkable success of diffusion models on image generation, recent works have also demonstrated their impressive ability to address a number of inverse problems in an unsupervised way, by properly constraining the sampling process based on a conditioning input. Motivated by this, in this paper, we present the first approach to use diffusion models as a prior for highly accurate 3D facial BRDF reconstruction from a single image. We start by leveraging a high-quality UV dataset of facial reflectance (diffuse and specular albedo and normals), which we render under varying illumination settings to simulate natural RGB textures and, then, train an unconditional diffusion model on concatenated pairs of rendered textures and reflectance components. At test time, we fit a 3D morphable model to the given image and unwrap the face in a partial UV texture. By sampling from the diffusion model, while retaining the observed texture part intact, the model inpaints not only the self-occluded areas but also the unknown reflectance components, in a single sequence of denoising steps. In contrast to existing methods, we directly acquire the observed texture from the input image, thus, resulting in more faithful and consistent reflectance estimation. Through a series of qualitative and quantitative comparisons, we demonstrate superior performance in both texture completion as well as reflectance reconstruction tasks.
MaterialFusion: Enhancing Inverse Rendering with Material Diffusion Priors
Recent works in inverse rendering have shown promise in using multi-view images of an object to recover shape, albedo, and materials. However, the recovered components often fail to render accurately under new lighting conditions due to the intrinsic challenge of disentangling albedo and material properties from input images. To address this challenge, we introduce MaterialFusion, an enhanced conventional 3D inverse rendering pipeline that incorporates a 2D prior on texture and material properties. We present StableMaterial, a 2D diffusion model prior that refines multi-lit data to estimate the most likely albedo and material from given input appearances. This model is trained on albedo, material, and relit image data derived from a curated dataset of approximately ~12K artist-designed synthetic Blender objects called BlenderVault. we incorporate this diffusion prior with an inverse rendering framework where we use score distillation sampling (SDS) to guide the optimization of the albedo and materials, improving relighting performance in comparison with previous work. We validate MaterialFusion's relighting performance on 4 datasets of synthetic and real objects under diverse illumination conditions, showing our diffusion-aided approach significantly improves the appearance of reconstructed objects under novel lighting conditions. We intend to publicly release our BlenderVault dataset to support further research in this field.
Generative Modelling of BRDF Textures from Flash Images
We learn a latent space for easy capture, consistent interpolation, and efficient reproduction of visual material appearance. When users provide a photo of a stationary natural material captured under flashlight illumination, first it is converted into a latent material code. Then, in the second step, conditioned on the material code, our method produces an infinite and diverse spatial field of BRDF model parameters (diffuse albedo, normals, roughness, specular albedo) that subsequently allows rendering in complex scenes and illuminations, matching the appearance of the input photograph. Technically, we jointly embed all flash images into a latent space using a convolutional encoder, and -- conditioned on these latent codes -- convert random spatial fields into fields of BRDF parameters using a convolutional neural network (CNN). We condition these BRDF parameters to match the visual characteristics (statistics and spectra of visual features) of the input under matching light. A user study compares our approach favorably to previous work, even those with access to BRDF supervision.
LightLab: Controlling Light Sources in Images with Diffusion Models
We present a simple, yet effective diffusion-based method for fine-grained, parametric control over light sources in an image. Existing relighting methods either rely on multiple input views to perform inverse rendering at inference time, or fail to provide explicit control over light changes. Our method fine-tunes a diffusion model on a small set of real raw photograph pairs, supplemented by synthetically rendered images at scale, to elicit its photorealistic prior for relighting. We leverage the linearity of light to synthesize image pairs depicting controlled light changes of either a target light source or ambient illumination. Using this data and an appropriate fine-tuning scheme, we train a model for precise illumination changes with explicit control over light intensity and color. Lastly, we show how our method can achieve compelling light editing results, and outperforms existing methods based on user preference.
SynthLight: Portrait Relighting with Diffusion Model by Learning to Re-render Synthetic Faces
We introduce SynthLight, a diffusion model for portrait relighting. Our approach frames image relighting as a re-rendering problem, where pixels are transformed in response to changes in environmental lighting conditions. Using a physically-based rendering engine, we synthesize a dataset to simulate this lighting-conditioned transformation with 3D head assets under varying lighting. We propose two training and inference strategies to bridge the gap between the synthetic and real image domains: (1) multi-task training that takes advantage of real human portraits without lighting labels; (2) an inference time diffusion sampling procedure based on classifier-free guidance that leverages the input portrait to better preserve details. Our method generalizes to diverse real photographs and produces realistic illumination effects, including specular highlights and cast shadows, while preserving the subject's identity. Our quantitative experiments on Light Stage data demonstrate results comparable to state-of-the-art relighting methods. Our qualitative results on in-the-wild images showcase rich and unprecedented illumination effects. Project Page: https://vrroom.github.io/synthlight/
MirrorVerse: Pushing Diffusion Models to Realistically Reflect the World
Diffusion models have become central to various image editing tasks, yet they often fail to fully adhere to physical laws, particularly with effects like shadows, reflections, and occlusions. In this work, we address the challenge of generating photorealistic mirror reflections using diffusion-based generative models. Despite extensive training data, existing diffusion models frequently overlook the nuanced details crucial to authentic mirror reflections. Recent approaches have attempted to resolve this by creating synhetic datasets and framing reflection generation as an inpainting task; however, they struggle to generalize across different object orientations and positions relative to the mirror. Our method overcomes these limitations by introducing key augmentations into the synthetic data pipeline: (1) random object positioning, (2) randomized rotations, and (3) grounding of objects, significantly enhancing generalization across poses and placements. To further address spatial relationships and occlusions in scenes with multiple objects, we implement a strategy to pair objects during dataset generation, resulting in a dataset robust enough to handle these complex scenarios. Achieving generalization to real-world scenes remains a challenge, so we introduce a three-stage training curriculum to develop the MirrorFusion 2.0 model to improve real-world performance. We provide extensive qualitative and quantitative evaluations to support our approach. The project page is available at: https://mirror-verse.github.io/.
Generative Portrait Shadow Removal
We introduce a high-fidelity portrait shadow removal model that can effectively enhance the image of a portrait by predicting its appearance under disturbing shadows and highlights. Portrait shadow removal is a highly ill-posed problem where multiple plausible solutions can be found based on a single image. While existing works have solved this problem by predicting the appearance residuals that can propagate local shadow distribution, such methods are often incomplete and lead to unnatural predictions, especially for portraits with hard shadows. We overcome the limitations of existing local propagation methods by formulating the removal problem as a generation task where a diffusion model learns to globally rebuild the human appearance from scratch as a condition of an input portrait image. For robust and natural shadow removal, we propose to train the diffusion model with a compositional repurposing framework: a pre-trained text-guided image generation model is first fine-tuned to harmonize the lighting and color of the foreground with a background scene by using a background harmonization dataset; and then the model is further fine-tuned to generate a shadow-free portrait image via a shadow-paired dataset. To overcome the limitation of losing fine details in the latent diffusion model, we propose a guided-upsampling network to restore the original high-frequency details (wrinkles and dots) from the input image. To enable our compositional training framework, we construct a high-fidelity and large-scale dataset using a lightstage capturing system and synthetic graphics simulation. Our generative framework effectively removes shadows caused by both self and external occlusions while maintaining original lighting distribution and high-frequency details. Our method also demonstrates robustness to diverse subjects captured in real environments.
DiLightNet: Fine-grained Lighting Control for Diffusion-based Image Generation
This paper presents a novel method for exerting fine-grained lighting control during text-driven diffusion-based image generation. While existing diffusion models already have the ability to generate images under any lighting condition, without additional guidance these models tend to correlate image content and lighting. Moreover, text prompts lack the necessary expressional power to describe detailed lighting setups. To provide the content creator with fine-grained control over the lighting during image generation, we augment the text-prompt with detailed lighting information in the form of radiance hints, i.e., visualizations of the scene geometry with a homogeneous canonical material under the target lighting. However, the scene geometry needed to produce the radiance hints is unknown. Our key observation is that we only need to guide the diffusion process, hence exact radiance hints are not necessary; we only need to point the diffusion model in the right direction. Based on this observation, we introduce a three stage method for controlling the lighting during image generation. In the first stage, we leverage a standard pretrained diffusion model to generate a provisional image under uncontrolled lighting. Next, in the second stage, we resynthesize and refine the foreground object in the generated image by passing the target lighting to a refined diffusion model, named DiLightNet, using radiance hints computed on a coarse shape of the foreground object inferred from the provisional image. To retain the texture details, we multiply the radiance hints with a neural encoding of the provisional synthesized image before passing it to DiLightNet. Finally, in the third stage, we resynthesize the background to be consistent with the lighting on the foreground object. We demonstrate and validate our lighting controlled diffusion model on a variety of text prompts and lighting conditions.
DreamMat: High-quality PBR Material Generation with Geometry- and Light-aware Diffusion Models
2D diffusion model, which often contains unwanted baked-in shading effects and results in unrealistic rendering effects in the downstream applications. Generating Physically Based Rendering (PBR) materials instead of just RGB textures would be a promising solution. However, directly distilling the PBR material parameters from 2D diffusion models still suffers from incorrect material decomposition, such as baked-in shading effects in albedo. We introduce DreamMat, an innovative approach to resolve the aforementioned problem, to generate high-quality PBR materials from text descriptions. We find out that the main reason for the incorrect material distillation is that large-scale 2D diffusion models are only trained to generate final shading colors, resulting in insufficient constraints on material decomposition during distillation. To tackle this problem, we first finetune a new light-aware 2D diffusion model to condition on a given lighting environment and generate the shading results on this specific lighting condition. Then, by applying the same environment lights in the material distillation, DreamMat can generate high-quality PBR materials that are not only consistent with the given geometry but also free from any baked-in shading effects in albedo. Extensive experiments demonstrate that the materials produced through our methods exhibit greater visual appeal to users and achieve significantly superior rendering quality compared to baseline methods, which are preferable for downstream tasks such as game and film production.
LightenDiffusion: Unsupervised Low-Light Image Enhancement with Latent-Retinex Diffusion Models
In this paper, we propose a diffusion-based unsupervised framework that incorporates physically explainable Retinex theory with diffusion models for low-light image enhancement, named LightenDiffusion. Specifically, we present a content-transfer decomposition network that performs Retinex decomposition within the latent space instead of image space as in previous approaches, enabling the encoded features of unpaired low-light and normal-light images to be decomposed into content-rich reflectance maps and content-free illumination maps. Subsequently, the reflectance map of the low-light image and the illumination map of the normal-light image are taken as input to the diffusion model for unsupervised restoration with the guidance of the low-light feature, where a self-constrained consistency loss is further proposed to eliminate the interference of normal-light content on the restored results to improve overall visual quality. Extensive experiments on publicly available real-world benchmarks show that the proposed LightenDiffusion outperforms state-of-the-art unsupervised competitors and is comparable to supervised methods while being more generalizable to various scenes. Our code is available at https://github.com/JianghaiSCU/LightenDiffusion.
REFRAME: Reflective Surface Real-Time Rendering for Mobile Devices
This work tackles the challenging task of achieving real-time novel view synthesis for reflective surfaces across various scenes. Existing real-time rendering methods, especially those based on meshes, often have subpar performance in modeling surfaces with rich view-dependent appearances. Our key idea lies in leveraging meshes for rendering acceleration while incorporating a novel approach to parameterize view-dependent information. We decompose the color into diffuse and specular, and model the specular color in the reflected direction based on a neural environment map. Our experiments demonstrate that our method achieves comparable reconstruction quality for highly reflective surfaces compared to state-of-the-art offline methods, while also efficiently enabling real-time rendering on edge devices such as smartphones.
Flash-Splat: 3D Reflection Removal with Flash Cues and Gaussian Splats
We introduce a simple yet effective approach for separating transmitted and reflected light. Our key insight is that the powerful novel view synthesis capabilities provided by modern inverse rendering methods (e.g.,~3D Gaussian splatting) allow one to perform flash/no-flash reflection separation using unpaired measurements -- this relaxation dramatically simplifies image acquisition over conventional paired flash/no-flash reflection separation methods. Through extensive real-world experiments, we demonstrate our method, Flash-Splat, accurately reconstructs both transmitted and reflected scenes in 3D. Our method outperforms existing 3D reflection separation methods, which do not leverage illumination control, by a large margin. Our project webpage is at https://flash-splat.github.io/.
Learning Multiple-Scattering Solutions for Sphere-Tracing of Volumetric Subsurface Effects
Accurate subsurface scattering solutions require the integration of optical material properties along many complicated light paths. We present a method that learns a simple geometric approximation of random paths in a homogeneous volume of translucent material. The generated representation allows determining the absorption along the path as well as a direct lighting contribution, which is representative of all scattering events along the path. A sequence of conditional variational auto-encoders (CVAEs) is trained to model the statistical distribution of the photon paths inside a spherical region in presence of multiple scattering events. A first CVAE learns to sample the number of scattering events, occurring on a ray path inside the sphere, which effectively determines the probability of the ray being absorbed. Conditioned on this, a second model predicts the exit position and direction of the light particle. Finally, a third model generates a representative sample of photon position and direction along the path, which is used to approximate the contribution of direct illumination due to in-scattering. To accelerate the tracing of the light path through the volumetric medium toward the solid boundary, we employ a sphere-tracing strategy that considers the light absorption and is able to perform statistically accurate next-event estimation. We demonstrate efficient learning using shallow networks of only three layers and no more than 16 nodes. In combination with a GPU shader that evaluates the CVAEs' predictions, performance gains can be demonstrated for a variety of different scenarios. A quality evaluation analyzes the approximation error that is introduced by the data-driven scattering simulation and sheds light on the major sources of error in the accelerated path tracing process.
Colorful Diffuse Intrinsic Image Decomposition in the Wild
Intrinsic image decomposition aims to separate the surface reflectance and the effects from the illumination given a single photograph. Due to the complexity of the problem, most prior works assume a single-color illumination and a Lambertian world, which limits their use in illumination-aware image editing applications. In this work, we separate an input image into its diffuse albedo, colorful diffuse shading, and specular residual components. We arrive at our result by gradually removing first the single-color illumination and then the Lambertian-world assumptions. We show that by dividing the problem into easier sub-problems, in-the-wild colorful diffuse shading estimation can be achieved despite the limited ground-truth datasets. Our extended intrinsic model enables illumination-aware analysis of photographs and can be used for image editing applications such as specularity removal and per-pixel white balancing.
Latent Feature-Guided Diffusion Models for Shadow Removal
Recovering textures under shadows has remained a challenging problem due to the difficulty of inferring shadow-free scenes from shadow images. In this paper, we propose the use of diffusion models as they offer a promising approach to gradually refine the details of shadow regions during the diffusion process. Our method improves this process by conditioning on a learned latent feature space that inherits the characteristics of shadow-free images, thus avoiding the limitation of conventional methods that condition on degraded images only. Additionally, we propose to alleviate potential local optima during training by fusing noise features with the diffusion network. We demonstrate the effectiveness of our approach which outperforms the previous best method by 13% in terms of RMSE on the AISTD dataset. Further, we explore instance-level shadow removal, where our model outperforms the previous best method by 82% in terms of RMSE on the DESOBA dataset.
Neural Gaffer: Relighting Any Object via Diffusion
Single-image relighting is a challenging task that involves reasoning about the complex interplay between geometry, materials, and lighting. Many prior methods either support only specific categories of images, such as portraits, or require special capture conditions, like using a flashlight. Alternatively, some methods explicitly decompose a scene into intrinsic components, such as normals and BRDFs, which can be inaccurate or under-expressive. In this work, we propose a novel end-to-end 2D relighting diffusion model, called Neural Gaffer, that takes a single image of any object and can synthesize an accurate, high-quality relit image under any novel environmental lighting condition, simply by conditioning an image generator on a target environment map, without an explicit scene decomposition. Our method builds on a pre-trained diffusion model, and fine-tunes it on a synthetic relighting dataset, revealing and harnessing the inherent understanding of lighting present in the diffusion model. We evaluate our model on both synthetic and in-the-wild Internet imagery and demonstrate its advantages in terms of generalization and accuracy. Moreover, by combining with other generative methods, our model enables many downstream 2D tasks, such as text-based relighting and object insertion. Our model can also operate as a strong relighting prior for 3D tasks, such as relighting a radiance field.
NeFII: Inverse Rendering for Reflectance Decomposition with Near-Field Indirect Illumination
Inverse rendering methods aim to estimate geometry, materials and illumination from multi-view RGB images. In order to achieve better decomposition, recent approaches attempt to model indirect illuminations reflected from different materials via Spherical Gaussians (SG), which, however, tends to blur the high-frequency reflection details. In this paper, we propose an end-to-end inverse rendering pipeline that decomposes materials and illumination from multi-view images, while considering near-field indirect illumination. In a nutshell, we introduce the Monte Carlo sampling based path tracing and cache the indirect illumination as neural radiance, enabling a physics-faithful and easy-to-optimize inverse rendering method. To enhance efficiency and practicality, we leverage SG to represent the smooth environment illuminations and apply importance sampling techniques. To supervise indirect illuminations from unobserved directions, we develop a novel radiance consistency constraint between implicit neural radiance and path tracing results of unobserved rays along with the joint optimization of materials and illuminations, thus significantly improving the decomposition performance. Extensive experiments demonstrate that our method outperforms the state-of-the-art on multiple synthetic and real datasets, especially in terms of inter-reflection decomposition.Our code and data are available at https://woolseyyy.github.io/nefii/.
Ref-NeuS: Ambiguity-Reduced Neural Implicit Surface Learning for Multi-View Reconstruction with Reflection
Neural implicit surface learning has shown significant progress in multi-view 3D reconstruction, where an object is represented by multilayer perceptrons that provide continuous implicit surface representation and view-dependent radiance. However, current methods often fail to accurately reconstruct reflective surfaces, leading to severe ambiguity. To overcome this issue, we propose Ref-NeuS, which aims to reduce ambiguity by attenuating the effect of reflective surfaces. Specifically, we utilize an anomaly detector to estimate an explicit reflection score with the guidance of multi-view context to localize reflective surfaces. Afterward, we design a reflection-aware photometric loss that adaptively reduces ambiguity by modeling rendered color as a Gaussian distribution, with the reflection score representing the variance. We show that together with a reflection direction-dependent radiance, our model achieves high-quality surface reconstruction on reflective surfaces and outperforms the state-of-the-arts by a large margin. Besides, our model is also comparable on general surfaces.
Efficient Diffusion as Low Light Enhancer
The computational burden of the iterative sampling process remains a major challenge in diffusion-based Low-Light Image Enhancement (LLIE). Current acceleration methods, whether training-based or training-free, often lead to significant performance degradation, highlighting the trade-off between performance and efficiency. In this paper, we identify two primary factors contributing to performance degradation: fitting errors and the inference gap. Our key insight is that fitting errors can be mitigated by linearly extrapolating the incorrect score functions, while the inference gap can be reduced by shifting the Gaussian flow to a reflectance-aware residual space. Based on the above insights, we design Reflectance-Aware Trajectory Refinement (RATR) module, a simple yet effective module to refine the teacher trajectory using the reflectance component of images. Following this, we introduce Reflectance-aware Diffusion with Distilled Trajectory (ReDDiT), an efficient and flexible distillation framework tailored for LLIE. Our framework achieves comparable performance to previous diffusion-based methods with redundant steps in just 2 steps while establishing new state-of-the-art (SOTA) results with 8 or 4 steps. Comprehensive experimental evaluations on 10 benchmark datasets validate the effectiveness of our method, consistently outperforming existing SOTA methods.
IllumiNeRF: 3D Relighting without Inverse Rendering
Existing methods for relightable view synthesis -- using a set of images of an object under unknown lighting to recover a 3D representation that can be rendered from novel viewpoints under a target illumination -- are based on inverse rendering, and attempt to disentangle the object geometry, materials, and lighting that explain the input images. Furthermore, this typically involves optimization through differentiable Monte Carlo rendering, which is brittle and computationally-expensive. In this work, we propose a simpler approach: we first relight each input image using an image diffusion model conditioned on lighting and then reconstruct a Neural Radiance Field (NeRF) with these relit images, from which we render novel views under the target lighting. We demonstrate that this strategy is surprisingly competitive and achieves state-of-the-art results on multiple relighting benchmarks. Please see our project page at https://illuminerf.github.io/.
RISE-SDF: a Relightable Information-Shared Signed Distance Field for Glossy Object Inverse Rendering
In this paper, we propose a novel end-to-end relightable neural inverse rendering system that achieves high-quality reconstruction of geometry and material properties, thus enabling high-quality relighting. The cornerstone of our method is a two-stage approach for learning a better factorization of scene parameters. In the first stage, we develop a reflection-aware radiance field using a neural signed distance field (SDF) as the geometry representation and deploy an MLP (multilayer perceptron) to estimate indirect illumination. In the second stage, we introduce a novel information-sharing network structure to jointly learn the radiance field and the physically based factorization of the scene. For the physically based factorization, to reduce the noise caused by Monte Carlo sampling, we apply a split-sum approximation with a simplified Disney BRDF and cube mipmap as the environment light representation. In the relighting phase, to enhance the quality of indirect illumination, we propose a second split-sum algorithm to trace secondary rays under the split-sum rendering framework. Furthermore, there is no dataset or protocol available to quantitatively evaluate the inverse rendering performance for glossy objects. To assess the quality of material reconstruction and relighting, we have created a new dataset with ground truth BRDF parameters and relighting results. Our experiments demonstrate that our algorithm achieves state-of-the-art performance in inverse rendering and relighting, with particularly strong results in the reconstruction of highly reflective objects.
SpotLight: Shadow-Guided Object Relighting via Diffusion
Recent work has shown that diffusion models can be used as powerful neural rendering engines that can be leveraged for inserting virtual objects into images. Unlike typical physics-based renderers, however, neural rendering engines are limited by the lack of manual control over the lighting setup, which is often essential for improving or personalizing the desired image outcome. In this paper, we show that precise lighting control can be achieved for object relighting simply by specifying the desired shadows of the object. Rather surprisingly, we show that injecting only the shadow of the object into a pre-trained diffusion-based neural renderer enables it to accurately shade the object according to the desired light position, while properly harmonizing the object (and its shadow) within the target background image. Our method, SpotLight, leverages existing neural rendering approaches and achieves controllable relighting results with no additional training. Specifically, we demonstrate its use with two neural renderers from the recent literature. We show that SpotLight achieves superior object compositing results, both quantitatively and perceptually, as confirmed by a user study, outperforming existing diffusion-based models specifically designed for relighting.
NeILF++: Inter-Reflectable Light Fields for Geometry and Material Estimation
We present a novel differentiable rendering framework for joint geometry, material, and lighting estimation from multi-view images. In contrast to previous methods which assume a simplified environment map or co-located flashlights, in this work, we formulate the lighting of a static scene as one neural incident light field (NeILF) and one outgoing neural radiance field (NeRF). The key insight of the proposed method is the union of the incident and outgoing light fields through physically-based rendering and inter-reflections between surfaces, making it possible to disentangle the scene geometry, material, and lighting from image observations in a physically-based manner. The proposed incident light and inter-reflection framework can be easily applied to other NeRF systems. We show that our method can not only decompose the outgoing radiance into incident lights and surface materials, but also serve as a surface refinement module that further improves the reconstruction detail of the neural surface. We demonstrate on several datasets that the proposed method is able to achieve state-of-the-art results in terms of geometry reconstruction quality, material estimation accuracy, and the fidelity of novel view rendering.
Reflecting Reality: Enabling Diffusion Models to Produce Faithful Mirror Reflections
We tackle the problem of generating highly realistic and plausible mirror reflections using diffusion-based generative models. We formulate this problem as an image inpainting task, allowing for more user control over the placement of mirrors during the generation process. To enable this, we create SynMirror, a large-scale dataset of diverse synthetic scenes with objects placed in front of mirrors. SynMirror contains around 198K samples rendered from 66K unique 3D objects, along with their associated depth maps, normal maps and instance-wise segmentation masks, to capture relevant geometric properties of the scene. Using this dataset, we propose a novel depth-conditioned inpainting method called MirrorFusion, which generates high-quality geometrically consistent and photo-realistic mirror reflections given an input image and a mask depicting the mirror region. MirrorFusion outperforms state-of-the-art methods on SynMirror, as demonstrated by extensive quantitative and qualitative analysis. To the best of our knowledge, we are the first to successfully tackle the challenging problem of generating controlled and faithful mirror reflections of an object in a scene using diffusion based models. SynMirror and MirrorFusion open up new avenues for image editing and augmented reality applications for practitioners and researchers alike.
SpecNeRF: Gaussian Directional Encoding for Specular Reflections
Neural radiance fields have achieved remarkable performance in modeling the appearance of 3D scenes. However, existing approaches still struggle with the view-dependent appearance of glossy surfaces, especially under complex lighting of indoor environments. Unlike existing methods, which typically assume distant lighting like an environment map, we propose a learnable Gaussian directional encoding to better model the view-dependent effects under near-field lighting conditions. Importantly, our new directional encoding captures the spatially-varying nature of near-field lighting and emulates the behavior of prefiltered environment maps. As a result, it enables the efficient evaluation of preconvolved specular color at any 3D location with varying roughness coefficients. We further introduce a data-driven geometry prior that helps alleviate the shape radiance ambiguity in reflection modeling. We show that our Gaussian directional encoding and geometry prior significantly improve the modeling of challenging specular reflections in neural radiance fields, which helps decompose appearance into more physically meaningful components.
Neural Relighting with Subsurface Scattering by Learning the Radiance Transfer Gradient
Reconstructing and relighting objects and scenes under varying lighting conditions is challenging: existing neural rendering methods often cannot handle the complex interactions between materials and light. Incorporating pre-computed radiance transfer techniques enables global illumination, but still struggles with materials with subsurface scattering effects. We propose a novel framework for learning the radiance transfer field via volume rendering and utilizing various appearance cues to refine geometry end-to-end. This framework extends relighting and reconstruction capabilities to handle a wider range of materials in a data-driven fashion. The resulting models produce plausible rendering results in existing and novel conditions. We will release our code and a novel light stage dataset of objects with subsurface scattering effects publicly available.
UniSDF: Unifying Neural Representations for High-Fidelity 3D Reconstruction of Complex Scenes with Reflections
Neural 3D scene representations have shown great potential for 3D reconstruction from 2D images. However, reconstructing real-world captures of complex scenes still remains a challenge. Existing generic 3D reconstruction methods often struggle to represent fine geometric details and do not adequately model reflective surfaces of large-scale scenes. Techniques that explicitly focus on reflective surfaces can model complex and detailed reflections by exploiting better reflection parameterizations. However, we observe that these methods are often not robust in real unbounded scenarios where non-reflective as well as reflective components are present. In this work, we propose UniSDF, a general purpose 3D reconstruction method that can reconstruct large complex scenes with reflections. We investigate both view-based as well as reflection-based color prediction parameterization techniques and find that explicitly blending these representations in 3D space enables reconstruction of surfaces that are more geometrically accurate, especially for reflective surfaces. We further combine this representation with a multi-resolution grid backbone that is trained in a coarse-to-fine manner, enabling faster reconstructions than prior methods. Extensive experiments on object-level datasets DTU, Shiny Blender as well as unbounded datasets Mip-NeRF 360 and Ref-NeRF real demonstrate that our method is able to robustly reconstruct complex large-scale scenes with fine details and reflective surfaces. Please see our project page at https://fangjinhuawang.github.io/UniSDF.
RichDreamer: A Generalizable Normal-Depth Diffusion Model for Detail Richness in Text-to-3D
Lifting 2D diffusion for 3D generation is a challenging problem due to the lack of geometric prior and the complex entanglement of materials and lighting in natural images. Existing methods have shown promise by first creating the geometry through score-distillation sampling (SDS) applied to rendered surface normals, followed by appearance modeling. However, relying on a 2D RGB diffusion model to optimize surface normals is suboptimal due to the distribution discrepancy between natural images and normals maps, leading to instability in optimization. In this paper, recognizing that the normal and depth information effectively describe scene geometry and be automatically estimated from images, we propose to learn a generalizable Normal-Depth diffusion model for 3D generation. We achieve this by training on the large-scale LAION dataset together with the generalizable image-to-depth and normal prior models. In an attempt to alleviate the mixed illumination effects in the generated materials, we introduce an albedo diffusion model to impose data-driven constraints on the albedo component. Our experiments show that when integrated into existing text-to-3D pipelines, our models significantly enhance the detail richness, achieving state-of-the-art results. Our project page is https://lingtengqiu.github.io/RichDreamer/.
Photorealistic Object Insertion with Diffusion-Guided Inverse Rendering
The correct insertion of virtual objects in images of real-world scenes requires a deep understanding of the scene's lighting, geometry and materials, as well as the image formation process. While recent large-scale diffusion models have shown strong generative and inpainting capabilities, we find that current models do not sufficiently "understand" the scene shown in a single picture to generate consistent lighting effects (shadows, bright reflections, etc.) while preserving the identity and details of the composited object. We propose using a personalized large diffusion model as guidance to a physically based inverse rendering process. Our method recovers scene lighting and tone-mapping parameters, allowing the photorealistic composition of arbitrary virtual objects in single frames or videos of indoor or outdoor scenes. Our physically based pipeline further enables automatic materials and tone-mapping refinement.
Latent Intrinsics Emerge from Training to Relight
Image relighting is the task of showing what a scene from a source image would look like if illuminated differently. Inverse graphics schemes recover an explicit representation of geometry and a set of chosen intrinsics, then relight with some form of renderer. However error control for inverse graphics is difficult, and inverse graphics methods can represent only the effects of the chosen intrinsics. This paper describes a relighting method that is entirely data-driven, where intrinsics and lighting are each represented as latent variables. Our approach produces SOTA relightings of real scenes, as measured by standard metrics. We show that albedo can be recovered from our latent intrinsics without using any example albedos, and that the albedos recovered are competitive with SOTA methods.
Photometric Inverse Rendering: Shading Cues Modeling and Surface Reflectance Regularization
This paper addresses the problem of inverse rendering from photometric images. Existing approaches for this problem suffer from the effects of self-shadows, inter-reflections, and lack of constraints on the surface reflectance, leading to inaccurate decomposition of reflectance and illumination due to the ill-posed nature of inverse rendering. In this work, we propose a new method for neural inverse rendering. Our method jointly optimizes the light source position to account for the self-shadows in images, and computes indirect illumination using a differentiable rendering layer and an importance sampling strategy. To enhance surface reflectance decomposition, we introduce a new regularization by distilling DINO features to foster accurate and consistent material decomposition. Extensive experiments on synthetic and real datasets demonstrate that our method outperforms the state-of-the-art methods in reflectance decomposition.
A Diffusion Approach to Radiance Field Relighting using Multi-Illumination Synthesis
Relighting radiance fields is severely underconstrained for multi-view data, which is most often captured under a single illumination condition; It is especially hard for full scenes containing multiple objects. We introduce a method to create relightable radiance fields using such single-illumination data by exploiting priors extracted from 2D image diffusion models. We first fine-tune a 2D diffusion model on a multi-illumination dataset conditioned by light direction, allowing us to augment a single-illumination capture into a realistic -- but possibly inconsistent -- multi-illumination dataset from directly defined light directions. We use this augmented data to create a relightable radiance field represented by 3D Gaussian splats. To allow direct control of light direction for low-frequency lighting, we represent appearance with a multi-layer perceptron parameterized on light direction. To enforce multi-view consistency and overcome inaccuracies we optimize a per-image auxiliary feature vector. We show results on synthetic and real multi-view data under single illumination, demonstrating that our method successfully exploits 2D diffusion model priors to allow realistic 3D relighting for complete scenes. Project site https://repo-sam.inria.fr/fungraph/generative-radiance-field-relighting/
Relightable Full-Body Gaussian Codec Avatars
We propose Relightable Full-Body Gaussian Codec Avatars, a new approach for modeling relightable full-body avatars with fine-grained details including face and hands. The unique challenge for relighting full-body avatars lies in the large deformations caused by body articulation and the resulting impact on appearance caused by light transport. Changes in body pose can dramatically change the orientation of body surfaces with respect to lights, resulting in both local appearance changes due to changes in local light transport functions, as well as non-local changes due to occlusion between body parts. To address this, we decompose the light transport into local and non-local effects. Local appearance changes are modeled using learnable zonal harmonics for diffuse radiance transfer. Unlike spherical harmonics, zonal harmonics are highly efficient to rotate under articulation. This allows us to learn diffuse radiance transfer in a local coordinate frame, which disentangles the local radiance transfer from the articulation of the body. To account for non-local appearance changes, we introduce a shadow network that predicts shadows given precomputed incoming irradiance on a base mesh. This facilitates the learning of non-local shadowing between the body parts. Finally, we use a deferred shading approach to model specular radiance transfer and better capture reflections and highlights such as eye glints. We demonstrate that our approach successfully models both the local and non-local light transport required for relightable full-body avatars, with a superior generalization ability under novel illumination conditions and unseen poses.
Relightful Harmonization: Lighting-aware Portrait Background Replacement
Portrait harmonization aims to composite a subject into a new background, adjusting its lighting and color to ensure harmony with the background scene. Existing harmonization techniques often only focus on adjusting the global color and brightness of the foreground and ignore crucial illumination cues from the background such as apparent lighting direction, leading to unrealistic compositions. We introduce Relightful Harmonization, a lighting-aware diffusion model designed to seamlessly harmonize sophisticated lighting effect for the foreground portrait using any background image. Our approach unfolds in three stages. First, we introduce a lighting representation module that allows our diffusion model to encode lighting information from target image background. Second, we introduce an alignment network that aligns lighting features learned from image background with lighting features learned from panorama environment maps, which is a complete representation for scene illumination. Last, to further boost the photorealism of the proposed method, we introduce a novel data simulation pipeline that generates synthetic training pairs from a diverse range of natural images, which are used to refine the model. Our method outperforms existing benchmarks in visual fidelity and lighting coherence, showing superior generalization in real-world testing scenarios, highlighting its versatility and practicality.
Neural Directional Encoding for Efficient and Accurate View-Dependent Appearance Modeling
Novel-view synthesis of specular objects like shiny metals or glossy paints remains a significant challenge. Not only the glossy appearance but also global illumination effects, including reflections of other objects in the environment, are critical components to faithfully reproduce a scene. In this paper, we present Neural Directional Encoding (NDE), a view-dependent appearance encoding of neural radiance fields (NeRF) for rendering specular objects. NDE transfers the concept of feature-grid-based spatial encoding to the angular domain, significantly improving the ability to model high-frequency angular signals. In contrast to previous methods that use encoding functions with only angular input, we additionally cone-trace spatial features to obtain a spatially varying directional encoding, which addresses the challenging interreflection effects. Extensive experiments on both synthetic and real datasets show that a NeRF model with NDE (1) outperforms the state of the art on view synthesis of specular objects, and (2) works with small networks to allow fast (real-time) inference. The project webpage and source code are available at: https://lwwu2.github.io/nde/.
DiffuseRAW: End-to-End Generative RAW Image Processing for Low-Light Images
Imaging under extremely low-light conditions presents a significant challenge and is an ill-posed problem due to the low signal-to-noise ratio (SNR) caused by minimal photon capture. Previously, diffusion models have been used for multiple kinds of generative tasks and image-to-image tasks, however, these models work as a post-processing step. These diffusion models are trained on processed images and learn on processed images. However, such approaches are often not well-suited for extremely low-light tasks. Unlike the task of low-light image enhancement or image-to-image enhancement, we tackle the task of learning the entire image-processing pipeline, from the RAW image to a processed image. For this task, a traditional image processing pipeline often consists of multiple specialized parts that are overly reliant on the downstream tasks. Unlike these, we develop a new generative ISP that relies on fine-tuning latent diffusion models on RAW images and generating processed long-exposure images which allows for the apt use of the priors from large text-to-image generation models. We evaluate our approach on popular end-to-end low-light datasets for which we see promising results and set a new SoTA on the See-in-Dark (SID) dataset. Furthermore, with this work, we hope to pave the way for more generative and diffusion-based image processing and other problems on RAW data.
NeRF-Casting: Improved View-Dependent Appearance with Consistent Reflections
Neural Radiance Fields (NeRFs) typically struggle to reconstruct and render highly specular objects, whose appearance varies quickly with changes in viewpoint. Recent works have improved NeRF's ability to render detailed specular appearance of distant environment illumination, but are unable to synthesize consistent reflections of closer content. Moreover, these techniques rely on large computationally-expensive neural networks to model outgoing radiance, which severely limits optimization and rendering speed. We address these issues with an approach based on ray tracing: instead of querying an expensive neural network for the outgoing view-dependent radiance at points along each camera ray, our model casts reflection rays from these points and traces them through the NeRF representation to render feature vectors which are decoded into color using a small inexpensive network. We demonstrate that our model outperforms prior methods for view synthesis of scenes containing shiny objects, and that it is the only existing NeRF method that can synthesize photorealistic specular appearance and reflections in real-world scenes, while requiring comparable optimization time to current state-of-the-art view synthesis models.
Towards High-Quality Specular Highlight Removal by Leveraging Large-Scale Synthetic Data
This paper aims to remove specular highlights from a single object-level image. Although previous methods have made some progresses, their performance remains somewhat limited, particularly for real images with complex specular highlights. To this end, we propose a three-stage network to address them. Specifically, given an input image, we first decompose it into the albedo, shading, and specular residue components to estimate a coarse specular-free image. Then, we further refine the coarse result to alleviate its visual artifacts such as color distortion. Finally, we adjust the tone of the refined result to match that of the input as closely as possible. In addition, to facilitate network training and quantitative evaluation, we present a large-scale synthetic dataset of object-level images, covering diverse objects and illumination conditions. Extensive experiments illustrate that our network is able to generalize well to unseen real object-level images, and even produce good results for scene-level images with multiple background objects and complex lighting.
Seeing the World through Your Eyes
The reflective nature of the human eye is an underappreciated source of information about what the world around us looks like. By imaging the eyes of a moving person, we can collect multiple views of a scene outside the camera's direct line of sight through the reflections in the eyes. In this paper, we reconstruct a 3D scene beyond the camera's line of sight using portrait images containing eye reflections. This task is challenging due to 1) the difficulty of accurately estimating eye poses and 2) the entangled appearance of the eye iris and the scene reflections. Our method jointly refines the cornea poses, the radiance field depicting the scene, and the observer's eye iris texture. We further propose a simple regularization prior on the iris texture pattern to improve reconstruction quality. Through various experiments on synthetic and real-world captures featuring people with varied eye colors, we demonstrate the feasibility of our approach to recover 3D scenes using eye reflections.
Single Image Reflection Removal with Reflection Intensity Prior Knowledge
Single Image Reflection Removal (SIRR) in real-world images is a challenging task due to diverse image degradations occurring on the glass surface during light transmission and reflection. Many existing methods rely on specific prior assumptions to resolve the problem. In this paper, we propose a general reflection intensity prior that captures the intensity of the reflection phenomenon and demonstrate its effectiveness. To learn the reflection intensity prior, we introduce the Reflection Prior Extraction Network (RPEN). By segmenting images into regional patches, RPEN learns non-uniform reflection prior in an image. We propose Prior-based Reflection Removal Network (PRRN) using a simple transformer U-Net architecture that adapts reflection prior fed from RPEN. Experimental results on real-world benchmarks demonstrate the effectiveness of our approach achieving state-of-the-art accuracy in SIRR.
Progressive Radiance Distillation for Inverse Rendering with Gaussian Splatting
We propose progressive radiance distillation, an inverse rendering method that combines physically-based rendering with Gaussian-based radiance field rendering using a distillation progress map. Taking multi-view images as input, our method starts from a pre-trained radiance field guidance, and distills physically-based light and material parameters from the radiance field using an image-fitting process. The distillation progress map is initialized to a small value, which favors radiance field rendering. During early iterations when fitted light and material parameters are far from convergence, the radiance field fallback ensures the sanity of image loss gradients and avoids local minima that attracts under-fit states. As fitted parameters converge, the physical model gradually takes over and the distillation progress increases correspondingly. In presence of light paths unmodeled by the physical model, the distillation progress never finishes on affected pixels and the learned radiance field stays in the final rendering. With this designed tolerance for physical model limitations, we prevent unmodeled color components from leaking into light and material parameters, alleviating relighting artifacts. Meanwhile, the remaining radiance field compensates for the limitations of the physical model, guaranteeing high-quality novel views synthesis. Experimental results demonstrate that our method significantly outperforms state-of-the-art techniques quality-wise in both novel view synthesis and relighting. The idea of progressive radiance distillation is not limited to Gaussian splatting. We show that it also has positive effects for prominently specular scenes when adapted to a mesh-based inverse rendering method.
DiffuseHigh: Training-free Progressive High-Resolution Image Synthesis through Structure Guidance
Recent surge in large-scale generative models has spurred the development of vast fields in computer vision. In particular, text-to-image diffusion models have garnered widespread adoption across diverse domain due to their potential for high-fidelity image generation. Nonetheless, existing large-scale diffusion models are confined to generate images of up to 1K resolution, which is far from meeting the demands of contemporary commercial applications. Directly sampling higher-resolution images often yields results marred by artifacts such as object repetition and distorted shapes. Addressing the aforementioned issues typically necessitates training or fine-tuning models on higher resolution datasets. However, this undertaking poses a formidable challenge due to the difficulty in collecting large-scale high-resolution contents and substantial computational resources. While several preceding works have proposed alternatives, they often fail to produce convincing results. In this work, we probe the generative ability of diffusion models at higher resolution beyond its original capability and propose a novel progressive approach that fully utilizes generated low-resolution image to guide the generation of higher resolution image. Our method obviates the need for additional training or fine-tuning which significantly lowers the burden of computational costs. Extensive experiments and results validate the efficiency and efficacy of our method. Project page: https://yhyun225.github.io/DiffuseHigh/
Under-Display Camera Image Restoration with Scattering Effect
The under-display camera (UDC) provides consumers with a full-screen visual experience without any obstruction due to notches or punched holes. However, the semi-transparent nature of the display inevitably introduces the severe degradation into UDC images. In this work, we address the UDC image restoration problem with the specific consideration of the scattering effect caused by the display. We explicitly model the scattering effect by treating the display as a piece of homogeneous scattering medium. With the physical model of the scattering effect, we improve the image formation pipeline for the image synthesis to construct a realistic UDC dataset with ground truths. To suppress the scattering effect for the eventual UDC image recovery, a two-branch restoration network is designed. More specifically, the scattering branch leverages global modeling capabilities of the channel-wise self-attention to estimate parameters of the scattering effect from degraded images. While the image branch exploits the local representation advantage of CNN to recover clear scenes, implicitly guided by the scattering branch. Extensive experiments are conducted on both real-world and synthesized data, demonstrating the superiority of the proposed method over the state-of-the-art UDC restoration techniques. The source code and dataset are available at https://github.com/NamecantbeNULL/SRUDC.
ScribbleLight: Single Image Indoor Relighting with Scribbles
Image-based relighting of indoor rooms creates an immersive virtual understanding of the space, which is useful for interior design, virtual staging, and real estate. Relighting indoor rooms from a single image is especially challenging due to complex illumination interactions between multiple lights and cluttered objects featuring a large variety in geometrical and material complexity. Recently, generative models have been successfully applied to image-based relighting conditioned on a target image or a latent code, albeit without detailed local lighting control. In this paper, we introduce ScribbleLight, a generative model that supports local fine-grained control of lighting effects through scribbles that describe changes in lighting. Our key technical novelty is an Albedo-conditioned Stable Image Diffusion model that preserves the intrinsic color and texture of the original image after relighting and an encoder-decoder-based ControlNet architecture that enables geometry-preserving lighting effects with normal map and scribble annotations. We demonstrate ScribbleLight's ability to create different lighting effects (e.g., turning lights on/off, adding highlights, cast shadows, or indirect lighting from unseen lights) from sparse scribble annotations.
Collaborative Diffusion for Multi-Modal Face Generation and Editing
Diffusion models arise as a powerful generative tool recently. Despite the great progress, existing diffusion models mainly focus on uni-modal control, i.e., the diffusion process is driven by only one modality of condition. To further unleash the users' creativity, it is desirable for the model to be controllable by multiple modalities simultaneously, e.g., generating and editing faces by describing the age (text-driven) while drawing the face shape (mask-driven). In this work, we present Collaborative Diffusion, where pre-trained uni-modal diffusion models collaborate to achieve multi-modal face generation and editing without re-training. Our key insight is that diffusion models driven by different modalities are inherently complementary regarding the latent denoising steps, where bilateral connections can be established upon. Specifically, we propose dynamic diffuser, a meta-network that adaptively hallucinates multi-modal denoising steps by predicting the spatial-temporal influence functions for each pre-trained uni-modal model. Collaborative Diffusion not only collaborates generation capabilities from uni-modal diffusion models, but also integrates multiple uni-modal manipulations to perform multi-modal editing. Extensive qualitative and quantitative experiments demonstrate the superiority of our framework in both image quality and condition consistency.
DiffusionRenderer: Neural Inverse and Forward Rendering with Video Diffusion Models
Understanding and modeling lighting effects are fundamental tasks in computer vision and graphics. Classic physically-based rendering (PBR) accurately simulates the light transport, but relies on precise scene representations--explicit 3D geometry, high-quality material properties, and lighting conditions--that are often impractical to obtain in real-world scenarios. Therefore, we introduce DiffusionRenderer, a neural approach that addresses the dual problem of inverse and forward rendering within a holistic framework. Leveraging powerful video diffusion model priors, the inverse rendering model accurately estimates G-buffers from real-world videos, providing an interface for image editing tasks, and training data for the rendering model. Conversely, our rendering model generates photorealistic images from G-buffers without explicit light transport simulation. Experiments demonstrate that DiffusionRenderer effectively approximates inverse and forwards rendering, consistently outperforming the state-of-the-art. Our model enables practical applications from a single video input--including relighting, material editing, and realistic object insertion.
EverLight: Indoor-Outdoor Editable HDR Lighting Estimation
Because of the diversity in lighting environments, existing illumination estimation techniques have been designed explicitly on indoor or outdoor environments. Methods have focused specifically on capturing accurate energy (e.g., through parametric lighting models), which emphasizes shading and strong cast shadows; or producing plausible texture (e.g., with GANs), which prioritizes plausible reflections. Approaches which provide editable lighting capabilities have been proposed, but these tend to be with simplified lighting models, offering limited realism. In this work, we propose to bridge the gap between these recent trends in the literature, and propose a method which combines a parametric light model with 360{\deg} panoramas, ready to use as HDRI in rendering engines. We leverage recent advances in GAN-based LDR panorama extrapolation from a regular image, which we extend to HDR using parametric spherical gaussians. To achieve this, we introduce a novel lighting co-modulation method that injects lighting-related features throughout the generator, tightly coupling the original or edited scene illumination within the panorama generation process. In our representation, users can easily edit light direction, intensity, number, etc. to impact shading while providing rich, complex reflections while seamlessly blending with the edits. Furthermore, our method encompasses indoor and outdoor environments, demonstrating state-of-the-art results even when compared to domain-specific methods.
Flying with Photons: Rendering Novel Views of Propagating Light
We present an imaging and neural rendering technique that seeks to synthesize videos of light propagating through a scene from novel, moving camera viewpoints. Our approach relies on a new ultrafast imaging setup to capture a first-of-its kind, multi-viewpoint video dataset with picosecond-level temporal resolution. Combined with this dataset, we introduce an efficient neural volume rendering framework based on the transient field. This field is defined as a mapping from a 3D point and 2D direction to a high-dimensional, discrete-time signal that represents time-varying radiance at ultrafast timescales. Rendering with transient fields naturally accounts for effects due to the finite speed of light, including viewpoint-dependent appearance changes caused by light propagation delays to the camera. We render a range of complex effects, including scattering, specular reflection, refraction, and diffraction. Additionally, we demonstrate removing viewpoint-dependent propagation delays using a time warping procedure, rendering of relativistic effects, and video synthesis of direct and global components of light transport.
Diffuse to Choose: Enriching Image Conditioned Inpainting in Latent Diffusion Models for Virtual Try-All
As online shopping is growing, the ability for buyers to virtually visualize products in their settings-a phenomenon we define as "Virtual Try-All"-has become crucial. Recent diffusion models inherently contain a world model, rendering them suitable for this task within an inpainting context. However, traditional image-conditioned diffusion models often fail to capture the fine-grained details of products. In contrast, personalization-driven models such as DreamPaint are good at preserving the item's details but they are not optimized for real-time applications. We present "Diffuse to Choose," a novel diffusion-based image-conditioned inpainting model that efficiently balances fast inference with the retention of high-fidelity details in a given reference item while ensuring accurate semantic manipulations in the given scene content. Our approach is based on incorporating fine-grained features from the reference image directly into the latent feature maps of the main diffusion model, alongside with a perceptual loss to further preserve the reference item's details. We conduct extensive testing on both in-house and publicly available datasets, and show that Diffuse to Choose is superior to existing zero-shot diffusion inpainting methods as well as few-shot diffusion personalization algorithms like DreamPaint.
Relighting Neural Radiance Fields with Shadow and Highlight Hints
This paper presents a novel neural implicit radiance representation for free viewpoint relighting from a small set of unstructured photographs of an object lit by a moving point light source different from the view position. We express the shape as a signed distance function modeled by a multi layer perceptron. In contrast to prior relightable implicit neural representations, we do not disentangle the different reflectance components, but model both the local and global reflectance at each point by a second multi layer perceptron that, in addition, to density features, the current position, the normal (from the signed distace function), view direction, and light position, also takes shadow and highlight hints to aid the network in modeling the corresponding high frequency light transport effects. These hints are provided as a suggestion, and we leave it up to the network to decide how to incorporate these in the final relit result. We demonstrate and validate our neural implicit representation on synthetic and real scenes exhibiting a wide variety of shapes, material properties, and global illumination light transport.
OpenRR-1k: A Scalable Dataset for Real-World Reflection Removal
Reflection removal technology plays a crucial role in photography and computer vision applications. However, existing techniques are hindered by the lack of high-quality in-the-wild datasets. In this paper, we propose a novel paradigm for collecting reflection datasets from a fresh perspective. Our approach is convenient, cost-effective, and scalable, while ensuring that the collected data pairs are of high quality, perfectly aligned, and represent natural and diverse scenarios. Following this paradigm, we collect a Real-world, Diverse, and Pixel-aligned dataset (named OpenRR-1k dataset), which contains 1,000 high-quality transmission-reflection image pairs collected in the wild. Through the analysis of several reflection removal methods and benchmark evaluation experiments on our dataset, we demonstrate its effectiveness in improving robustness in challenging real-world environments. Our dataset is available at https://github.com/caijie0620/OpenRR-1k.
Merging and Splitting Diffusion Paths for Semantically Coherent Panoramas
Diffusion models have become the State-of-the-Art for text-to-image generation, and increasing research effort has been dedicated to adapting the inference process of pretrained diffusion models to achieve zero-shot capabilities. An example is the generation of panorama images, which has been tackled in recent works by combining independent diffusion paths over overlapping latent features, which is referred to as joint diffusion, obtaining perceptually aligned panoramas. However, these methods often yield semantically incoherent outputs and trade-off diversity for uniformity. To overcome this limitation, we propose the Merge-Attend-Diffuse operator, which can be plugged into different types of pretrained diffusion models used in a joint diffusion setting to improve the perceptual and semantical coherence of the generated panorama images. Specifically, we merge the diffusion paths, reprogramming self- and cross-attention to operate on the aggregated latent space. Extensive quantitative and qualitative experimental analysis, together with a user study, demonstrate that our method maintains compatibility with the input prompt and visual quality of the generated images while increasing their semantic coherence. We release the code at https://github.com/aimagelab/MAD.
UltrAvatar: A Realistic Animatable 3D Avatar Diffusion Model with Authenticity Guided Textures
Recent advances in 3D avatar generation have gained significant attentions. These breakthroughs aim to produce more realistic animatable avatars, narrowing the gap between virtual and real-world experiences. Most of existing works employ Score Distillation Sampling (SDS) loss, combined with a differentiable renderer and text condition, to guide a diffusion model in generating 3D avatars. However, SDS often generates oversmoothed results with few facial details, thereby lacking the diversity compared with ancestral sampling. On the other hand, other works generate 3D avatar from a single image, where the challenges of unwanted lighting effects, perspective views, and inferior image quality make them difficult to reliably reconstruct the 3D face meshes with the aligned complete textures. In this paper, we propose a novel 3D avatar generation approach termed UltrAvatar with enhanced fidelity of geometry, and superior quality of physically based rendering (PBR) textures without unwanted lighting. To this end, the proposed approach presents a diffuse color extraction model and an authenticity guided texture diffusion model. The former removes the unwanted lighting effects to reveal true diffuse colors so that the generated avatars can be rendered under various lighting conditions. The latter follows two gradient-based guidances for generating PBR textures to render diverse face-identity features and details better aligning with 3D mesh geometry. We demonstrate the effectiveness and robustness of the proposed method, outperforming the state-of-the-art methods by a large margin in the experiments.
Looking Through the Glass: Neural Surface Reconstruction Against High Specular Reflections
Neural implicit methods have achieved high-quality 3D object surfaces under slight specular highlights. However, high specular reflections (HSR) often appear in front of target objects when we capture them through glasses. The complex ambiguity in these scenes violates the multi-view consistency, then makes it challenging for recent methods to reconstruct target objects correctly. To remedy this issue, we present a novel surface reconstruction framework, NeuS-HSR, based on implicit neural rendering. In NeuS-HSR, the object surface is parameterized as an implicit signed distance function (SDF). To reduce the interference of HSR, we propose decomposing the rendered image into two appearances: the target object and the auxiliary plane. We design a novel auxiliary plane module by combining physical assumptions and neural networks to generate the auxiliary plane appearance. Extensive experiments on synthetic and real-world datasets demonstrate that NeuS-HSR outperforms state-of-the-art approaches for accurate and robust target surface reconstruction against HSR. Code is available at https://github.com/JiaxiongQ/NeuS-HSR.
Factorized Inverse Path Tracing for Efficient and Accurate Material-Lighting Estimation
Inverse path tracing has recently been applied to joint material and lighting estimation, given geometry and multi-view HDR observations of an indoor scene. However, it has two major limitations: path tracing is expensive to compute, and ambiguities exist between reflection and emission. Our Factorized Inverse Path Tracing (FIPT) addresses these challenges by using a factored light transport formulation and finds emitters driven by rendering errors. Our algorithm enables accurate material and lighting optimization faster than previous work, and is more effective at resolving ambiguities. The exhaustive experiments on synthetic scenes show that our method (1) outperforms state-of-the-art indoor inverse rendering and relighting methods particularly in the presence of complex illumination effects; (2) speeds up inverse path tracing optimization to less than an hour. We further demonstrate robustness to noisy inputs through material and lighting estimates that allow plausible relighting in a real scene. The source code is available at: https://github.com/lwwu2/fipt
Boosting 3D Object Generation through PBR Materials
Automatic 3D content creation has gained increasing attention recently, due to its potential in various applications such as video games, film industry, and AR/VR. Recent advancements in diffusion models and multimodal models have notably improved the quality and efficiency of 3D object generation given a single RGB image. However, 3D objects generated even by state-of-the-art methods are still unsatisfactory compared to human-created assets. Considering only textures instead of materials makes these methods encounter challenges in photo-realistic rendering, relighting, and flexible appearance editing. And they also suffer from severe misalignment between geometry and high-frequency texture details. In this work, we propose a novel approach to boost the quality of generated 3D objects from the perspective of Physics-Based Rendering (PBR) materials. By analyzing the components of PBR materials, we choose to consider albedo, roughness, metalness, and bump maps. For albedo and bump maps, we leverage Stable Diffusion fine-tuned on synthetic data to extract these values, with novel usages of these fine-tuned models to obtain 3D consistent albedo UV and bump UV for generated objects. In terms of roughness and metalness maps, we adopt a semi-automatic process to provide room for interactive adjustment, which we believe is more practical. Extensive experiments demonstrate that our model is generally beneficial for various state-of-the-art generation methods, significantly boosting the quality and realism of their generated 3D objects, with natural relighting effects and substantially improved geometry.
LightSwitch: Multi-view Relighting with Material-guided Diffusion
Recent approaches for 3D relighting have shown promise in integrating 2D image relighting generative priors to alter the appearance of a 3D representation while preserving the underlying structure. Nevertheless, generative priors used for 2D relighting that directly relight from an input image do not take advantage of intrinsic properties of the subject that can be inferred or cannot consider multi-view data at scale, leading to subpar relighting. In this paper, we propose Lightswitch, a novel finetuned material-relighting diffusion framework that efficiently relights an arbitrary number of input images to a target lighting condition while incorporating cues from inferred intrinsic properties. By using multi-view and material information cues together with a scalable denoising scheme, our method consistently and efficiently relights dense multi-view data of objects with diverse material compositions. We show that our 2D relighting prediction quality exceeds previous state-of-the-art relighting priors that directly relight from images. We further demonstrate that LightSwitch matches or outperforms state-of-the-art diffusion inverse rendering methods in relighting synthetic and real objects in as little as 2 minutes.
DiffusionLight: Light Probes for Free by Painting a Chrome Ball
We present a simple yet effective technique to estimate lighting in a single input image. Current techniques rely heavily on HDR panorama datasets to train neural networks to regress an input with limited field-of-view to a full environment map. However, these approaches often struggle with real-world, uncontrolled settings due to the limited diversity and size of their datasets. To address this problem, we leverage diffusion models trained on billions of standard images to render a chrome ball into the input image. Despite its simplicity, this task remains challenging: the diffusion models often insert incorrect or inconsistent objects and cannot readily generate images in HDR format. Our research uncovers a surprising relationship between the appearance of chrome balls and the initial diffusion noise map, which we utilize to consistently generate high-quality chrome balls. We further fine-tune an LDR difusion model (Stable Diffusion XL) with LoRA, enabling it to perform exposure bracketing for HDR light estimation. Our method produces convincing light estimates across diverse settings and demonstrates superior generalization to in-the-wild scenarios.
UnMix-NeRF: Spectral Unmixing Meets Neural Radiance Fields
Neural Radiance Field (NeRF)-based segmentation methods focus on object semantics and rely solely on RGB data, lacking intrinsic material properties. This limitation restricts accurate material perception, which is crucial for robotics, augmented reality, simulation, and other applications. We introduce UnMix-NeRF, a framework that integrates spectral unmixing into NeRF, enabling joint hyperspectral novel view synthesis and unsupervised material segmentation. Our method models spectral reflectance via diffuse and specular components, where a learned dictionary of global endmembers represents pure material signatures, and per-point abundances capture their distribution. For material segmentation, we use spectral signature predictions along learned endmembers, allowing unsupervised material clustering. Additionally, UnMix-NeRF enables scene editing by modifying learned endmember dictionaries for flexible material-based appearance manipulation. Extensive experiments validate our approach, demonstrating superior spectral reconstruction and material segmentation to existing methods. Project page: https://www.factral.co/UnMix-NeRF.
Subsurface Scattering for 3D Gaussian Splatting
3D reconstruction and relighting of objects made from scattering materials present a significant challenge due to the complex light transport beneath the surface. 3D Gaussian Splatting introduced high-quality novel view synthesis at real-time speeds. While 3D Gaussians efficiently approximate an object's surface, they fail to capture the volumetric properties of subsurface scattering. We propose a framework for optimizing an object's shape together with the radiance transfer field given multi-view OLAT (one light at a time) data. Our method decomposes the scene into an explicit surface represented as 3D Gaussians, with a spatially varying BRDF, and an implicit volumetric representation of the scattering component. A learned incident light field accounts for shadowing. We optimize all parameters jointly via ray-traced differentiable rendering. Our approach enables material editing, relighting and novel view synthesis at interactive rates. We show successful application on synthetic data and introduce a newly acquired multi-view multi-light dataset of objects in a light-stage setup. Compared to previous work we achieve comparable or better results at a fraction of optimization and rendering time while enabling detailed control over material attributes. Project page https://sss.jdihlmann.com/
GS^3: Efficient Relighting with Triple Gaussian Splatting
We present a spatial and angular Gaussian based representation and a triple splatting process, for real-time, high-quality novel lighting-and-view synthesis from multi-view point-lit input images. To describe complex appearance, we employ a Lambertian plus a mixture of angular Gaussians as an effective reflectance function for each spatial Gaussian. To generate self-shadow, we splat all spatial Gaussians towards the light source to obtain shadow values, which are further refined by a small multi-layer perceptron. To compensate for other effects like global illumination, another network is trained to compute and add a per-spatial-Gaussian RGB tuple. The effectiveness of our representation is demonstrated on 30 samples with a wide variation in geometry (from solid to fluffy) and appearance (from translucent to anisotropic), as well as using different forms of input data, including rendered images of synthetic/reconstructed objects, photographs captured with a handheld camera and a flash, or from a professional lightstage. We achieve a training time of 40-70 minutes and a rendering speed of 90 fps on a single commodity GPU. Our results compare favorably with state-of-the-art techniques in terms of quality/performance. Our code and data are publicly available at https://GSrelight.github.io/.
PrimeComposer: Faster Progressively Combined Diffusion for Image Composition with Attention Steering
Image composition involves seamlessly integrating given objects into a specific visual context. Current training-free methods rely on composing attention weights from several samplers to guide the generator. However, since these weights are derived from disparate contexts, their combination leads to coherence confusion and loss of appearance information. These issues worsen with their excessive focus on background generation, even when unnecessary in this task. This not only impedes their swift implementation but also compromises foreground generation quality. Moreover, these methods introduce unwanted artifacts in the transition area. In this paper, we formulate image composition as a subject-based local editing task, solely focusing on foreground generation. At each step, the edited foreground is combined with the noisy background to maintain scene consistency. To address the remaining issues, we propose PrimeComposer, a faster training-free diffuser that composites the images by well-designed attention steering across different noise levels. This steering is predominantly achieved by our Correlation Diffuser, utilizing its self-attention layers at each step. Within these layers, the synthesized subject interacts with both the referenced object and background, capturing intricate details and coherent relationships. This prior information is encoded into the attention weights, which are then integrated into the self-attention layers of the generator to guide the synthesis process. Besides, we introduce a Region-constrained Cross-Attention to confine the impact of specific subject-related tokens to desired regions, addressing the unwanted artifacts shown in the prior method thereby further improving the coherence in the transition area. Our method exhibits the fastest inference efficiency and extensive experiments demonstrate our superiority both qualitatively and quantitatively.
LumiNet: Latent Intrinsics Meets Diffusion Models for Indoor Scene Relighting
We introduce LumiNet, a novel architecture that leverages generative models and latent intrinsic representations for effective lighting transfer. Given a source image and a target lighting image, LumiNet synthesizes a relit version of the source scene that captures the target's lighting. Our approach makes two key contributions: a data curation strategy from the StyleGAN-based relighting model for our training, and a modified diffusion-based ControlNet that processes both latent intrinsic properties from the source image and latent extrinsic properties from the target image. We further improve lighting transfer through a learned adaptor (MLP) that injects the target's latent extrinsic properties via cross-attention and fine-tuning. Unlike traditional ControlNet, which generates images with conditional maps from a single scene, LumiNet processes latent representations from two different images - preserving geometry and albedo from the source while transferring lighting characteristics from the target. Experiments demonstrate that our method successfully transfers complex lighting phenomena including specular highlights and indirect illumination across scenes with varying spatial layouts and materials, outperforming existing approaches on challenging indoor scenes using only images as input.
NeRD: Neural Reflectance Decomposition from Image Collections
Decomposing a scene into its shape, reflectance, and illumination is a challenging but important problem in computer vision and graphics. This problem is inherently more challenging when the illumination is not a single light source under laboratory conditions but is instead an unconstrained environmental illumination. Though recent work has shown that implicit representations can be used to model the radiance field of an object, most of these techniques only enable view synthesis and not relighting. Additionally, evaluating these radiance fields is resource and time-intensive. We propose a neural reflectance decomposition (NeRD) technique that uses physically-based rendering to decompose the scene into spatially varying BRDF material properties. In contrast to existing techniques, our input images can be captured under different illumination conditions. In addition, we also propose techniques to convert the learned reflectance volume into a relightable textured mesh enabling fast real-time rendering with novel illuminations. We demonstrate the potential of the proposed approach with experiments on both synthetic and real datasets, where we are able to obtain high-quality relightable 3D assets from image collections. The datasets and code is available on the project page: https://markboss.me/publication/2021-nerd/
IllumiCraft: Unified Geometry and Illumination Diffusion for Controllable Video Generation
Although diffusion-based models can generate high-quality and high-resolution video sequences from textual or image inputs, they lack explicit integration of geometric cues when controlling scene lighting and visual appearance across frames. To address this limitation, we propose IllumiCraft, an end-to-end diffusion framework accepting three complementary inputs: (1) high-dynamic-range (HDR) video maps for detailed lighting control; (2) synthetically relit frames with randomized illumination changes (optionally paired with a static background reference image) to provide appearance cues; and (3) 3D point tracks that capture precise 3D geometry information. By integrating the lighting, appearance, and geometry cues within a unified diffusion architecture, IllumiCraft generates temporally coherent videos aligned with user-defined prompts. It supports background-conditioned and text-conditioned video relighting and provides better fidelity than existing controllable video generation methods. Project Page: https://yuanze-lin.me/IllumiCraft_page
Mixture of Diffusers for scene composition and high resolution image generation
Diffusion methods have been proven to be very effective to generate images while conditioning on a text prompt. However, and although the quality of the generated images is unprecedented, these methods seem to struggle when trying to generate specific image compositions. In this paper we present Mixture of Diffusers, an algorithm that builds over existing diffusion models to provide a more detailed control over composition. By harmonizing several diffusion processes acting on different regions of a canvas, it allows generating larger images, where the location of each object and style is controlled by a separate diffusion process.
RelightVid: Temporal-Consistent Diffusion Model for Video Relighting
Diffusion models have demonstrated remarkable success in image generation and editing, with recent advancements enabling albedo-preserving image relighting. However, applying these models to video relighting remains challenging due to the lack of paired video relighting datasets and the high demands for output fidelity and temporal consistency, further complicated by the inherent randomness of diffusion models. To address these challenges, we introduce RelightVid, a flexible framework for video relighting that can accept background video, text prompts, or environment maps as relighting conditions. Trained on in-the-wild videos with carefully designed illumination augmentations and rendered videos under extreme dynamic lighting, RelightVid achieves arbitrary video relighting with high temporal consistency without intrinsic decomposition while preserving the illumination priors of its image backbone.
Mirror-NeRF: Learning Neural Radiance Fields for Mirrors with Whitted-Style Ray Tracing
Recently, Neural Radiance Fields (NeRF) has exhibited significant success in novel view synthesis, surface reconstruction, etc. However, since no physical reflection is considered in its rendering pipeline, NeRF mistakes the reflection in the mirror as a separate virtual scene, leading to the inaccurate reconstruction of the mirror and multi-view inconsistent reflections in the mirror. In this paper, we present a novel neural rendering framework, named Mirror-NeRF, which is able to learn accurate geometry and reflection of the mirror and support various scene manipulation applications with mirrors, such as adding new objects or mirrors into the scene and synthesizing the reflections of these new objects in mirrors, controlling mirror roughness, etc. To achieve this goal, we propose a unified radiance field by introducing the reflection probability and tracing rays following the light transport model of Whitted Ray Tracing, and also develop several techniques to facilitate the learning process. Experiments and comparisons on both synthetic and real datasets demonstrate the superiority of our method. The code and supplementary material are available on the project webpage: https://zju3dv.github.io/Mirror-NeRF/.
Natural scene reconstruction from fMRI signals using generative latent diffusion
In neural decoding research, one of the most intriguing topics is the reconstruction of perceived natural images based on fMRI signals. Previous studies have succeeded in re-creating different aspects of the visuals, such as low-level properties (shape, texture, layout) or high-level features (category of objects, descriptive semantics of scenes) but have typically failed to reconstruct these properties together for complex scene images. Generative AI has recently made a leap forward with latent diffusion models capable of generating high-complexity images. Here, we investigate how to take advantage of this innovative technology for brain decoding. We present a two-stage scene reconstruction framework called ``Brain-Diffuser''. In the first stage, starting from fMRI signals, we reconstruct images that capture low-level properties and overall layout using a VDVAE (Very Deep Variational Autoencoder) model. In the second stage, we use the image-to-image framework of a latent diffusion model (Versatile Diffusion) conditioned on predicted multimodal (text and visual) features, to generate final reconstructed images. On the publicly available Natural Scenes Dataset benchmark, our method outperforms previous models both qualitatively and quantitatively. When applied to synthetic fMRI patterns generated from individual ROI (region-of-interest) masks, our trained model creates compelling ``ROI-optimal'' scenes consistent with neuroscientific knowledge. Thus, the proposed methodology can have an impact on both applied (e.g. brain-computer interface) and fundamental neuroscience.
DiffLLE: Diffusion-guided Domain Calibration for Unsupervised Low-light Image Enhancement
Existing unsupervised low-light image enhancement methods lack enough effectiveness and generalization in practical applications. We suppose this is because of the absence of explicit supervision and the inherent gap between real-world scenarios and the training data domain. In this paper, we develop Diffusion-based domain calibration to realize more robust and effective unsupervised Low-Light Enhancement, called DiffLLE. Since the diffusion model performs impressive denoising capability and has been trained on massive clean images, we adopt it to bridge the gap between the real low-light domain and training degradation domain, while providing efficient priors of real-world content for unsupervised models. Specifically, we adopt a naive unsupervised enhancement algorithm to realize preliminary restoration and design two zero-shot plug-and-play modules based on diffusion model to improve generalization and effectiveness. The Diffusion-guided Degradation Calibration (DDC) module narrows the gap between real-world and training low-light degradation through diffusion-based domain calibration and a lightness enhancement curve, which makes the enhancement model perform robustly even in sophisticated wild degradation. Due to the limited enhancement effect of the unsupervised model, we further develop the Fine-grained Target domain Distillation (FTD) module to find a more visual-friendly solution space. It exploits the priors of the pre-trained diffusion model to generate pseudo-references, which shrinks the preliminary restored results from a coarse normal-light domain to a finer high-quality clean field, addressing the lack of strong explicit supervision for unsupervised methods. Benefiting from these, our approach even outperforms some supervised methods by using only a simple unsupervised baseline. Extensive experiments demonstrate the superior effectiveness of the proposed DiffLLE.
Dehazing Ultrasound using Diffusion Models
Echocardiography has been a prominent tool for the diagnosis of cardiac disease. However, these diagnoses can be heavily impeded by poor image quality. Acoustic clutter emerges due to multipath reflections imposed by layers of skin, subcutaneous fat, and intercostal muscle between the transducer and heart. As a result, haze and other noise artifacts pose a real challenge to cardiac ultrasound imaging. In many cases, especially with difficult-to-image patients such as patients with obesity, a diagnosis from B-Mode ultrasound imaging is effectively rendered unusable, forcing sonographers to resort to contrast-enhanced ultrasound examinations or refer patients to other imaging modalities. Tissue harmonic imaging has been a popular approach to combat haze, but in severe cases is still heavily impacted by haze. Alternatively, denoising algorithms are typically unable to remove highly structured and correlated noise, such as haze. It remains a challenge to accurately describe the statistical properties of structured haze, and develop an inference method to subsequently remove it. Diffusion models have emerged as powerful generative models and have shown their effectiveness in a variety of inverse problems. In this work, we present a joint posterior sampling framework that combines two separate diffusion models to model the distribution of both clean ultrasound and haze in an unsupervised manner. Furthermore, we demonstrate techniques for effectively training diffusion models on radio-frequency ultrasound data and highlight the advantages over image data. Experiments on both in-vitro and in-vivo cardiac datasets show that the proposed dehazing method effectively removes haze while preserving signals from weakly reflected tissue.
Reversible Decoupling Network for Single Image Reflection Removal
Recent deep-learning-based approaches to single-image reflection removal have shown promising advances, primarily for two reasons: 1) the utilization of recognition-pretrained features as inputs, and 2) the design of dual-stream interaction networks. However, according to the Information Bottleneck principle, high-level semantic clues tend to be compressed or discarded during layer-by-layer propagation. Additionally, interactions in dual-stream networks follow a fixed pattern across different layers, limiting overall performance. To address these limitations, we propose a novel architecture called Reversible Decoupling Network (RDNet), which employs a reversible encoder to secure valuable information while flexibly decoupling transmission- and reflection-relevant features during the forward pass. Furthermore, we customize a transmission-rate-aware prompt generator to dynamically calibrate features, further boosting performance. Extensive experiments demonstrate the superiority of RDNet over existing SOTA methods on five widely-adopted benchmark datasets. Our code will be made publicly available.
Controlling the Latent Diffusion Model for Generative Image Shadow Removal via Residual Generation
Large-scale generative models have achieved remarkable advancements in various visual tasks, yet their application to shadow removal in images remains challenging. These models often generate diverse, realistic details without adequate focus on fidelity, failing to meet the crucial requirements of shadow removal, which necessitates precise preservation of image content. In contrast to prior approaches that aimed to regenerate shadow-free images from scratch, this paper utilizes diffusion models to generate and refine image residuals. This strategy fully uses the inherent detailed information within shadowed images, resulting in a more efficient and faithful reconstruction of shadow-free content. Additionally, to revent the accumulation of errors during the generation process, a crosstimestep self-enhancement training strategy is proposed. This strategy leverages the network itself to augment the training data, not only increasing the volume of data but also enabling the network to dynamically correct its generation trajectory, ensuring a more accurate and robust output. In addition, to address the loss of original details in the process of image encoding and decoding of large generative models, a content-preserved encoder-decoder structure is designed with a control mechanism and multi-scale skip connections to achieve high-fidelity shadow-free image reconstruction. Experimental results demonstrate that the proposed method can reproduce high-quality results based on a large latent diffusion prior and faithfully preserve the original contents in shadow regions.
DiffBIR: Towards Blind Image Restoration with Generative Diffusion Prior
We present DiffBIR, which leverages pretrained text-to-image diffusion models for blind image restoration problem. Our framework adopts a two-stage pipeline. In the first stage, we pretrain a restoration module across diversified degradations to improve generalization capability in real-world scenarios. The second stage leverages the generative ability of latent diffusion models, to achieve realistic image restoration. Specifically, we introduce an injective modulation sub-network -- LAControlNet for finetuning, while the pre-trained Stable Diffusion is to maintain its generative ability. Finally, we introduce a controllable module that allows users to balance quality and fidelity by introducing the latent image guidance in the denoising process during inference. Extensive experiments have demonstrated its superiority over state-of-the-art approaches for both blind image super-resolution and blind face restoration tasks on synthetic and real-world datasets. The code is available at https://github.com/XPixelGroup/DiffBIR.
Neural-PIL: Neural Pre-Integrated Lighting for Reflectance Decomposition
Decomposing a scene into its shape, reflectance and illumination is a fundamental problem in computer vision and graphics. Neural approaches such as NeRF have achieved remarkable success in view synthesis, but do not explicitly perform decomposition and instead operate exclusively on radiance (the product of reflectance and illumination). Extensions to NeRF, such as NeRD, can perform decomposition but struggle to accurately recover detailed illumination, thereby significantly limiting realism. We propose a novel reflectance decomposition network that can estimate shape, BRDF, and per-image illumination given a set of object images captured under varying illumination. Our key technique is a novel illumination integration network called Neural-PIL that replaces a costly illumination integral operation in the rendering with a simple network query. In addition, we also learn deep low-dimensional priors on BRDF and illumination representations using novel smooth manifold auto-encoders. Our decompositions can result in considerably better BRDF and light estimates enabling more accurate novel view-synthesis and relighting compared to prior art. Project page: https://markboss.me/publication/2021-neural-pil/
Facial Appearance Capture at Home with Patch-Level Reflectance Prior
Existing facial appearance capture methods can reconstruct plausible facial reflectance from smartphone-recorded videos. However, the reconstruction quality is still far behind the ones based on studio recordings. This paper fills the gap by developing a novel daily-used solution with a co-located smartphone and flashlight video capture setting in a dim room. To enhance the quality, our key observation is to solve facial reflectance maps within the data distribution of studio-scanned ones. Specifically, we first learn a diffusion prior over the Light Stage scans and then steer it to produce the reflectance map that best matches the captured images. We propose to train the diffusion prior at the patch level to improve generalization ability and training stability, as current Light Stage datasets are in ultra-high resolution but limited in data size. Tailored to this prior, we propose a patch-level posterior sampling technique to sample seamless full-resolution reflectance maps from this patch-level diffusion model. Experiments demonstrate our method closes the quality gap between low-cost and studio recordings by a large margin, opening the door for everyday users to clone themselves to the digital world. Our code will be released at https://github.com/yxuhan/DoRA.
Scene relighting with illumination estimation in the latent space on an encoder-decoder scheme
The image relighting task of transferring illumination conditions between two images offers an interesting and difficult challenge with potential applications in photography, cinematography and computer graphics. In this report we present methods that we tried to achieve that goal. Our models are trained on a rendered dataset of artificial locations with varied scene content, light source location and color temperature. With this dataset, we used a network with illumination estimation component aiming to infer and replace light conditions in the latent space representation of the concerned scenes.
Controllable Shadow Generation with Single-Step Diffusion Models from Synthetic Data
Realistic shadow generation is a critical component for high-quality image compositing and visual effects, yet existing methods suffer from certain limitations: Physics-based approaches require a 3D scene geometry, which is often unavailable, while learning-based techniques struggle with control and visual artifacts. We introduce a novel method for fast, controllable, and background-free shadow generation for 2D object images. We create a large synthetic dataset using a 3D rendering engine to train a diffusion model for controllable shadow generation, generating shadow maps for diverse light source parameters. Through extensive ablation studies, we find that rectified flow objective achieves high-quality results with just a single sampling step enabling real-time applications. Furthermore, our experiments demonstrate that the model generalizes well to real-world images. To facilitate further research in evaluating quality and controllability in shadow generation, we release a new public benchmark containing a diverse set of object images and shadow maps in various settings. The project page is available at https://gojasper.github.io/controllable-shadow-generation-project/
ENVIDR: Implicit Differentiable Renderer with Neural Environment Lighting
Recent advances in neural rendering have shown great potential for reconstructing scenes from multiview images. However, accurately representing objects with glossy surfaces remains a challenge for existing methods. In this work, we introduce ENVIDR, a rendering and modeling framework for high-quality rendering and reconstruction of surfaces with challenging specular reflections. To achieve this, we first propose a novel neural renderer with decomposed rendering components to learn the interaction between surface and environment lighting. This renderer is trained using existing physically based renderers and is decoupled from actual scene representations. We then propose an SDF-based neural surface model that leverages this learned neural renderer to represent general scenes. Our model additionally synthesizes indirect illuminations caused by inter-reflections from shiny surfaces by marching surface-reflected rays. We demonstrate that our method outperforms state-of-art methods on challenging shiny scenes, providing high-quality rendering of specular reflections while also enabling material editing and scene relighting.
Weak localization in radiative transfer of acoustic waves in a randomly-fluctuating slab
This paper concerns the derivation of radiative transfer equations for acoustic waves propagating in a randomly fluctuating slab (between two parallel planes) in the weak-scattering regime, and the study of boundary effects through an asymptotic analysis of the Wigner transform of the wave solution. These radiative transfer equations allow to model the transport of wave energy density, taking into account the scattering by random heterogeneities. The approach builds on the method of images, where the slab is extended to a full-space, with a periodic map of mechanical properties and a series of sources located along a periodic pattern. Two types of boundary effects, both on the (small) scale of the wavelength, are observed: one at the boundaries of the slab, and one inside the domain. The former impact the entire energy density (coherent as well as incoherent) and is also observed in half-spaces. The latter, more specific to slabs, corresponds to the constructive interference of waves that have reflected at least twice on the boundaries of the slab and only impacts the coherent part of the energy density.
Light Transport-aware Diffusion Posterior Sampling for Single-View Reconstruction of 3D Volumes
We introduce a single-view reconstruction technique of volumetric fields in which multiple light scattering effects are omnipresent, such as in clouds. We model the unknown distribution of volumetric fields using an unconditional diffusion model trained on a novel benchmark dataset comprising 1,000 synthetically simulated volumetric density fields. The neural diffusion model is trained on the latent codes of a novel, diffusion-friendly, monoplanar representation. The generative model is used to incorporate a tailored parametric diffusion posterior sampling technique into different reconstruction tasks. A physically-based differentiable volume renderer is employed to provide gradients with respect to light transport in the latent space. This stands in contrast to classic NeRF approaches and makes the reconstructions better aligned with observed data. Through various experiments, we demonstrate single-view reconstruction of volumetric clouds at a previously unattainable quality.
GenDeg: Diffusion-Based Degradation Synthesis for Generalizable All-in-One Image Restoration
Deep learning-based models for All-In-One Image Restoration (AIOR) have achieved significant advancements in recent years. However, their practical applicability is limited by poor generalization to samples outside the training distribution. This limitation arises primarily from insufficient diversity in degradation variations and scenes within existing datasets, resulting in inadequate representations of real-world scenarios. Additionally, capturing large-scale real-world paired data for degradations such as haze, low-light, and raindrops is often cumbersome and sometimes infeasible. In this paper, we leverage the generative capabilities of latent diffusion models to synthesize high-quality degraded images from their clean counterparts. Specifically, we introduce GenDeg, a degradation and intensity-aware conditional diffusion model capable of producing diverse degradation patterns on clean images. Using GenDeg, we synthesize over 550k samples across six degradation types: haze, rain, snow, motion blur, low-light, and raindrops. These generated samples are integrated with existing datasets to form the GenDS dataset, comprising over 750k samples. Our experiments reveal that image restoration models trained on the GenDS dataset exhibit significant improvements in out-of-distribution performance compared to those trained solely on existing datasets. Furthermore, we provide comprehensive analyses on the implications of diffusion model-based synthetic degradations for AIOR. The code will be made publicly available.
Recasting Regional Lighting for Shadow Removal
Removing shadows requires an understanding of both lighting conditions and object textures in a scene. Existing methods typically learn pixel-level color mappings between shadow and non-shadow images, in which the joint modeling of lighting and object textures is implicit and inadequate. We observe that in a shadow region, the degradation degree of object textures depends on the local illumination, while simply enhancing the local illumination cannot fully recover the attenuated textures. Based on this observation, we propose to condition the restoration of attenuated textures on the corrected local lighting in the shadow region. Specifically, We first design a shadow-aware decomposition network to estimate the illumination and reflectance layers of shadow regions explicitly. We then propose a novel bilateral correction network to recast the lighting of shadow regions in the illumination layer via a novel local lighting correction module, and to restore the textures conditioned on the corrected illumination layer via a novel illumination-guided texture restoration module. We further annotate pixel-wise shadow masks for the public SRD dataset, which originally contains only image pairs. Experiments on three benchmarks show that our method outperforms existing state-of-the-art shadow removal methods.
From Reflection to Perfection: Scaling Inference-Time Optimization for Text-to-Image Diffusion Models via Reflection Tuning
Recent text-to-image diffusion models achieve impressive visual quality through extensive scaling of training data and model parameters, yet they often struggle with complex scenes and fine-grained details. Inspired by the self-reflection capabilities emergent in large language models, we propose ReflectionFlow, an inference-time framework enabling diffusion models to iteratively reflect upon and refine their outputs. ReflectionFlow introduces three complementary inference-time scaling axes: (1) noise-level scaling to optimize latent initialization; (2) prompt-level scaling for precise semantic guidance; and most notably, (3) reflection-level scaling, which explicitly provides actionable reflections to iteratively assess and correct previous generations. To facilitate reflection-level scaling, we construct GenRef, a large-scale dataset comprising 1 million triplets, each containing a reflection, a flawed image, and an enhanced image. Leveraging this dataset, we efficiently perform reflection tuning on state-of-the-art diffusion transformer, FLUX.1-dev, by jointly modeling multimodal inputs within a unified framework. Experimental results show that ReflectionFlow significantly outperforms naive noise-level scaling methods, offering a scalable and compute-efficient solution toward higher-quality image synthesis on challenging tasks.
DiffuMural: Restoring Dunhuang Murals with Multi-scale Diffusion
Large-scale pre-trained diffusion models have produced excellent results in the field of conditional image generation. However, restoration of ancient murals, as an important downstream task in this field, poses significant challenges to diffusion model-based restoration methods due to its large defective area and scarce training samples. Conditional restoration tasks are more concerned with whether the restored part meets the aesthetic standards of mural restoration in terms of overall style and seam detail, and such metrics for evaluating heuristic image complements are lacking in current research. We therefore propose DiffuMural, a combined Multi-scale convergence and Collaborative Diffusion mechanism with ControlNet and cyclic consistency loss to optimise the matching between the generated images and the conditional control. DiffuMural demonstrates outstanding capabilities in mural restoration, leveraging training data from 23 large-scale Dunhuang murals that exhibit consistent visual aesthetics. The model excels in restoring intricate details, achieving a coherent overall appearance, and addressing the unique challenges posed by incomplete murals lacking factual grounding. Our evaluation framework incorporates four key metrics to quantitatively assess incomplete murals: factual accuracy, textural detail, contextual semantics, and holistic visual coherence. Furthermore, we integrate humanistic value assessments to ensure the restored murals retain their cultural and artistic significance. Extensive experiments validate that our method outperforms state-of-the-art (SOTA) approaches in both qualitative and quantitative metrics.
Light Sampling Field and BRDF Representation for Physically-based Neural Rendering
Physically-based rendering (PBR) is key for immersive rendering effects used widely in the industry to showcase detailed realistic scenes from computer graphics assets. A well-known caveat is that producing the same is computationally heavy and relies on complex capture devices. Inspired by the success in quality and efficiency of recent volumetric neural rendering, we want to develop a physically-based neural shader to eliminate device dependency and significantly boost performance. However, no existing lighting and material models in the current neural rendering approaches can accurately represent the comprehensive lighting models and BRDFs properties required by the PBR process. Thus, this paper proposes a novel lighting representation that models direct and indirect light locally through a light sampling strategy in a learned light sampling field. We also propose BRDF models to separately represent surface/subsurface scattering details to enable complex objects such as translucent material (i.e., skin, jade). We then implement our proposed representations with an end-to-end physically-based neural face skin shader, which takes a standard face asset (i.e., geometry, albedo map, and normal map) and an HDRI for illumination as inputs and generates a photo-realistic rendering as output. Extensive experiments showcase the quality and efficiency of our PBR face skin shader, indicating the effectiveness of our proposed lighting and material representations.
Light Field Diffusion for Single-View Novel View Synthesis
Single-view novel view synthesis, the task of generating images from new viewpoints based on a single reference image, is an important but challenging task in computer vision. Recently, Denoising Diffusion Probabilistic Model (DDPM) has become popular in this area due to its strong ability to generate high-fidelity images. However, current diffusion-based methods directly rely on camera pose matrices as viewing conditions, globally and implicitly introducing 3D constraints. These methods may suffer from inconsistency among generated images from different perspectives, especially in regions with intricate textures and structures. In this work, we present Light Field Diffusion (LFD), a conditional diffusion-based model for single-view novel view synthesis. Unlike previous methods that employ camera pose matrices, LFD transforms the camera view information into light field encoding and combines it with the reference image. This design introduces local pixel-wise constraints within the diffusion models, thereby encouraging better multi-view consistency. Experiments on several datasets show that our LFD can efficiently generate high-fidelity images and maintain better 3D consistency even in intricate regions. Our method can generate images with higher quality than NeRF-based models, and we obtain sample quality similar to other diffusion-based models but with only one-third of the model size.
NeAI: A Pre-convoluted Representation for Plug-and-Play Neural Ambient Illumination
Recent advances in implicit neural representation have demonstrated the ability to recover detailed geometry and material from multi-view images. However, the use of simplified lighting models such as environment maps to represent non-distant illumination, or using a network to fit indirect light modeling without a solid basis, can lead to an undesirable decomposition between lighting and material. To address this, we propose a fully differentiable framework named neural ambient illumination (NeAI) that uses Neural Radiance Fields (NeRF) as a lighting model to handle complex lighting in a physically based way. Together with integral lobe encoding for roughness-adaptive specular lobe and leveraging the pre-convoluted background for accurate decomposition, the proposed method represents a significant step towards integrating physically based rendering into the NeRF representation. The experiments demonstrate the superior performance of novel-view rendering compared to previous works, and the capability to re-render objects under arbitrary NeRF-style environments opens up exciting possibilities for bridging the gap between virtual and real-world scenes. The project and supplementary materials are available at https://yiyuzhuang.github.io/NeAI/.
F-ViTA: Foundation Model Guided Visible to Thermal Translation
Thermal imaging is crucial for scene understanding, particularly in low-light and nighttime conditions. However, collecting large thermal datasets is costly and labor-intensive due to the specialized equipment required for infrared image capture. To address this challenge, researchers have explored visible-to-thermal image translation. Most existing methods rely on Generative Adversarial Networks (GANs) or Diffusion Models (DMs), treating the task as a style transfer problem. As a result, these approaches attempt to learn both the modality distribution shift and underlying physical principles from limited training data. In this paper, we propose F-ViTA, a novel approach that leverages the general world knowledge embedded in foundation models to guide the diffusion process for improved translation. Specifically, we condition an InstructPix2Pix Diffusion Model with zero-shot masks and labels from foundation models such as SAM and Grounded DINO. This allows the model to learn meaningful correlations between scene objects and their thermal signatures in infrared imagery. Extensive experiments on five public datasets demonstrate that F-ViTA outperforms state-of-the-art (SOTA) methods. Furthermore, our model generalizes well to out-of-distribution (OOD) scenarios and can generate Long-Wave Infrared (LWIR), Mid-Wave Infrared (MWIR), and Near-Infrared (NIR) translations from the same visible image. Code: https://github.com/JayParanjape/F-ViTA/tree/master.
DiffuseIR:Diffusion Models For Isotropic Reconstruction of 3D Microscopic Images
Three-dimensional microscopy is often limited by anisotropic spatial resolution, resulting in lower axial resolution than lateral resolution. Current State-of-The-Art (SoTA) isotropic reconstruction methods utilizing deep neural networks can achieve impressive super-resolution performance in fixed imaging settings. However, their generality in practical use is limited by degraded performance caused by artifacts and blurring when facing unseen anisotropic factors. To address these issues, we propose DiffuseIR, an unsupervised method for isotropic reconstruction based on diffusion models. First, we pre-train a diffusion model to learn the structural distribution of biological tissue from lateral microscopic images, resulting in generating naturally high-resolution images. Then we use low-axial-resolution microscopy images to condition the generation process of the diffusion model and generate high-axial-resolution reconstruction results. Since the diffusion model learns the universal structural distribution of biological tissues, which is independent of the axial resolution, DiffuseIR can reconstruct authentic images with unseen low-axial resolutions into a high-axial resolution without requiring re-training. The proposed DiffuseIR achieves SoTA performance in experiments on EM data and can even compete with supervised methods.
Unsupervised Night Image Enhancement: When Layer Decomposition Meets Light-Effects Suppression
Night images suffer not only from low light, but also from uneven distributions of light. Most existing night visibility enhancement methods focus mainly on enhancing low-light regions. This inevitably leads to over enhancement and saturation in bright regions, such as those regions affected by light effects (glare, floodlight, etc). To address this problem, we need to suppress the light effects in bright regions while, at the same time, boosting the intensity of dark regions. With this idea in mind, we introduce an unsupervised method that integrates a layer decomposition network and a light-effects suppression network. Given a single night image as input, our decomposition network learns to decompose shading, reflectance and light-effects layers, guided by unsupervised layer-specific prior losses. Our light-effects suppression network further suppresses the light effects and, at the same time, enhances the illumination in dark regions. This light-effects suppression network exploits the estimated light-effects layer as the guidance to focus on the light-effects regions. To recover the background details and reduce hallucination/artefacts, we propose structure and high-frequency consistency losses. Our quantitative and qualitative evaluations on real images show that our method outperforms state-of-the-art methods in suppressing night light effects and boosting the intensity of dark regions.
Neural LightRig: Unlocking Accurate Object Normal and Material Estimation with Multi-Light Diffusion
Recovering the geometry and materials of objects from a single image is challenging due to its under-constrained nature. In this paper, we present Neural LightRig, a novel framework that boosts intrinsic estimation by leveraging auxiliary multi-lighting conditions from 2D diffusion priors. Specifically, 1) we first leverage illumination priors from large-scale diffusion models to build our multi-light diffusion model on a synthetic relighting dataset with dedicated designs. This diffusion model generates multiple consistent images, each illuminated by point light sources in different directions. 2) By using these varied lighting images to reduce estimation uncertainty, we train a large G-buffer model with a U-Net backbone to accurately predict surface normals and materials. Extensive experiments validate that our approach significantly outperforms state-of-the-art methods, enabling accurate surface normal and PBR material estimation with vivid relighting effects. Code and dataset are available on our project page at https://projects.zxhezexin.com/neural-lightrig.
Taming Latent Diffusion Model for Neural Radiance Field Inpainting
Neural Radiance Field (NeRF) is a representation for 3D reconstruction from multi-view images. Despite some recent work showing preliminary success in editing a reconstructed NeRF with diffusion prior, they remain struggling to synthesize reasonable geometry in completely uncovered regions. One major reason is the high diversity of synthetic contents from the diffusion model, which hinders the radiance field from converging to a crisp and deterministic geometry. Moreover, applying latent diffusion models on real data often yields a textural shift incoherent to the image condition due to auto-encoding errors. These two problems are further reinforced with the use of pixel-distance losses. To address these issues, we propose tempering the diffusion model's stochasticity with per-scene customization and mitigating the textural shift with masked adversarial training. During the analyses, we also found the commonly used pixel and perceptual losses are harmful in the NeRF inpainting task. Through rigorous experiments, our framework yields state-of-the-art NeRF inpainting results on various real-world scenes. Project page: https://hubert0527.github.io/MALD-NeRF
Parametric Shadow Control for Portrait Generation in Text-to-Image Diffusion Models
Text-to-image diffusion models excel at generating diverse portraits, but lack intuitive shadow control. Existing editing approaches, as post-processing, struggle to offer effective manipulation across diverse styles. Additionally, these methods either rely on expensive real-world light-stage data collection or require extensive computational resources for training. To address these limitations, we introduce Shadow Director, a method that extracts and manipulates hidden shadow attributes within well-trained diffusion models. Our approach uses a small estimation network that requires only a few thousand synthetic images and hours of training-no costly real-world light-stage data needed. Shadow Director enables parametric and intuitive control over shadow shape, placement, and intensity during portrait generation while preserving artistic integrity and identity across diverse styles. Despite training only on synthetic data built on real-world identities, it generalizes effectively to generated portraits with diverse styles, making it a more accessible and resource-friendly solution.
Free-Lunch Color-Texture Disentanglement for Stylized Image Generation
Recent advances in Text-to-Image (T2I) diffusion models have transformed image generation, enabling significant progress in stylized generation using only a few style reference images. However, current diffusion-based methods struggle with fine-grained style customization due to challenges in controlling multiple style attributes, such as color and texture. This paper introduces the first tuning-free approach to achieve free-lunch color-texture disentanglement in stylized T2I generation, addressing the need for independently controlled style elements for the Disentangled Stylized Image Generation (DisIG) problem. Our approach leverages the Image-Prompt Additivity property in the CLIP image embedding space to develop techniques for separating and extracting Color-Texture Embeddings (CTE) from individual color and texture reference images. To ensure that the color palette of the generated image aligns closely with the color reference, we apply a whitening and coloring transformation to enhance color consistency. Additionally, to prevent texture loss due to the signal-leak bias inherent in diffusion training, we introduce a noise term that preserves textural fidelity during the Regularized Whitening and Coloring Transformation (RegWCT). Through these methods, our Style Attributes Disentanglement approach (SADis) delivers a more precise and customizable solution for stylized image generation. Experiments on images from the WikiArt and StyleDrop datasets demonstrate that, both qualitatively and quantitatively, SADis surpasses state-of-the-art stylization methods in the DisIG task.Code will be released at https://deepffff.github.io/sadis.github.io/.
Transparent Image Layer Diffusion using Latent Transparency
We present LayerDiffusion, an approach enabling large-scale pretrained latent diffusion models to generate transparent images. The method allows generation of single transparent images or of multiple transparent layers. The method learns a "latent transparency" that encodes alpha channel transparency into the latent manifold of a pretrained latent diffusion model. It preserves the production-ready quality of the large diffusion model by regulating the added transparency as a latent offset with minimal changes to the original latent distribution of the pretrained model. In this way, any latent diffusion model can be converted into a transparent image generator by finetuning it with the adjusted latent space. We train the model with 1M transparent image layer pairs collected using a human-in-the-loop collection scheme. We show that latent transparency can be applied to different open source image generators, or be adapted to various conditional control systems to achieve applications like foreground/background-conditioned layer generation, joint layer generation, structural control of layer contents, etc. A user study finds that in most cases (97%) users prefer our natively generated transparent content over previous ad-hoc solutions such as generating and then matting. Users also report the quality of our generated transparent images is comparable to real commercial transparent assets like Adobe Stock.
A Survey on Intrinsic Images: Delving Deep Into Lambert and Beyond
Intrinsic imaging or intrinsic image decomposition has traditionally been described as the problem of decomposing an image into two layers: a reflectance, the albedo invariant color of the material; and a shading, produced by the interaction between light and geometry. Deep learning techniques have been broadly applied in recent years to increase the accuracy of those separations. In this survey, we overview those results in context of well-known intrinsic image data sets and relevant metrics used in the literature, discussing their suitability to predict a desirable intrinsic image decomposition. Although the Lambertian assumption is still a foundational basis for many methods, we show that there is increasing awareness on the potential of more sophisticated physically-principled components of the image formation process, that is, optically accurate material models and geometry, and more complete inverse light transport estimations. We classify these methods in terms of the type of decomposition, considering the priors and models used, as well as the learning architecture and methodology driving the decomposition process. We also provide insights about future directions for research, given the recent advances in neural, inverse and differentiable rendering techniques.
Comprehensive Relighting: Generalizable and Consistent Monocular Human Relighting and Harmonization
This paper introduces Comprehensive Relighting, the first all-in-one approach that can both control and harmonize the lighting from an image or video of humans with arbitrary body parts from any scene. Building such a generalizable model is extremely challenging due to the lack of dataset, restricting existing image-based relighting models to a specific scenario (e.g., face or static human). To address this challenge, we repurpose a pre-trained diffusion model as a general image prior and jointly model the human relighting and background harmonization in the coarse-to-fine framework. To further enhance the temporal coherence of the relighting, we introduce an unsupervised temporal lighting model that learns the lighting cycle consistency from many real-world videos without any ground truth. In inference time, our temporal lighting module is combined with the diffusion models through the spatio-temporal feature blending algorithms without extra training; and we apply a new guided refinement as a post-processing to preserve the high-frequency details from the input image. In the experiments, Comprehensive Relighting shows a strong generalizability and lighting temporal coherence, outperforming existing image-based human relighting and harmonization methods.
Multi-Space Neural Radiance Fields
Existing Neural Radiance Fields (NeRF) methods suffer from the existence of reflective objects, often resulting in blurry or distorted rendering. Instead of calculating a single radiance field, we propose a multi-space neural radiance field (MS-NeRF) that represents the scene using a group of feature fields in parallel sub-spaces, which leads to a better understanding of the neural network toward the existence of reflective and refractive objects. Our multi-space scheme works as an enhancement to existing NeRF methods, with only small computational overheads needed for training and inferring the extra-space outputs. We demonstrate the superiority and compatibility of our approach using three representative NeRF-based models, i.e., NeRF, Mip-NeRF, and Mip-NeRF 360. Comparisons are performed on a novelly constructed dataset consisting of 25 synthetic scenes and 7 real captured scenes with complex reflection and refraction, all having 360-degree viewpoints. Extensive experiments show that our approach significantly outperforms the existing single-space NeRF methods for rendering high-quality scenes concerned with complex light paths through mirror-like objects. Our code and dataset will be publicly available at https://zx-yin.github.io/msnerf.
Exploiting the Signal-Leak Bias in Diffusion Models
There is a bias in the inference pipeline of most diffusion models. This bias arises from a signal leak whose distribution deviates from the noise distribution, creating a discrepancy between training and inference processes. We demonstrate that this signal-leak bias is particularly significant when models are tuned to a specific style, causing sub-optimal style matching. Recent research tries to avoid the signal leakage during training. We instead show how we can exploit this signal-leak bias in existing diffusion models to allow more control over the generated images. This enables us to generate images with more varied brightness, and images that better match a desired style or color. By modeling the distribution of the signal leak in the spatial frequency and pixel domains, and including a signal leak in the initial latent, we generate images that better match expected results without any additional training.
Diff-Retinex: Rethinking Low-light Image Enhancement with A Generative Diffusion Model
In this paper, we rethink the low-light image enhancement task and propose a physically explainable and generative diffusion model for low-light image enhancement, termed as Diff-Retinex. We aim to integrate the advantages of the physical model and the generative network. Furthermore, we hope to supplement and even deduce the information missing in the low-light image through the generative network. Therefore, Diff-Retinex formulates the low-light image enhancement problem into Retinex decomposition and conditional image generation. In the Retinex decomposition, we integrate the superiority of attention in Transformer and meticulously design a Retinex Transformer decomposition network (TDN) to decompose the image into illumination and reflectance maps. Then, we design multi-path generative diffusion networks to reconstruct the normal-light Retinex probability distribution and solve the various degradations in these components respectively, including dark illumination, noise, color deviation, loss of scene contents, etc. Owing to generative diffusion model, Diff-Retinex puts the restoration of low-light subtle detail into practice. Extensive experiments conducted on real-world low-light datasets qualitatively and quantitatively demonstrate the effectiveness, superiority, and generalization of the proposed method.
Physics-based Indirect Illumination for Inverse Rendering
We present a physics-based inverse rendering method that learns the illumination, geometry, and materials of a scene from posed multi-view RGB images. To model the illumination of a scene, existing inverse rendering works either completely ignore the indirect illumination or model it by coarse approximations, leading to sub-optimal illumination, geometry, and material prediction of the scene. In this work, we propose a physics-based illumination model that first locates surface points through an efficient refined sphere tracing algorithm, then explicitly traces the incoming indirect lights at each surface point based on reflection. Then, we estimate each identified indirect light through an efficient neural network. Moreover, we utilize the Leibniz's integral rule to resolve non-differentiability in the proposed illumination model caused by boundary lights inspired by differentiable irradiance in computer graphics. As a result, the proposed differentiable illumination model can be learned end-to-end together with geometry and materials estimation. As a side product, our physics-based inverse rendering model also facilitates flexible and realistic material editing as well as relighting. Extensive experiments on synthetic and real-world datasets demonstrate that the proposed method performs favorably against existing inverse rendering methods on novel view synthesis and inverse rendering.
Single-Stage Diffusion NeRF: A Unified Approach to 3D Generation and Reconstruction
3D-aware image synthesis encompasses a variety of tasks, such as scene generation and novel view synthesis from images. Despite numerous task-specific methods, developing a comprehensive model remains challenging. In this paper, we present SSDNeRF, a unified approach that employs an expressive diffusion model to learn a generalizable prior of neural radiance fields (NeRF) from multi-view images of diverse objects. Previous studies have used two-stage approaches that rely on pretrained NeRFs as real data to train diffusion models. In contrast, we propose a new single-stage training paradigm with an end-to-end objective that jointly optimizes a NeRF auto-decoder and a latent diffusion model, enabling simultaneous 3D reconstruction and prior learning, even from sparsely available views. At test time, we can directly sample the diffusion prior for unconditional generation, or combine it with arbitrary observations of unseen objects for NeRF reconstruction. SSDNeRF demonstrates robust results comparable to or better than leading task-specific methods in unconditional generation and single/sparse-view 3D reconstruction.
GaSLight: Gaussian Splats for Spatially-Varying Lighting in HDR
We present GaSLight, a method that generates spatially-varying lighting from regular images. Our method proposes using HDR Gaussian Splats as light source representation, marking the first time regular images can serve as light sources in a 3D renderer. Our two-stage process first enhances the dynamic range of images plausibly and accurately by leveraging the priors embedded in diffusion models. Next, we employ Gaussian Splats to model 3D lighting, achieving spatially variant lighting. Our approach yields state-of-the-art results on HDR estimations and their applications in illuminating virtual objects and scenes. To facilitate the benchmarking of images as light sources, we introduce a novel dataset of calibrated and unsaturated HDR to evaluate images as light sources. We assess our method using a combination of this novel dataset and an existing dataset from the literature. Project page: https://lvsn.github.io/gaslight/
Bokeh Diffusion: Defocus Blur Control in Text-to-Image Diffusion Models
Recent advances in large-scale text-to-image models have revolutionized creative fields by generating visually captivating outputs from textual prompts; however, while traditional photography offers precise control over camera settings to shape visual aesthetics -- such as depth-of-field -- current diffusion models typically rely on prompt engineering to mimic such effects. This approach often results in crude approximations and inadvertently altering the scene content. In this work, we propose Bokeh Diffusion, a scene-consistent bokeh control framework that explicitly conditions a diffusion model on a physical defocus blur parameter. By grounding depth-of-field adjustments, our method preserves the underlying scene structure as the level of blur is varied. To overcome the scarcity of paired real-world images captured under different camera settings, we introduce a hybrid training pipeline that aligns in-the-wild images with synthetic blur augmentations. Extensive experiments demonstrate that our approach not only achieves flexible, lens-like blur control but also supports applications such as real image editing via inversion.
NeRF-DS: Neural Radiance Fields for Dynamic Specular Objects
Dynamic Neural Radiance Field (NeRF) is a powerful algorithm capable of rendering photo-realistic novel view images from a monocular RGB video of a dynamic scene. Although it warps moving points across frames from the observation spaces to a common canonical space for rendering, dynamic NeRF does not model the change of the reflected color during the warping. As a result, this approach often fails drastically on challenging specular objects in motion. We address this limitation by reformulating the neural radiance field function to be conditioned on surface position and orientation in the observation space. This allows the specular surface at different poses to keep the different reflected colors when mapped to the common canonical space. Additionally, we add the mask of moving objects to guide the deformation field. As the specular surface changes color during motion, the mask mitigates the problem of failure to find temporal correspondences with only RGB supervision. We evaluate our model based on the novel view synthesis quality with a self-collected dataset of different moving specular objects in realistic environments. The experimental results demonstrate that our method significantly improves the reconstruction quality of moving specular objects from monocular RGB videos compared to the existing NeRF models. Our code and data are available at the project website https://github.com/JokerYan/NeRF-DS.
RefRef: A Synthetic Dataset and Benchmark for Reconstructing Refractive and Reflective Objects
Modern 3D reconstruction and novel view synthesis approaches have demonstrated strong performance on scenes with opaque Lambertian objects. However, most assume straight light paths and therefore cannot properly handle refractive and reflective materials. Moreover, datasets specialized for these effects are limited, stymieing efforts to evaluate performance and develop suitable techniques. In this work, we introduce a synthetic RefRef dataset and benchmark for reconstructing scenes with refractive and reflective objects from posed images. Our dataset has 50 such objects of varying complexity, from single-material convex shapes to multi-material non-convex shapes, each placed in three different background types, resulting in 150 scenes. We also propose an oracle method that, given the object geometry and refractive indices, calculates accurate light paths for neural rendering, and an approach based on this that avoids these assumptions. We benchmark these against several state-of-the-art methods and show that all methods lag significantly behind the oracle, highlighting the challenges of the task and dataset.
SwitchLight: Co-design of Physics-driven Architecture and Pre-training Framework for Human Portrait Relighting
We introduce a co-designed approach for human portrait relighting that combines a physics-guided architecture with a pre-training framework. Drawing on the Cook-Torrance reflectance model, we have meticulously configured the architecture design to precisely simulate light-surface interactions. Furthermore, to overcome the limitation of scarce high-quality lightstage data, we have developed a self-supervised pre-training strategy. This novel combination of accurate physical modeling and expanded training dataset establishes a new benchmark in relighting realism.
MVLight: Relightable Text-to-3D Generation via Light-conditioned Multi-View Diffusion
Recent advancements in text-to-3D generation, building on the success of high-performance text-to-image generative models, have made it possible to create imaginative and richly textured 3D objects from textual descriptions. However, a key challenge remains in effectively decoupling light-independent and lighting-dependent components to enhance the quality of generated 3D models and their relighting performance. In this paper, we present MVLight, a novel light-conditioned multi-view diffusion model that explicitly integrates lighting conditions directly into the generation process. This enables the model to synthesize high-quality images that faithfully reflect the specified lighting environment across multiple camera views. By leveraging this capability to Score Distillation Sampling (SDS), we can effectively synthesize 3D models with improved geometric precision and relighting capabilities. We validate the effectiveness of MVLight through extensive experiments and a user study.
Deshadow-Anything: When Segment Anything Model Meets Zero-shot shadow removal
Segment Anything (SAM), an advanced universal image segmentation model trained on an expansive visual dataset, has set a new benchmark in image segmentation and computer vision. However, it faced challenges when it came to distinguishing between shadows and their backgrounds. To address this, we developed Deshadow-Anything, considering the generalization of large-scale datasets, and we performed Fine-tuning on large-scale datasets to achieve image shadow removal. The diffusion model can diffuse along the edges and textures of an image, helping to remove shadows while preserving the details of the image. Furthermore, we design Multi-Self-Attention Guidance (MSAG) and adaptive input perturbation (DDPM-AIP) to accelerate the iterative training speed of diffusion. Experiments on shadow removal tasks demonstrate that these methods can effectively improve image restoration performance.
Seeing the World in a Bag of Chips
We address the dual problems of novel view synthesis and environment reconstruction from hand-held RGBD sensors. Our contributions include 1) modeling highly specular objects, 2) modeling inter-reflections and Fresnel effects, and 3) enabling surface light field reconstruction with the same input needed to reconstruct shape alone. In cases where scene surface has a strong mirror-like material component, we generate highly detailed environment images, revealing room composition, objects, people, buildings, and trees visible through windows. Our approach yields state of the art view synthesis techniques, operates on low dynamic range imagery, and is robust to geometric and calibration errors.
Thinking Outside the BBox: Unconstrained Generative Object Compositing
Compositing an object into an image involves multiple non-trivial sub-tasks such as object placement and scaling, color/lighting harmonization, viewpoint/geometry adjustment, and shadow/reflection generation. Recent generative image compositing methods leverage diffusion models to handle multiple sub-tasks at once. However, existing models face limitations due to their reliance on masking the original object during training, which constrains their generation to the input mask. Furthermore, obtaining an accurate input mask specifying the location and scale of the object in a new image can be highly challenging. To overcome such limitations, we define a novel problem of unconstrained generative object compositing, i.e., the generation is not bounded by the mask, and train a diffusion-based model on a synthesized paired dataset. Our first-of-its-kind model is able to generate object effects such as shadows and reflections that go beyond the mask, enhancing image realism. Additionally, if an empty mask is provided, our model automatically places the object in diverse natural locations and scales, accelerating the compositing workflow. Our model outperforms existing object placement and compositing models in various quality metrics and user studies.
Regional Attention for Shadow Removal
Shadow, as a natural consequence of light interacting with objects, plays a crucial role in shaping the aesthetics of an image, which however also impairs the content visibility and overall visual quality. Recent shadow removal approaches employ the mechanism of attention, due to its effectiveness, as a key component. However, they often suffer from two issues including large model size and high computational complexity for practical use. To address these shortcomings, this work devises a lightweight yet accurate shadow removal framework. First, we analyze the characteristics of the shadow removal task to seek the key information required for reconstructing shadow regions and designing a novel regional attention mechanism to effectively capture such information. Then, we customize a Regional Attention Shadow Removal Model (RASM, in short), which leverages non-shadow areas to assist in restoring shadow ones. Unlike existing attention-based models, our regional attention strategy allows each shadow region to interact more rationally with its surrounding non-shadow areas, for seeking the regional contextual correlation between shadow and non-shadow areas. Extensive experiments are conducted to demonstrate that our proposed method delivers superior performance over other state-of-the-art models in terms of accuracy and efficiency, making it appealing for practical applications.
DiffStyler: Diffusion-based Localized Image Style Transfer
Image style transfer aims to imbue digital imagery with the distinctive attributes of style targets, such as colors, brushstrokes, shapes, whilst concurrently preserving the semantic integrity of the content. Despite the advancements in arbitrary style transfer methods, a prevalent challenge remains the delicate equilibrium between content semantics and style attributes. Recent developments in large-scale text-to-image diffusion models have heralded unprecedented synthesis capabilities, albeit at the expense of relying on extensive and often imprecise textual descriptions to delineate artistic styles. Addressing these limitations, this paper introduces DiffStyler, a novel approach that facilitates efficient and precise arbitrary image style transfer. DiffStyler lies the utilization of a text-to-image Stable Diffusion model-based LoRA to encapsulate the essence of style targets. This approach, coupled with strategic cross-LoRA feature and attention injection, guides the style transfer process. The foundation of our methodology is rooted in the observation that LoRA maintains the spatial feature consistency of UNet, a discovery that further inspired the development of a mask-wise style transfer technique. This technique employs masks extracted through a pre-trained FastSAM model, utilizing mask prompts to facilitate feature fusion during the denoising process, thereby enabling localized style transfer that preserves the original image's unaffected regions. Moreover, our approach accommodates multiple style targets through the use of corresponding masks. Through extensive experimentation, we demonstrate that DiffStyler surpasses previous methods in achieving a more harmonious balance between content preservation and style integration.
Matting by Generation
This paper introduces an innovative approach for image matting that redefines the traditional regression-based task as a generative modeling challenge. Our method harnesses the capabilities of latent diffusion models, enriched with extensive pre-trained knowledge, to regularize the matting process. We present novel architectural innovations that empower our model to produce mattes with superior resolution and detail. The proposed method is versatile and can perform both guidance-free and guidance-based image matting, accommodating a variety of additional cues. Our comprehensive evaluation across three benchmark datasets demonstrates the superior performance of our approach, both quantitatively and qualitatively. The results not only reflect our method's robust effectiveness but also highlight its ability to generate visually compelling mattes that approach photorealistic quality. The project page for this paper is available at https://lightchaserx.github.io/matting-by-generation/
DifIISR: A Diffusion Model with Gradient Guidance for Infrared Image Super-Resolution
Infrared imaging is essential for autonomous driving and robotic operations as a supportive modality due to its reliable performance in challenging environments. Despite its popularity, the limitations of infrared cameras, such as low spatial resolution and complex degradations, consistently challenge imaging quality and subsequent visual tasks. Hence, infrared image super-resolution (IISR) has been developed to address this challenge. While recent developments in diffusion models have greatly advanced this field, current methods to solve it either ignore the unique modal characteristics of infrared imaging or overlook the machine perception requirements. To bridge these gaps, we propose DifIISR, an infrared image super-resolution diffusion model optimized for visual quality and perceptual performance. Our approach achieves task-based guidance for diffusion by injecting gradients derived from visual and perceptual priors into the noise during the reverse process. Specifically, we introduce an infrared thermal spectrum distribution regulation to preserve visual fidelity, ensuring that the reconstructed infrared images closely align with high-resolution images by matching their frequency components. Subsequently, we incorporate various visual foundational models as the perceptual guidance for downstream visual tasks, infusing generalizable perceptual features beneficial for detection and segmentation. As a result, our approach gains superior visual results while attaining State-Of-The-Art downstream task performance. Code is available at https://github.com/zirui0625/DifIISR
Color Alignment in Diffusion
Diffusion models have shown great promise in synthesizing visually appealing images. However, it remains challenging to condition the synthesis at a fine-grained level, for instance, synthesizing image pixels following some generic color pattern. Existing image synthesis methods often produce contents that fall outside the desired pixel conditions. To address this, we introduce a novel color alignment algorithm that confines the generative process in diffusion models within a given color pattern. Specifically, we project diffusion terms, either imagery samples or latent representations, into a conditional color space to align with the input color distribution. This strategy simplifies the prediction in diffusion models within a color manifold while still allowing plausible structures in generated contents, thus enabling the generation of diverse contents that comply with the target color pattern. Experimental results demonstrate our state-of-the-art performance in conditioning and controlling of color pixels, while maintaining on-par generation quality and diversity in comparison with regular diffusion models.
Zero-Reference Low-Light Enhancement via Physical Quadruple Priors
Understanding illumination and reducing the need for supervision pose a significant challenge in low-light enhancement. Current approaches are highly sensitive to data usage during training and illumination-specific hyper-parameters, limiting their ability to handle unseen scenarios. In this paper, we propose a new zero-reference low-light enhancement framework trainable solely with normal light images. To accomplish this, we devise an illumination-invariant prior inspired by the theory of physical light transfer. This prior serves as the bridge between normal and low-light images. Then, we develop a prior-to-image framework trained without low-light data. During testing, this framework is able to restore our illumination-invariant prior back to images, automatically achieving low-light enhancement. Within this framework, we leverage a pretrained generative diffusion model for model ability, introduce a bypass decoder to handle detail distortion, as well as offer a lightweight version for practicality. Extensive experiments demonstrate our framework's superiority in various scenarios as well as good interpretability, robustness, and efficiency. Code is available on our project homepage: http://daooshee.github.io/QuadPrior-Website/
Computational Long Exposure Mobile Photography
Long exposure photography produces stunning imagery, representing moving elements in a scene with motion-blur. It is generally employed in two modalities, producing either a foreground or a background blur effect. Foreground blur images are traditionally captured on a tripod-mounted camera and portray blurred moving foreground elements, such as silky water or light trails, over a perfectly sharp background landscape. Background blur images, also called panning photography, are captured while the camera is tracking a moving subject, to produce an image of a sharp subject over a background blurred by relative motion. Both techniques are notoriously challenging and require additional equipment and advanced skills. In this paper, we describe a computational burst photography system that operates in a hand-held smartphone camera app, and achieves these effects fully automatically, at the tap of the shutter button. Our approach first detects and segments the salient subject. We track the scene motion over multiple frames and align the images in order to preserve desired sharpness and to produce aesthetically pleasing motion streaks. We capture an under-exposed burst and select the subset of input frames that will produce blur trails of controlled length, regardless of scene or camera motion velocity. We predict inter-frame motion and synthesize motion-blur to fill the temporal gaps between the input frames. Finally, we composite the blurred image with the sharp regular exposure to protect the sharpness of faces or areas of the scene that are barely moving, and produce a final high resolution and high dynamic range (HDR) photograph. Our system democratizes a capability previously reserved to professionals, and makes this creative style accessible to most casual photographers. More information and supplementary material can be found on our project webpage: https://motion-mode.github.io/
DiffRF: Rendering-Guided 3D Radiance Field Diffusion
We introduce DiffRF, a novel approach for 3D radiance field synthesis based on denoising diffusion probabilistic models. While existing diffusion-based methods operate on images, latent codes, or point cloud data, we are the first to directly generate volumetric radiance fields. To this end, we propose a 3D denoising model which directly operates on an explicit voxel grid representation. However, as radiance fields generated from a set of posed images can be ambiguous and contain artifacts, obtaining ground truth radiance field samples is non-trivial. We address this challenge by pairing the denoising formulation with a rendering loss, enabling our model to learn a deviated prior that favours good image quality instead of trying to replicate fitting errors like floating artifacts. In contrast to 2D-diffusion models, our model learns multi-view consistent priors, enabling free-view synthesis and accurate shape generation. Compared to 3D GANs, our diffusion-based approach naturally enables conditional generation such as masked completion or single-view 3D synthesis at inference time.
Single Image BRDF Parameter Estimation with a Conditional Adversarial Network
Creating plausible surfaces is an essential component in achieving a high degree of realism in rendering. To relieve artists, who create these surfaces in a time-consuming, manual process, automated retrieval of the spatially-varying Bidirectional Reflectance Distribution Function (SVBRDF) from a single mobile phone image is desirable. By leveraging a deep neural network, this casual capturing method can be achieved. The trained network can estimate per pixel normal, base color, metallic and roughness parameters from the Disney BRDF. The input image is taken with a mobile phone lit by the camera flash. The network is trained to compensate for environment lighting and thus learned to reduce artifacts introduced by other light sources. These losses contain a multi-scale discriminator with an additional perceptual loss, a rendering loss using a differentiable renderer, and a parameter loss. Besides the local precision, this loss formulation generates material texture maps which are globally more consistent. The network is set up as a generator network trained in an adversarial fashion to ensure that only plausible maps are produced. The estimated parameters not only reproduce the material faithfully in rendering but capture the style of hand-authored materials due to the more global loss terms compared to previous works without requiring additional post-processing. Both the resolution and the quality is improved.
RRM: Relightable assets using Radiance guided Material extraction
Synthesizing NeRFs under arbitrary lighting has become a seminal problem in the last few years. Recent efforts tackle the problem via the extraction of physically-based parameters that can then be rendered under arbitrary lighting, but they are limited in the range of scenes they can handle, usually mishandling glossy scenes. We propose RRM, a method that can extract the materials, geometry, and environment lighting of a scene even in the presence of highly reflective objects. Our method consists of a physically-aware radiance field representation that informs physically-based parameters, and an expressive environment light structure based on a Laplacian Pyramid. We demonstrate that our contributions outperform the state-of-the-art on parameter retrieval tasks, leading to high-fidelity relighting and novel view synthesis on surfacic scenes.
Material Transforms from Disentangled NeRF Representations
In this paper, we first propose a novel method for transferring material transformations across different scenes. Building on disentangled Neural Radiance Field (NeRF) representations, our approach learns to map Bidirectional Reflectance Distribution Functions (BRDF) from pairs of scenes observed in varying conditions, such as dry and wet. The learned transformations can then be applied to unseen scenes with similar materials, therefore effectively rendering the transformation learned with an arbitrary level of intensity. Extensive experiments on synthetic scenes and real-world objects validate the effectiveness of our approach, showing that it can learn various transformations such as wetness, painting, coating, etc. Our results highlight not only the versatility of our method but also its potential for practical applications in computer graphics. We publish our method implementation, along with our synthetic/real datasets on https://github.com/astra-vision/BRDFTransform
Neural Microfacet Fields for Inverse Rendering
We present Neural Microfacet Fields, a method for recovering materials, geometry, and environment illumination from images of a scene. Our method uses a microfacet reflectance model within a volumetric setting by treating each sample along the ray as a (potentially non-opaque) surface. Using surface-based Monte Carlo rendering in a volumetric setting enables our method to perform inverse rendering efficiently by combining decades of research in surface-based light transport with recent advances in volume rendering for view synthesis. Our approach outperforms prior work in inverse rendering, capturing high fidelity geometry and high frequency illumination details; its novel view synthesis results are on par with state-of-the-art methods that do not recover illumination or materials.
DenseSR: Image Shadow Removal as Dense Prediction
Shadows are a common factor degrading image quality. Single-image shadow removal (SR), particularly under challenging indirect illumination, is hampered by non-uniform content degradation and inherent ambiguity. Consequently, traditional methods often fail to simultaneously recover intra-shadow details and maintain sharp boundaries, resulting in inconsistent restoration and blurring that negatively affect both downstream applications and the overall viewing experience. To overcome these limitations, we propose the DenseSR, approaching the problem from a dense prediction perspective to emphasize restoration quality. This framework uniquely synergizes two key strategies: (1) deep scene understanding guided by geometric-semantic priors to resolve ambiguity and implicitly localize shadows, and (2) high-fidelity restoration via a novel Dense Fusion Block (DFB) in the decoder. The DFB employs adaptive component processing-using an Adaptive Content Smoothing Module (ACSM) for consistent appearance and a Texture-Boundary Recuperation Module (TBRM) for fine textures and sharp boundaries-thereby directly tackling the inconsistent restoration and blurring issues. These purposefully processed components are effectively fused, yielding an optimized feature representation preserving both consistency and fidelity. Extensive experimental results demonstrate the merits of our approach over existing methods. Our code can be available on https://github.com/VanLinLin/DenseSR
From Enhancement to Understanding: Build a Generalized Bridge for Low-light Vision via Semantically Consistent Unsupervised Fine-tuning
Low-level enhancement and high-level visual understanding in low-light vision have traditionally been treated separately. Low-light enhancement improves image quality for downstream tasks, but existing methods rely on physical or geometric priors, limiting generalization. Evaluation mainly focuses on visual quality rather than downstream performance. Low-light visual understanding, constrained by scarce labeled data, primarily uses task-specific domain adaptation, which lacks scalability. To address these challenges, we build a generalized bridge between low-light enhancement and low-light understanding, which we term Generalized Enhancement For Understanding (GEFU). This paradigm improves both generalization and scalability. To address the diverse causes of low-light degradation, we leverage pretrained generative diffusion models to optimize images, achieving zero-shot generalization performance. Building on this, we propose Semantically Consistent Unsupervised Fine-tuning (SCUF). Specifically, to overcome text prompt limitations, we introduce an illumination-aware image prompt to explicitly guide image generation and propose a cycle-attention adapter to maximize its semantic potential. To mitigate semantic degradation in unsupervised training, we propose caption and reflectance consistency to learn high-level semantics and image-level spatial semantics. Extensive experiments demonstrate that our proposed method outperforms current state-of-the-art methods in traditional image quality and GEFU tasks including classification, detection, and semantic segmentation.