Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeDon't Make Your LLM an Evaluation Benchmark Cheater
Large language models~(LLMs) have greatly advanced the frontiers of artificial intelligence, attaining remarkable improvement in model capacity. To assess the model performance, a typical approach is to construct evaluation benchmarks for measuring the ability level of LLMs in different aspects. Despite that a number of high-quality benchmarks have been released, the concerns about the appropriate use of these benchmarks and the fair comparison of different models are increasingly growing. Considering these concerns, in this paper, we discuss the potential risk and impact of inappropriately using evaluation benchmarks and misleadingly interpreting the evaluation results. Specially, we focus on a special issue that would lead to inappropriate evaluation, \ie benchmark leakage, referring that the data related to evaluation sets is occasionally used for model training. This phenomenon now becomes more common since pre-training data is often prepared ahead of model test. We conduct extensive experiments to study the effect of benchmark leverage, and find that it can dramatically boost the evaluation results, which would finally lead to an unreliable assessment of model performance. To improve the use of existing evaluation benchmarks, we finally present several guidelines for both LLM developers and benchmark maintainers. We hope this work can draw attention to appropriate training and evaluation of LLMs.
Quantifying Variance in Evaluation Benchmarks
Evaluation benchmarks are the cornerstone of measuring capabilities of large language models (LLMs), as well as driving progress in said capabilities. Originally designed to make claims about capabilities (or lack thereof) in fully pretrained models, evaluation benchmarks are now also extensively used to decide between various training choices. Despite this widespread usage, we rarely quantify the variance in our evaluation benchmarks, which dictates whether differences in performance are meaningful. Here, we define and measure a range of metrics geared towards measuring variance in evaluation benchmarks, including seed variance across initialisations, and monotonicity during training. By studying a large number of models -- both openly available and pretrained from scratch -- we provide empirical estimates for a variety of variance metrics, with considerations and recommendations for practitioners. We also evaluate the utility and tradeoffs of continuous versus discrete performance measures and explore options for better understanding and reducing this variance. We find that simple changes, such as framing choice tasks (like MMLU) as completion tasks, can often reduce variance for smaller scale (sim7B) models, while more involved methods inspired from human testing literature (such as item analysis and item response theory) struggle to meaningfully reduce variance. Overall, our work provides insights into variance in evaluation benchmarks, suggests LM-specific techniques to reduce variance, and more generally encourages practitioners to carefully factor in variance when comparing models.
NorEval: A Norwegian Language Understanding and Generation Evaluation Benchmark
This paper introduces NorEval, a new and comprehensive evaluation suite for large-scale standardized benchmarking of Norwegian generative language models (LMs). NorEval consists of 24 high-quality human-created datasets -- of which five are created from scratch. In contrast to existing benchmarks for Norwegian, NorEval covers a broad spectrum of task categories targeting Norwegian language understanding and generation, establishes human baselines, and focuses on both of the official written standards of the Norwegian language: Bokm{\aa}l and Nynorsk. All our datasets and a collection of over 100 human-written prompts are integrated into LM Evaluation Harness, ensuring flexible and reproducible evaluation. We describe the NorEval design and present the results of benchmarking 19 open-source pre-trained and instruction-tuned LMs for Norwegian in various scenarios. Our benchmark, evaluation framework, and annotation materials are publicly available.
M4GT-Bench: Evaluation Benchmark for Black-Box Machine-Generated Text Detection
The advent of Large Language Models (LLMs) has brought an unprecedented surge in machine-generated text (MGT) across diverse channels. This raises legitimate concerns about its potential misuse and societal implications. The need to identify and differentiate such content from genuine human-generated text is critical in combating disinformation, preserving the integrity of education and scientific fields, and maintaining trust in communication. In this work, we address this problem by introducing a new benchmark based on a multilingual, multi-domain, and multi-generator corpus of MGTs -- M4GT-Bench. The benchmark is compiled of three tasks: (1) mono-lingual and multi-lingual binary MGT detection; (2) multi-way detection where one need to identify, which particular model generated the text; and (3) mixed human-machine text detection, where a word boundary delimiting MGT from human-written content should be determined. On the developed benchmark, we have tested several MGT detection baselines and also conducted an evaluation of human performance. We see that obtaining good performance in MGT detection usually requires an access to the training data from the same domain and generators. The benchmark is available at https://github.com/mbzuai-nlp/M4GT-Bench.
REBUS: A Robust Evaluation Benchmark of Understanding Symbols
We propose a new benchmark evaluating the performance of multimodal large language models on rebus puzzles. The dataset covers 333 original examples of image-based wordplay, cluing 13 categories such as movies, composers, major cities, and food. To achieve good performance on the benchmark of identifying the clued word or phrase, models must combine image recognition and string manipulation with hypothesis testing, multi-step reasoning, and an understanding of human cognition, making for a complex, multimodal evaluation of capabilities. We find that proprietary models such as GPT-4V and Gemini Pro significantly outperform all other tested models. However, even the best model has a final accuracy of just 24%, highlighting the need for substantial improvements in reasoning. Further, models rarely understand all parts of a puzzle, and are almost always incapable of retroactively explaining the correct answer. Our benchmark can therefore be used to identify major shortcomings in the knowledge and reasoning of multimodal large language models.
Mobile-Env: An Evaluation Platform and Benchmark for Interactive Agents in LLM Era
Diverse evaluation benchmarks play a crucial role to assess a wide range of capabilities of large language models (LLM). Although plenty of endeavors have been dedicated to building valuable benchmarks, there is still little work aiming at evaluating the capability of LLM in multistep interactive environments. Noticing that LLM requires a text representation of the environment observations for interaction, we choose to fill such a blank by building a novel benchmark based on the information user interface (InfoUI). InfoUI consists of rich text contents and can be represented in some text formats, thus is suitable for the assessment of interaction ability of LLM. Additionally, the complex structures of InfoUI can further raise a challenge for LLM to understand structured texts rather than plain texts. An interaction platform is always used to evaluate an agent, however, there is still a lack of a satisfactory interaction platform dedicated to InfoUI. Consequently, we propose to build a novel easily-extendable, adaptable, and close-to-reality interaction platform, Mobile-Env, to provide a base for an appropriate benchmark. Based on Mobile-Env, an InfoUI task set WikiHow is then built to establish a benchmark for the multistep interaction capability of LLM in structured text-based environments. Agents based on a series of LLMs are tested on the task set to obtain an insight into the potential and challenge of LLM for InfoUI interaction. It is sincerely welcome that the community contribute new environments and new task sets for Mobile-Env to provide better test benchmarks and facilitate the development of the corresponding domains.
The FLORES-101 Evaluation Benchmark for Low-Resource and Multilingual Machine Translation
One of the biggest challenges hindering progress in low-resource and multilingual machine translation is the lack of good evaluation benchmarks. Current evaluation benchmarks either lack good coverage of low-resource languages, consider only restricted domains, or are low quality because they are constructed using semi-automatic procedures. In this work, we introduce the FLORES-101 evaluation benchmark, consisting of 3001 sentences extracted from English Wikipedia and covering a variety of different topics and domains. These sentences have been translated in 101 languages by professional translators through a carefully controlled process. The resulting dataset enables better assessment of model quality on the long tail of low-resource languages, including the evaluation of many-to-many multilingual translation systems, as all translations are multilingually aligned. By publicly releasing such a high-quality and high-coverage dataset, we hope to foster progress in the machine translation community and beyond.
WHODUNIT: Evaluation benchmark for culprit detection in mystery stories
We present a novel data set, WhoDunIt, to assess the deductive reasoning capabilities of large language models (LLM) within narrative contexts. Constructed from open domain mystery novels and short stories, the dataset challenges LLMs to identify the perpetrator after reading and comprehending the story. To evaluate model robustness, we apply a range of character-level name augmentations, including original names, name swaps, and substitutions with well-known real and/or fictional entities from popular discourse. We further use various prompting styles to investigate the influence of prompting on deductive reasoning accuracy. We conduct evaluation study with state-of-the-art models, specifically GPT-4o, GPT-4-turbo, and GPT-4o-mini, evaluated through multiple trials with majority response selection to ensure reliability. The results demonstrate that while LLMs perform reliably on unaltered texts, accuracy diminishes with certain name substitutions, particularly those with wide recognition. This dataset is publicly available here.
CEB: Compositional Evaluation Benchmark for Fairness in Large Language Models
As Large Language Models (LLMs) are increasingly deployed to handle various natural language processing (NLP) tasks, concerns regarding the potential negative societal impacts of LLM-generated content have also arisen. To evaluate the biases exhibited by LLMs, researchers have recently proposed a variety of datasets. However, existing bias evaluation efforts often focus on only a particular type of bias and employ inconsistent evaluation metrics, leading to difficulties in comparison across different datasets and LLMs. To address these limitations, we collect a variety of datasets designed for the bias evaluation of LLMs, and further propose CEB, a Compositional Evaluation Benchmark that covers different types of bias across different social groups and tasks. The curation of CEB is based on our newly proposed compositional taxonomy, which characterizes each dataset from three dimensions: bias types, social groups, and tasks. By combining the three dimensions, we develop a comprehensive evaluation strategy for the bias in LLMs. Our experiments demonstrate that the levels of bias vary across these dimensions, thereby providing guidance for the development of specific bias mitigation methods.
OOP: Object-Oriented Programming Evaluation Benchmark for Large Language Models
Advancing automated programming necessitates robust and comprehensive code generation benchmarks, yet current evaluation frameworks largely neglect object-oriented programming (OOP) in favor of functional programming (FP), e.g., HumanEval and MBPP. To address this, our study introduces a pioneering OOP-focused benchmark, featuring 431 Python programs that encompass essential OOP concepts and features like classes and encapsulation methods. We propose a novel evaluation metric, pass@o, tailored for OOP, enhancing traditional pass@k measures. Our evaluation of 23 leading large language models (LLMs), including both general and code-specialized models, reveals three key insights: 1) pass@o offers a more relevant and comprehensive assessment for OOP code generation; 2) Despite excelling in FP, code-specialized LLMs like WizardCoder lag in OOP compared to models like ChatGPT; 3) The poor performance of all advanced LLMs on our OOP benchmark highlights a critical need for improvements in this field. Our benchmark and scripts are publicly released at: https://github.com/alphadl/OOP-eval.
GMAI-MMBench: A Comprehensive Multimodal Evaluation Benchmark Towards General Medical AI
Large Vision-Language Models (LVLMs) are capable of handling diverse data types such as imaging, text, and physiological signals, and can be applied in various fields. In the medical field, LVLMs have a high potential to offer substantial assistance for diagnosis and treatment. Before that, it is crucial to develop benchmarks to evaluate LVLMs' effectiveness in various medical applications. Current benchmarks are often built upon specific academic literature, mainly focusing on a single domain, and lacking varying perceptual granularities. Thus, they face specific challenges, including limited clinical relevance, incomplete evaluations, and insufficient guidance for interactive LVLMs. To address these limitations, we developed the GMAI-MMBench, the most comprehensive general medical AI benchmark with well-categorized data structure and multi-perceptual granularity to date. It is constructed from 285 datasets across 39 medical image modalities, 18 clinical-related tasks, 18 departments, and 4 perceptual granularities in a Visual Question Answering (VQA) format. Additionally, we implemented a lexical tree structure that allows users to customize evaluation tasks, accommodating various assessment needs and substantially supporting medical AI research and applications. We evaluated 50 LVLMs, and the results show that even the advanced GPT-4o only achieves an accuracy of 52%, indicating significant room for improvement. Moreover, we identified five key insufficiencies in current cutting-edge LVLMs that need to be addressed to advance the development of better medical applications. We believe that GMAI-MMBench will stimulate the community to build the next generation of LVLMs toward GMAI. Project Page: https://uni-medical.github.io/GMAI-MMBench.github.io/
OmniEval: An Omnidirectional and Automatic RAG Evaluation Benchmark in Financial Domain
As a typical and practical application of Large Language Models (LLMs), Retrieval-Augmented Generation (RAG) techniques have gained extensive attention, particularly in vertical domains where LLMs may lack domain-specific knowledge. In this paper, we introduce an omnidirectional and automatic RAG benchmark, OmniEval, in the financial domain. Our benchmark is characterized by its multi-dimensional evaluation framework, including (1) a matrix-based RAG scenario evaluation system that categorizes queries into five task classes and 16 financial topics, leading to a structured assessment of diverse query scenarios; (2) a multi-dimensional evaluation data generation approach, which combines GPT-4-based automatic generation and human annotation, achieving an 87.47\% acceptance ratio in human evaluations on generated instances; (3) a multi-stage evaluation system that evaluates both retrieval and generation performance, result in a comprehensive evaluation on the RAG pipeline; and (4) robust evaluation metrics derived from rule-based and LLM-based ones, enhancing the reliability of assessments through manual annotations and supervised fine-tuning of an LLM evaluator. Our experiments demonstrate the comprehensiveness of OmniEval, which includes extensive test datasets and highlights the performance variations of RAG systems across diverse topics and tasks, revealing significant opportunities for RAG models to improve their capabilities in vertical domains. We open source the code of our benchmark in https://github.com/RUC-NLPIR/OmniEval{https://github.com/RUC-NLPIR/OmniEval}.
FACET: Fairness in Computer Vision Evaluation Benchmark
Computer vision models have known performance disparities across attributes such as gender and skin tone. This means during tasks such as classification and detection, model performance differs for certain classes based on the demographics of the people in the image. These disparities have been shown to exist, but until now there has not been a unified approach to measure these differences for common use-cases of computer vision models. We present a new benchmark named FACET (FAirness in Computer Vision EvaluaTion), a large, publicly available evaluation set of 32k images for some of the most common vision tasks - image classification, object detection and segmentation. For every image in FACET, we hired expert reviewers to manually annotate person-related attributes such as perceived skin tone and hair type, manually draw bounding boxes and label fine-grained person-related classes such as disk jockey or guitarist. In addition, we use FACET to benchmark state-of-the-art vision models and present a deeper understanding of potential performance disparities and challenges across sensitive demographic attributes. With the exhaustive annotations collected, we probe models using single demographics attributes as well as multiple attributes using an intersectional approach (e.g. hair color and perceived skin tone). Our results show that classification, detection, segmentation, and visual grounding models exhibit performance disparities across demographic attributes and intersections of attributes. These harms suggest that not all people represented in datasets receive fair and equitable treatment in these vision tasks. We hope current and future results using our benchmark will contribute to fairer, more robust vision models. FACET is available publicly at https://facet.metademolab.com/
WorldScore: A Unified Evaluation Benchmark for World Generation
We introduce the WorldScore benchmark, the first unified benchmark for world generation. We decompose world generation into a sequence of next-scene generation tasks with explicit camera trajectory-based layout specifications, enabling unified evaluation of diverse approaches from 3D and 4D scene generation to video generation models. The WorldScore benchmark encompasses a curated dataset of 3,000 test examples that span diverse worlds: static and dynamic, indoor and outdoor, photorealistic and stylized. The WorldScore metrics evaluate generated worlds through three key aspects: controllability, quality, and dynamics. Through extensive evaluation of 19 representative models, including both open-source and closed-source ones, we reveal key insights and challenges for each category of models. Our dataset, evaluation code, and leaderboard can be found at https://haoyi-duan.github.io/WorldScore/
MM-Eval: A Multilingual Meta-Evaluation Benchmark for LLM-as-a-Judge and Reward Models
Large language models (LLMs) are commonly used as evaluators in tasks (e.g., reward modeling, LLM-as-a-judge), where they act as proxies for human preferences or judgments. This leads to the need for meta-evaluation: evaluating the credibility of LLMs as evaluators. However, existing benchmarks primarily focus on English, offering limited insight into LLMs' effectiveness as evaluators in non-English contexts. To address this, we introduce MM-Eval, a multilingual meta-evaluation benchmark that covers 18 languages across six categories. MM-Eval evaluates various dimensions, including language-specific challenges like linguistics and language hallucinations. Evaluation results show that both proprietary and open-source language models have considerable room for improvement. Further analysis reveals a tendency for these models to assign middle-ground scores to low-resource languages. We publicly release our benchmark and code.
Mobile-Bench: An Evaluation Benchmark for LLM-based Mobile Agents
With the remarkable advancements of large language models (LLMs), LLM-based agents have become a research hotspot in human-computer interaction. However, there is a scarcity of benchmarks available for LLM-based mobile agents. Benchmarking these agents generally faces three main challenges: (1) The inefficiency of UI-only operations imposes limitations to task evaluation. (2) Specific instructions within a singular application lack adequacy for assessing the multi-dimensional reasoning and decision-making capacities of LLM mobile agents. (3) Current evaluation metrics are insufficient to accurately assess the process of sequential actions. To this end, we propose Mobile-Bench, a novel benchmark for evaluating the capabilities of LLM-based mobile agents. First, we expand conventional UI operations by incorporating 103 collected APIs to accelerate the efficiency of task completion. Subsequently, we collect evaluation data by combining real user queries with augmentation from LLMs. To better evaluate different levels of planning capabilities for mobile agents, our data is categorized into three distinct groups: SAST, SAMT, and MAMT, reflecting varying levels of task complexity. Mobile-Bench comprises 832 data entries, with more than 200 tasks specifically designed to evaluate multi-APP collaboration scenarios. Furthermore, we introduce a more accurate evaluation metric, named CheckPoint, to assess whether LLM-based mobile agents reach essential points during their planning and reasoning steps.
IPEval: A Bilingual Intellectual Property Agency Consultation Evaluation Benchmark for Large Language Models
The rapid development of Large Language Models (LLMs) in vertical domains, including intellectual property (IP), lacks a specific evaluation benchmark for assessing their understanding, application, and reasoning abilities. To fill this gap, we introduce IPEval, the first evaluation benchmark tailored for IP agency and consulting tasks. IPEval comprises 2657 multiple-choice questions across four major dimensions: creation, application, protection, and management of IP. These questions span patent rights (inventions, utility models, designs), trademarks, copyrights, trade secrets, and other related laws. Evaluation methods include zero-shot, 5-few-shot, and Chain of Thought (CoT) for seven LLM types, predominantly in English or Chinese. Results show superior English performance by models like GPT series and Qwen series, while Chinese-centric LLMs excel in Chinese tests, albeit specialized IP LLMs lag behind general-purpose ones. Regional and temporal aspects of IP underscore the need for LLMs to grasp legal nuances and evolving laws. IPEval aims to accurately gauge LLM capabilities in IP and spur development of specialized models. Website: https://ipeval.github.io/
OmniMedVQA: A New Large-Scale Comprehensive Evaluation Benchmark for Medical LVLM
Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities in various multimodal tasks. However, their potential in the medical domain remains largely unexplored. A significant challenge arises from the scarcity of diverse medical images spanning various modalities and anatomical regions, which is essential in real-world medical applications. To solve this problem, in this paper, we introduce OmniMedVQA, a novel comprehensive medical Visual Question Answering (VQA) benchmark. This benchmark is collected from 75 different medical datasets, including 12 different modalities and covering more than 20 distinct anatomical regions. Importantly, all images in this benchmark are sourced from authentic medical scenarios, ensuring alignment with the requirements of the medical field and suitability for evaluating LVLMs. Through our extensive experiments, we have found that existing LVLMs struggle to address these medical VQA problems effectively. Moreover, what surprises us is that medical-specialized LVLMs even exhibit inferior performance to those general-domain models, calling for a more versatile and robust LVLM in the biomedical field. The evaluation results not only reveal the current limitations of LVLM in understanding real medical images but also highlight our dataset's significance. Our dataset will be made publicly available.
McBE: A Multi-task Chinese Bias Evaluation Benchmark for Large Language Models
As large language models (LLMs) are increasingly applied to various NLP tasks, their inherent biases are gradually disclosed. Therefore, measuring biases in LLMs is crucial to mitigate its ethical risks. However, most existing bias evaluation datasets focus on English and North American culture, and their bias categories are not fully applicable to other cultures. The datasets grounded in the Chinese language and culture are scarce. More importantly, these datasets usually only support single evaluation tasks and cannot evaluate the bias from multiple aspects in LLMs. To address these issues, we present a Multi-task Chinese Bias Evaluation Benchmark (McBE) that includes 4,077 bias evaluation instances, covering 12 single bias categories, 82 subcategories and introducing 5 evaluation tasks, providing extensive category coverage, content diversity, and measuring comprehensiveness. Additionally, we evaluate several popular LLMs from different series and with parameter sizes. In general, all these LLMs demonstrated varying degrees of bias. We conduct an in-depth analysis of results, offering novel insights into bias in LLMs.
USB: A Comprehensive and Unified Safety Evaluation Benchmark for Multimodal Large Language Models
Despite their remarkable achievements and widespread adoption, Multimodal Large Language Models (MLLMs) have revealed significant security vulnerabilities, highlighting the urgent need for robust safety evaluation benchmarks. Existing MLLM safety benchmarks, however, fall short in terms of data quality and coverge, and modal risk combinations, resulting in inflated and contradictory evaluation results, which hinders the discovery and governance of security concerns. Besides, we argue that vulnerabilities to harmful queries and oversensitivity to harmless ones should be considered simultaneously in MLLMs safety evaluation, whereas these were previously considered separately. In this paper, to address these shortcomings, we introduce Unified Safety Benchmarks (USB), which is one of the most comprehensive evaluation benchmarks in MLLM safety. Our benchmark features high-quality queries, extensive risk categories, comprehensive modal combinations, and encompasses both vulnerability and oversensitivity evaluations. From the perspective of two key dimensions: risk categories and modality combinations, we demonstrate that the available benchmarks -- even the union of the vast majority of them -- are far from being truly comprehensive. To bridge this gap, we design a sophisticated data synthesis pipeline that generates extensive, high-quality complementary data addressing previously unexplored aspects. By combining open-source datasets with our synthetic data, our benchmark provides 4 distinct modality combinations for each of the 61 risk sub-categories, covering both English and Chinese across both vulnerability and oversensitivity dimensions.
A Japanese Language Model and Three New Evaluation Benchmarks for Pharmaceutical NLP
We present a Japanese domain-specific language model for the pharmaceutical field, developed through continual pretraining on 2 billion Japanese pharmaceutical tokens and 8 billion English biomedical tokens. To enable rigorous evaluation, we introduce three new benchmarks: YakugakuQA, based on national pharmacist licensing exams; NayoseQA, which tests cross-lingual synonym and terminology normalization; and SogoCheck, a novel task designed to assess consistency reasoning between paired statements. We evaluate our model against both open-source medical LLMs and commercial models, including GPT-4o. Results show that our domain-specific model outperforms existing open models and achieves competitive performance with commercial ones, particularly on terminology-heavy and knowledge-based tasks. Interestingly, even GPT-4o performs poorly on SogoCheck, suggesting that cross-sentence consistency reasoning remains an open challenge. Our benchmark suite offers a broader diagnostic lens for pharmaceutical NLP, covering factual recall, lexical variation, and logical consistency. This work demonstrates the feasibility of building practical, secure, and cost-effective language models for Japanese domain-specific applications, and provides reusable evaluation resources for future research in pharmaceutical and healthcare NLP. Our model, codes, and datasets are released at https://github.com/EQUES-Inc/pharma-LLM-eval.
ChineseEcomQA: A Scalable E-commerce Concept Evaluation Benchmark for Large Language Models
With the increasing use of Large Language Models (LLMs) in fields such as e-commerce, domain-specific concept evaluation benchmarks are crucial for assessing their domain capabilities. Existing LLMs may generate factually incorrect information within the complex e-commerce applications. Therefore, it is necessary to build an e-commerce concept benchmark. Existing benchmarks encounter two primary challenges: (1) handle the heterogeneous and diverse nature of tasks, (2) distinguish between generality and specificity within the e-commerce field. To address these problems, we propose ChineseEcomQA, a scalable question-answering benchmark focused on fundamental e-commerce concepts. ChineseEcomQA is built on three core characteristics: Focus on Fundamental Concept, E-commerce Generality and E-commerce Expertise. Fundamental concepts are designed to be applicable across a diverse array of e-commerce tasks, thus addressing the challenge of heterogeneity and diversity. Additionally, by carefully balancing generality and specificity, ChineseEcomQA effectively differentiates between broad e-commerce concepts, allowing for precise validation of domain capabilities. We achieve this through a scalable benchmark construction process that combines LLM validation, Retrieval-Augmented Generation (RAG) validation, and rigorous manual annotation. Based on ChineseEcomQA, we conduct extensive evaluations on mainstream LLMs and provide some valuable insights. We hope that ChineseEcomQA could guide future domain-specific evaluations, and facilitate broader LLM adoption in e-commerce applications.
FREB-TQA: A Fine-Grained Robustness Evaluation Benchmark for Table Question Answering
Table Question Answering (TQA) aims at composing an answer to a question based on tabular data. While prior research has shown that TQA models lack robustness, understanding the underlying cause and nature of this issue remains predominantly unclear, posing a significant obstacle to the development of robust TQA systems. In this paper, we formalize three major desiderata for a fine-grained evaluation of robustness of TQA systems. They should (i) answer questions regardless of alterations in table structure, (ii) base their responses on the content of relevant cells rather than on biases, and (iii) demonstrate robust numerical reasoning capabilities. To investigate these aspects, we create and publish a novel TQA evaluation benchmark in English. Our extensive experimental analysis reveals that none of the examined state-of-the-art TQA systems consistently excels in these three aspects. Our benchmark is a crucial instrument for monitoring the behavior of TQA systems and paves the way for the development of robust TQA systems. We release our benchmark publicly.
SciEval: A Multi-Level Large Language Model Evaluation Benchmark for Scientific Research
Recently, there has been growing interest in using Large Language Models (LLMs) for scientific research. Numerous benchmarks have been proposed to evaluate the ability of LLMs for scientific research. However, current benchmarks are mostly based on pre-collected objective questions. This design suffers from data leakage problem and lacks the evaluation of subjective Q/A ability. In this paper, we propose SciEval, a comprehensive and multi-disciplinary evaluation benchmark to address these issues. Based on Bloom's taxonomy, SciEval covers four dimensions to systematically evaluate scientific research ability. In particular, we design a "dynamic" subset based on scientific principles to prevent evaluation from potential data leakage. Both objective and subjective questions are included in SciEval. These characteristics make SciEval a more effective benchmark for scientific research ability evaluation of LLMs. Comprehensive experiments on most advanced LLMs show that, although GPT-4 achieves SOTA performance compared to other LLMs, there is still substantial room for improvement, especially for dynamic questions. The data and codes are now publicly available.
bgGLUE: A Bulgarian General Language Understanding Evaluation Benchmark
We present bgGLUE(Bulgarian General Language Understanding Evaluation), a benchmark for evaluating language models on Natural Language Understanding (NLU) tasks in Bulgarian. Our benchmark includes NLU tasks targeting a variety of NLP problems (e.g., natural language inference, fact-checking, named entity recognition, sentiment analysis, question answering, etc.) and machine learning tasks (sequence labeling, document-level classification, and regression). We run the first systematic evaluation of pre-trained language models for Bulgarian, comparing and contrasting results across the nine tasks in the benchmark. The evaluation results show strong performance on sequence labeling tasks, but there is a lot of room for improvement for tasks that require more complex reasoning. We make bgGLUE publicly available together with the fine-tuning and the evaluation code, as well as a public leaderboard at https://bgglue.github.io/, and we hope that it will enable further advancements in developing NLU models for Bulgarian.
HaluEval: A Large-Scale Hallucination Evaluation Benchmark for Large Language Models
Large language models (LLMs), such as ChatGPT, are prone to generate hallucinations, i.e., content that conflicts with the source or cannot be verified by the factual knowledge. To understand what types of content and to which extent LLMs are apt to hallucinate, we introduce the Hallucination Evaluation benchmark for Large Language Models (HaluEval), a large collection of generated and human-annotated hallucinated samples for evaluating the performance of LLMs in recognizing hallucination. To generate these samples, we propose a ChatGPT-based two-step framework, i.e., sampling-then-filtering. Besides, we also hire some human labelers to annotate the hallucinations in ChatGPT responses. The empirical results suggest that ChatGPT is likely to generate hallucinated content in specific topics by fabricating unverifiable information (i.e., about 19.5% responses). Moreover, existing LLMs face great challenges in recognizing the hallucinations in texts. However, our experiments also prove that providing external knowledge or adding reasoning steps can help LLMs recognize hallucinations. Our benchmark can be accessed at https://github.com/RUCAIBox/HaluEval.
FewCLUE: A Chinese Few-shot Learning Evaluation Benchmark
Pretrained Language Models (PLMs) have achieved tremendous success in natural language understanding tasks. While different learning schemes -- fine-tuning, zero-shot, and few-shot learning -- have been widely explored and compared for languages such as English, there is comparatively little work in Chinese to fairly and comprehensively evaluate and compare these methods and thus hinders cumulative progress. In this paper, we introduce the Chinese Few-shot Learning Evaluation Benchmark (FewCLUE), the first comprehensive few-shot evaluation benchmark in Chinese. It includes nine tasks, ranging from single-sentence and sentence-pair classification tasks to machine reading comprehension tasks. We systematically evaluate five state-of-the-art (SOTA) few-shot learning methods (including PET, ADAPET, LM-BFF, P-tuning and EFL), and compare their performance with fine-tuning and zero-shot learning schemes on the newly constructed FewCLUE benchmark. Experimental results reveal that: 1) The effect of different few-shot learning methods is sensitive to the pre-trained model to which the methods are applied; 2) PET and P-tuning achieve the best overall performance with RoBERTa and ERNIE respectively. Our benchmark is used in the few-shot learning contest of NLPCC 2021. In addition, we provide a user-friendly toolkit, as well as an online leaderboard to help facilitate further progress on Chinese few-shot learning. We provide a baseline performance on different learning methods, a reference for future research.
CLUE: A Chinese Language Understanding Evaluation Benchmark
The advent of natural language understanding (NLU) benchmarks for English, such as GLUE and SuperGLUE allows new NLU models to be evaluated across a diverse set of tasks. These comprehensive benchmarks have facilitated a broad range of research and applications in natural language processing (NLP). The problem, however, is that most such benchmarks are limited to English, which has made it difficult to replicate many of the successes in English NLU for other languages. To help remedy this issue, we introduce the first large-scale Chinese Language Understanding Evaluation (CLUE) benchmark. CLUE is an open-ended, community-driven project that brings together 9 tasks spanning several well-established single-sentence/sentence-pair classification tasks, as well as machine reading comprehension, all on original Chinese text. To establish results on these tasks, we report scores using an exhaustive set of current state-of-the-art pre-trained Chinese models (9 in total). We also introduce a number of supplementary datasets and additional tools to help facilitate further progress on Chinese NLU. Our benchmark is released at https://www.CLUEbenchmarks.com
PandaLM: An Automatic Evaluation Benchmark for LLM Instruction Tuning Optimization
Instruction tuning large language models (LLMs) remains a challenging task, owing to the complexity of hyperparameter selection and the difficulty involved in evaluating the tuned models. To determine the optimal hyperparameters, an automatic, robust, and reliable evaluation benchmark is essential. However, establishing such a benchmark is not a trivial task due to the challenges associated with evaluation accuracy and privacy protection. In response to these challenges, we introduce a judge large language model, named PandaLM, which is trained to distinguish the superior model given several LLMs. PandaLM's focus extends beyond just the objective correctness of responses, which is the main focus of traditional evaluation datasets. It addresses vital subjective factors such as relative conciseness, clarity, adherence to instructions, comprehensiveness, and formality. To ensure the reliability of PandaLM, we collect a diverse human-annotated test dataset, where all contexts are generated by humans and labels are aligned with human preferences. Our results indicate that PandaLM-7B achieves 93.75% of GPT-3.5's evaluation ability and 88.28% of GPT-4's in terms of F1-score on our test dataset. PandaLM enables the evaluation of LLM to be fairer but with less cost, evidenced by significant improvements achieved by models tuned through PandaLM compared to their counterparts trained with default Alpaca's hyperparameters. In addition, PandaLM does not depend on API-based evaluations, thus avoiding potential data leakage. All resources of PandaLM are released at https://github.com/WeOpenML/PandaLM.
RoleEval: A Bilingual Role Evaluation Benchmark for Large Language Models
The rapid evolution of large language models (LLMs) necessitates effective benchmarks for evaluating their role knowledge, which is essential for establishing connections with the real world and providing more immersive interactions. This paper introduces RoleEval, a bilingual benchmark designed to assess the memorization, utilization, and reasoning capabilities of role knowledge. RoleEval comprises RoleEval-Global (including internationally recognized characters) and RoleEval-Chinese (including characters popular in China), with 6,000 Chinese-English parallel multiple-choice questions focusing on 300 influential people and fictional characters drawn from a variety of domains including celebrities, anime, comics, movies, TV series, games, and fiction. These questions cover basic knowledge and multi-hop reasoning abilities, aiming to systematically probe various aspects such as personal information, relationships, abilities, and experiences of the characters. To maintain high standards, we perform a hybrid quality check process combining automatic and human verification, ensuring that the questions are diverse, challenging, and discriminative. Our extensive evaluations of RoleEval across various open-source and proprietary large language models, under both the zero- and few-shot settings, reveal insightful findings. Notably, while GPT-4 outperforms other models on RoleEval-Global, Chinese LLMs excel on RoleEval-Chinese, highlighting significant knowledge distribution differences. We expect that RoleEval will highlight the significance of assessing role knowledge for foundation models across various languages and cultural settings.
VANE-Bench: Video Anomaly Evaluation Benchmark for Conversational LMMs
The recent developments in Large Multi-modal Video Models (Video-LMMs) have significantly enhanced our ability to interpret and analyze video data. Despite their impressive capabilities, current Video-LMMs have not been evaluated for anomaly detection tasks, which is critical to their deployment in practical scenarios e.g., towards identifying deepfakes, manipulated video content, traffic accidents and crimes. In this paper, we introduce VANE-Bench, a benchmark designed to assess the proficiency of Video-LMMs in detecting and localizing anomalies and inconsistencies in videos. Our dataset comprises an array of videos synthetically generated using existing state-of-the-art text-to-video generation models, encompassing a variety of subtle anomalies and inconsistencies grouped into five categories: unnatural transformations, unnatural appearance, pass-through, disappearance and sudden appearance. Additionally, our benchmark features real-world samples from existing anomaly detection datasets, focusing on crime-related irregularities, atypical pedestrian behavior, and unusual events. The task is structured as a visual question-answering challenge to gauge the models' ability to accurately detect and localize the anomalies within the videos. We evaluate nine existing Video-LMMs, both open and closed sources, on this benchmarking task and find that most of the models encounter difficulties in effectively identifying the subtle anomalies. In conclusion, our research offers significant insights into the current capabilities of Video-LMMs in the realm of anomaly detection, highlighting the importance of our work in evaluating and improving these models for real-world applications. Our code and data is available at https://hananshafi.github.io/vane-benchmark/
CodeApex: A Bilingual Programming Evaluation Benchmark for Large Language Models
With the emergence of Large Language Models (LLMs), there has been a significant improvement in the programming capabilities of models, attracting growing attention from researchers. We propose CodeApex, a bilingual benchmark dataset focusing on the programming comprehension and code generation abilities of LLMs. CodeApex comprises three types of multiple-choice questions: conceptual understanding, commonsense reasoning, and multi-hop reasoning, designed to evaluate LLMs on programming comprehension tasks. Additionally, CodeApex utilizes algorithmic questions and corresponding test cases to assess the code quality generated by LLMs. We evaluate 14 state-of-the-art LLMs, including both general-purpose and specialized models. GPT exhibits the best programming capabilities, achieving approximate accuracies of 50% and 56% on the two tasks, respectively. There is still significant room for improvement in programming tasks. We hope that CodeApex can serve as a reference for evaluating the coding capabilities of LLMs, further promoting their development and growth. Datasets are released at https://github.com/APEXLAB/CodeApex.git. CodeApex submission website is https://apex.sjtu.edu.cn/codeapex/.
SecReEvalBench: A Multi-turned Security Resilience Evaluation Benchmark for Large Language Models
The increasing deployment of large language models in security-sensitive domains necessitates rigorous evaluation of their resilience against adversarial prompt-based attacks. While previous benchmarks have focused on security evaluations with limited and predefined attack domains, such as cybersecurity attacks, they often lack a comprehensive assessment of intent-driven adversarial prompts and the consideration of real-life scenario-based multi-turn attacks. To address this gap, we present SecReEvalBench, the Security Resilience Evaluation Benchmark, which defines four novel metrics: Prompt Attack Resilience Score, Prompt Attack Refusal Logic Score, Chain-Based Attack Resilience Score and Chain-Based Attack Rejection Time Score. Moreover, SecReEvalBench employs six questioning sequences for model assessment: one-off attack, successive attack, successive reverse attack, alternative attack, sequential ascending attack with escalating threat levels and sequential descending attack with diminishing threat levels. In addition, we introduce a dataset customized for the benchmark, which incorporates both neutral and malicious prompts, categorised across seven security domains and sixteen attack techniques. In applying this benchmark, we systematically evaluate five state-of-the-art open-weighted large language models, Llama 3.1, Gemma 2, Mistral v0.3, DeepSeek-R1 and Qwen 3. Our findings offer critical insights into the strengths and weaknesses of modern large language models in defending against evolving adversarial threats. The SecReEvalBench dataset is publicly available at https://kaggle.com/datasets/5a7ee22cf9dab6c93b55a73f630f6c9b42e936351b0ae98fbae6ddaca7fe248d, which provides a groundwork for advancing research in large language model security.
Qiskit HumanEval: An Evaluation Benchmark For Quantum Code Generative Models
Quantum programs are typically developed using quantum Software Development Kits (SDKs). The rapid advancement of quantum computing necessitates new tools to streamline this development process, and one such tool could be Generative Artificial intelligence (GenAI). In this study, we introduce and use the Qiskit HumanEval dataset, a hand-curated collection of tasks designed to benchmark the ability of Large Language Models (LLMs) to produce quantum code using Qiskit - a quantum SDK. This dataset consists of more than 100 quantum computing tasks, each accompanied by a prompt, a canonical solution, a comprehensive test case, and a difficulty scale to evaluate the correctness of the generated solutions. We systematically assess the performance of a set of LLMs against the Qiskit HumanEval dataset's tasks and focus on the models ability in producing executable quantum code. Our findings not only demonstrate the feasibility of using LLMs for generating quantum code but also establish a new benchmark for ongoing advancements in the field and encourage further exploration and development of GenAI-driven tools for quantum code generation.
QGEval: A Benchmark for Question Generation Evaluation
Automatically generated questions often suffer from problems such as unclear expression or factual inaccuracies, requiring a reliable and comprehensive evaluation of their quality. Human evaluation is frequently used in the field of question generation (QG) and is one of the most accurate evaluation methods. It also serves as the standard for automatic metrics. However, there is a lack of unified evaluation criteria, which hampers the development of both QG technologies and automatic evaluation methods. To address this, we propose QGEval, a multi-dimensional Evaluation benchmark for Question Generation, which evaluates both generated questions and existing automatic metrics across 7 dimensions: fluency, clarity, conciseness, relevance, consistency, answerability, and answer consistency. We demonstrate the appropriateness of these dimensions by examining their correlations and distinctions. Analysis with QGEval reveals that 1) most QG models perform unsatisfactorily in terms of answerability and answer consistency, and 2) existing metrics fail to align well with human assessments when evaluating generated questions across the 7 dimensions. We expect this work to foster the development of both QG technologies and automatic metrics for QG.
CT-ADE: An Evaluation Benchmark for Adverse Drug Event Prediction from Clinical Trial Results
Adverse drug events (ADEs) significantly impact clinical research, causing many clinical trial failures. ADE prediction is key for developing safer medications and enhancing patient outcomes. To support this effort, we introduce CT-ADE, a dataset for multilabel predictive modeling of ADEs in monopharmacy treatments. CT-ADE integrates data from 2,497 unique drugs, encompassing 168,984 drug-ADE pairs extracted from clinical trials, annotated with patient and contextual information, and comprehensive ADE concepts standardized across multiple levels of the MedDRA ontology. Preliminary analyses with large language models (LLMs) achieved F1-scores up to 55.90%. Models using patient and contextual information showed F1-score improvements of 21%-38% over models using only chemical structure data. Our results highlight the importance of target population and treatment regimens in the predictive modeling of ADEs, offering greater performance gains than LLM domain specialization and scaling. CT-ADE provides an essential tool for researchers aiming to leverage artificial intelligence and machine learning to enhance patient safety and minimize the impact of ADEs on pharmaceutical research and development. The dataset is publicly accessible at https://github.com/ds4dh/CT-ADE.
Rapidly Developing High-quality Instruction Data and Evaluation Benchmark for Large Language Models with Minimal Human Effort: A Case Study on Japanese
The creation of instruction data and evaluation benchmarks for serving Large language models often involves enormous human annotation. This issue becomes particularly pronounced when rapidly developing such resources for a non-English language like Japanese. Instead of following the popular practice of directly translating existing English resources into Japanese (e.g., Japanese-Alpaca), we propose an efficient self-instruct method based on GPT-4. We first translate a small amount of English instructions into Japanese and post-edit them to obtain native-level quality. GPT-4 then utilizes them as demonstrations to automatically generate Japanese instruction data. We also construct an evaluation benchmark containing 80 questions across 8 categories, using GPT-4 to automatically assess the response quality of LLMs without human references. The empirical results suggest that the models fine-tuned on our GPT-4 self-instruct data significantly outperformed the Japanese-Alpaca across all three base pre-trained models. Our GPT-4 self-instruct data allowed the LLaMA 13B model to defeat GPT-3.5 (Davinci-003) with a 54.37\% win-rate. The human evaluation exhibits the consistency between GPT-4's assessments and human preference. Our high-quality instruction data and evaluation benchmark have been released here.
MT-Eval: A Multi-Turn Capabilities Evaluation Benchmark for Large Language Models
Large language models (LLMs) are increasingly relied upon for complex multi-turn conversations across diverse real-world applications. However, existing benchmarks predominantly focus on single-turn evaluations, overlooking the models' capabilities in multi-turn interactions. To address this gap, we introduce MT-Eval, a comprehensive benchmark designed to evaluate multi-turn conversational abilities. By analyzing human-LLM conversations, we categorize interaction patterns into four types: recollection, expansion, refinement, and follow-up. We construct multi-turn queries for each category either by augmenting existing datasets or by creating new examples with GPT-4 to avoid data leakage. To study the factors impacting multi-turn abilities, we create single-turn versions of the 1170 multi-turn queries and compare performance. Our evaluation of 11 well-known LLMs shows that while closed-source models generally surpass open-source ones, certain open-source models exceed GPT-3.5-Turbo in specific tasks. We observe significant performance degradation in multi-turn settings compared to single-turn settings in most models, which is not correlated with the models' fundamental capabilities. Moreover, we identify the distance to relevant content and susceptibility to error propagation as the key factors influencing multi-turn performance. MT-Eval is released publicly to encourage future research towards more robust conversational models.
MME: A Comprehensive Evaluation Benchmark for Multimodal Large Language Models
Multimodal Large Language Model (MLLM) relies on the powerful LLM to perform multimodal tasks, showing amazing emergent abilities in recent studies, such as writing poems based on an image. However, it is difficult for these case studies to fully reflect the performance of MLLM, lacking a comprehensive evaluation. In this paper, we fill in this blank, presenting the first MLLM Evaluation benchmark MME. It measures both perception and cognition abilities on a total of 14 subtasks. In order to avoid data leakage that may arise from direct use of public datasets for evaluation, the annotations of instruction-answer pairs are all manually designed. The concise instruction design allows us to fairly compare MLLMs, instead of struggling in prompt engineering. Besides, with such an instruction, we can also easily carry out quantitative statistics. A total of 12 advanced MLLMs are comprehensively evaluated on our MME, which not only suggests that existing MLLMs still have a large room for improvement, but also reveals the potential directions for the subsequent model optimization.
LVLM-eHub: A Comprehensive Evaluation Benchmark for Large Vision-Language Models
Large Vision-Language Models (LVLMs) have recently played a dominant role in multimodal vision-language learning. Despite the great success, it lacks a holistic evaluation of their efficacy. This paper presents a comprehensive evaluation of publicly available large multimodal models by building a LVLM evaluation Hub (LVLM-eHub). Our LVLM-eHub consists of 8 representative LVLMs such as InstructBLIP and MiniGPT-4, which are thoroughly evaluated by a quantitative capability evaluation and an online arena platform. The former evaluates 6 categories of multimodal capabilities of LVLMs such as visual question answering and embodied artificial intelligence on 47 standard text-related visual benchmarks, while the latter provides the user-level evaluation of LVLMs in an open-world question-answering scenario. The study reveals several innovative findings. First, instruction-tuned LVLM with massive in-domain data such as InstructBLIP heavily overfits many existing tasks, generalizing poorly in the open-world scenario. Second, instruction-tuned LVLM with moderate instruction-following data may result in object hallucination issues (i.e., generate objects that are inconsistent with target images in the descriptions). It either makes the current evaluation metric such as CIDEr for image captioning ineffective or generates wrong answers. Third, employing a multi-turn reasoning evaluation framework can mitigate the issue of object hallucination, shedding light on developing an effective pipeline for LVLM evaluation. The findings provide a foundational framework for the conception and assessment of innovative strategies aimed at enhancing zero-shot multimodal techniques. Our LVLM-eHub will be available at https://github.com/OpenGVLab/Multi-Modality-Arena
CGCE: A Chinese Generative Chat Evaluation Benchmark for General and Financial Domains
Generative chat models, such as ChatGPT and GPT-4, have revolutionized natural language generation (NLG) by incorporating instructions and human feedback to achieve significant performance improvements. However, the lack of standardized evaluation benchmarks for chat models, particularly for Chinese and domain-specific models, hinders their assessment and progress. To address this gap, we introduce the Chinese Generative Chat Evaluation (CGCE) benchmark, focusing on general and financial domains. The CGCE benchmark encompasses diverse tasks, including 200 questions in the general domain and 150 specific professional questions in the financial domain. Manual scoring evaluates factors such as accuracy, coherence, expression clarity, and completeness. The CGCE benchmark provides researchers with a standardized framework to assess and compare Chinese generative chat models, fostering advancements in NLG research.
RussianSuperGLUE: A Russian Language Understanding Evaluation Benchmark
In this paper, we introduce an advanced Russian general language understanding evaluation benchmark -- RussianGLUE. Recent advances in the field of universal language models and transformers require the development of a methodology for their broad diagnostics and testing for general intellectual skills - detection of natural language inference, commonsense reasoning, ability to perform simple logical operations regardless of text subject or lexicon. For the first time, a benchmark of nine tasks, collected and organized analogically to the SuperGLUE methodology, was developed from scratch for the Russian language. We provide baselines, human level evaluation, an open-source framework for evaluating models (https://github.com/RussianNLP/RussianSuperGLUE), and an overall leaderboard of transformer models for the Russian language. Besides, we present the first results of comparing multilingual models in the adapted diagnostic test set and offer the first steps to further expanding or assessing state-of-the-art models independently of language.
On the Benchmarking of LLMs for Open-Domain Dialogue Evaluation
Large Language Models (LLMs) have showcased remarkable capabilities in various Natural Language Processing tasks. For automatic open-domain dialogue evaluation in particular, LLMs have been seamlessly integrated into evaluation frameworks, and together with human evaluation, compose the backbone of most evaluations. However, existing evaluation benchmarks often rely on outdated datasets and evaluate aspects like Fluency and Relevance, which fail to adequately capture the capabilities and limitations of state-of-the-art chatbot models. This paper critically examines current evaluation benchmarks, highlighting that the use of older response generators and quality aspects fail to accurately reflect modern chatbot capabilities. A small annotation experiment on a recent LLM-generated dataset (SODA) reveals that LLM evaluators such as GPT-4 struggle to detect actual deficiencies in dialogues generated by current LLM chatbots.
Video-MME: The First-Ever Comprehensive Evaluation Benchmark of Multi-modal LLMs in Video Analysis
In the quest for artificial general intelligence, Multi-modal Large Language Models (MLLMs) have emerged as a focal point in recent advancements. However, the predominant focus remains on developing their capabilities in static image understanding. The potential of MLLMs in processing sequential visual data is still insufficiently explored, highlighting the absence of a comprehensive, high-quality assessment of their performance. In this paper, we introduce Video-MME, the first-ever full-spectrum, Multi-Modal Evaluation benchmark of MLLMs in Video analysis. Our work distinguishes from existing benchmarks through four key features: 1) Diversity in video types, spanning 6 primary visual domains with 30 subfields to ensure broad scenario generalizability; 2) Duration in temporal dimension, encompassing both short-, medium-, and long-term videos, ranging from 11 seconds to 1 hour, for robust contextual dynamics; 3) Breadth in data modalities, integrating multi-modal inputs besides video frames, including subtitles and audios, to unveil the all-round capabilities of MLLMs; 4) Quality in annotations, utilizing rigorous manual labeling by expert annotators to facilitate precise and reliable model assessment. 900 videos with a total of 256 hours are manually selected and annotated by repeatedly viewing all the video content, resulting in 2,700 question-answer pairs. With Video-MME, we extensively evaluate various state-of-the-art MLLMs, including GPT-4 series and Gemini 1.5 Pro, as well as open-source image models like InternVL-Chat-V1.5 and video models like LLaVA-NeXT-Video. Our experiments reveal that Gemini 1.5 Pro is the best-performing commercial model, significantly outperforming the open-source models. Our dataset along with these findings underscores the need for further improvements in handling longer sequences and multi-modal data. Project Page: https://video-mme.github.io
BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of Information Retrieval Models
Existing neural information retrieval (IR) models have often been studied in homogeneous and narrow settings, which has considerably limited insights into their out-of-distribution (OOD) generalization capabilities. To address this, and to facilitate researchers to broadly evaluate the effectiveness of their models, we introduce Benchmarking-IR (BEIR), a robust and heterogeneous evaluation benchmark for information retrieval. We leverage a careful selection of 18 publicly available datasets from diverse text retrieval tasks and domains and evaluate 10 state-of-the-art retrieval systems including lexical, sparse, dense, late-interaction and re-ranking architectures on the BEIR benchmark. Our results show BM25 is a robust baseline and re-ranking and late-interaction-based models on average achieve the best zero-shot performances, however, at high computational costs. In contrast, dense and sparse-retrieval models are computationally more efficient but often underperform other approaches, highlighting the considerable room for improvement in their generalization capabilities. We hope this framework allows us to better evaluate and understand existing retrieval systems, and contributes to accelerating progress towards better robust and generalizable systems in the future. BEIR is publicly available at https://github.com/UKPLab/beir.
FineMath: A Fine-Grained Mathematical Evaluation Benchmark for Chinese Large Language Models
To thoroughly assess the mathematical reasoning abilities of Large Language Models (LLMs), we need to carefully curate evaluation datasets covering diverse mathematical concepts and mathematical problems at different difficulty levels. In pursuit of this objective, we propose FineMath in this paper, a fine-grained mathematical evaluation benchmark dataset for assessing Chinese LLMs. FineMath is created to cover the major key mathematical concepts taught in elementary school math, which are further divided into 17 categories of math word problems, enabling in-depth analysis of mathematical reasoning abilities of LLMs. All the 17 categories of math word problems are manually annotated with their difficulty levels according to the number of reasoning steps required to solve these problems. We conduct extensive experiments on a wide range of LLMs on FineMath and find that there is still considerable room for improvements in terms of mathematical reasoning capability of Chinese LLMs. We also carry out an in-depth analysis on the evaluation process and methods that have been overlooked previously. These two factors significantly influence the model results and our understanding of their mathematical reasoning capabilities. The dataset will be publicly available soon.
MME-Industry: A Cross-Industry Multimodal Evaluation Benchmark
With the rapid advancement of Multimodal Large Language Models (MLLMs), numerous evaluation benchmarks have emerged. However, comprehensive assessments of their performance across diverse industrial applications remain limited. In this paper, we introduce MME-Industry, a novel benchmark designed specifically for evaluating MLLMs in industrial settings.The benchmark encompasses 21 distinct domain, comprising 1050 question-answer pairs with 50 questions per domain. To ensure data integrity and prevent potential leakage from public datasets, all question-answer pairs were manually crafted and validated by domain experts. Besides, the benchmark's complexity is effectively enhanced by incorporating non-OCR questions that can be answered directly, along with tasks requiring specialized domain knowledge. Moreover, we provide both Chinese and English versions of the benchmark, enabling comparative analysis of MLLMs' capabilities across these languages. Our findings contribute valuable insights into MLLMs' practical industrial applications and illuminate promising directions for future model optimization research.
Benchmarking Large Language Models on CFLUE -- A Chinese Financial Language Understanding Evaluation Dataset
In light of recent breakthroughs in large language models (LLMs) that have revolutionized natural language processing (NLP), there is an urgent need for new benchmarks to keep pace with the fast development of LLMs. In this paper, we propose CFLUE, the Chinese Financial Language Understanding Evaluation benchmark, designed to assess the capability of LLMs across various dimensions. Specifically, CFLUE provides datasets tailored for both knowledge assessment and application assessment. In knowledge assessment, it consists of 38K+ multiple-choice questions with associated solution explanations. These questions serve dual purposes: answer prediction and question reasoning. In application assessment, CFLUE features 16K+ test instances across distinct groups of NLP tasks such as text classification, machine translation, relation extraction, reading comprehension, and text generation. Upon CFLUE, we conduct a thorough evaluation of representative LLMs. The results reveal that only GPT-4 and GPT-4-turbo achieve an accuracy exceeding 60\% in answer prediction for knowledge assessment, suggesting that there is still substantial room for improvement in current LLMs. In application assessment, although GPT-4 and GPT-4-turbo are the top two performers, their considerable advantage over lightweight LLMs is noticeably diminished. The datasets and scripts associated with CFLUE are openly accessible at https://github.com/aliyun/cflue.
FinEval: A Chinese Financial Domain Knowledge Evaluation Benchmark for Large Language Models
Large language models (LLMs) have demonstrated exceptional performance in various natural language processing tasks, yet their efficacy in more challenging and domain-specific tasks remains largely unexplored. This paper presents FinEval, a benchmark specifically designed for the financial domain knowledge in the LLMs. FinEval is a collection of high-quality multiple-choice questions covering Finance, Economy, Accounting, and Certificate. It includes 4,661 questions spanning 34 different academic subjects. To ensure a comprehensive model performance evaluation, FinEval employs a range of prompt types, including zero-shot and few-shot prompts, as well as answer-only and chain-of-thought prompts. Evaluating state-of-the-art Chinese and English LLMs on FinEval, the results show that only GPT-4 achieved an accuracy close to 70% in different prompt settings, indicating significant growth potential for LLMs in the financial domain knowledge. Our work offers a more comprehensive financial knowledge evaluation benchmark, utilizing data of mock exams and covering a wide range of evaluated LLMs.
The DEVIL is in the Details: A Diagnostic Evaluation Benchmark for Video Inpainting
Quantitative evaluation has increased dramatically among recent video inpainting work, but the video and mask content used to gauge performance has received relatively little attention. Although attributes such as camera and background scene motion inherently change the difficulty of the task and affect methods differently, existing evaluation schemes fail to control for them, thereby providing minimal insight into inpainting failure modes. To address this gap, we propose the Diagnostic Evaluation of Video Inpainting on Landscapes (DEVIL) benchmark, which consists of two contributions: (i) a novel dataset of videos and masks labeled according to several key inpainting failure modes, and (ii) an evaluation scheme that samples slices of the dataset characterized by a fixed content attribute, and scores performance on each slice according to reconstruction, realism, and temporal consistency quality. By revealing systematic changes in performance induced by particular characteristics of the input content, our challenging benchmark enables more insightful analysis into video inpainting methods and serves as an invaluable diagnostic tool for the field. Our code and data are available at https://github.com/MichiganCOG/devil .
Why Not Simply Translate? A First Swedish Evaluation Benchmark for Semantic Similarity
This paper presents the first Swedish evaluation benchmark for textual semantic similarity. The benchmark is compiled by simply running the English STS-B dataset through the Google machine translation API. This paper discusses potential problems with using such a simple approach to compile a Swedish evaluation benchmark, including translation errors, vocabulary variation, and productive compounding. Despite some obvious problems with the resulting dataset, we use the benchmark to compare the majority of the currently existing Swedish text representations, demonstrating that native models outperform multilingual ones, and that simple bag of words performs remarkably well.
CognitiveDrone: A VLA Model and Evaluation Benchmark for Real-Time Cognitive Task Solving and Reasoning in UAVs
This paper introduces CognitiveDrone, a novel Vision-Language-Action (VLA) model tailored for complex Unmanned Aerial Vehicles (UAVs) tasks that demand advanced cognitive abilities. Trained on a dataset comprising over 8,000 simulated flight trajectories across three key categories-Human Recognition, Symbol Understanding, and Reasoning-the model generates real-time 4D action commands based on first-person visual inputs and textual instructions. To further enhance performance in intricate scenarios, we propose CognitiveDrone-R1, which integrates an additional Vision-Language Model (VLM) reasoning module to simplify task directives prior to high-frequency control. Experimental evaluations using our open-source benchmark, CognitiveDroneBench, reveal that while a racing-oriented model (RaceVLA) achieves an overall success rate of 31.3%, the base CognitiveDrone model reaches 59.6%, and CognitiveDrone-R1 attains a success rate of 77.2%. These results demonstrate improvements of up to 30% in critical cognitive tasks, underscoring the effectiveness of incorporating advanced reasoning capabilities into UAV control systems. Our contributions include the development of a state-of-the-art VLA model for UAV control and the introduction of the first dedicated benchmark for assessing cognitive tasks in drone operations. The complete repository is available at cognitivedrone.github.io
PIXIU: A Large Language Model, Instruction Data and Evaluation Benchmark for Finance
Although large language models (LLMs) has shown great performance on natural language processing (NLP) in the financial domain, there are no publicly available financial tailtored LLMs, instruction tuning datasets, and evaluation benchmarks, which is critical for continually pushing forward the open-source development of financial artificial intelligence (AI). This paper introduces PIXIU, a comprehensive framework including the first financial LLM based on fine-tuning LLaMA with instruction data, the first instruction data with 136K data samples to support the fine-tuning, and an evaluation benchmark with 5 tasks and 9 datasets. We first construct the large-scale multi-task instruction data considering a variety of financial tasks, financial document types, and financial data modalities. We then propose a financial LLM called FinMA by fine-tuning LLaMA with the constructed dataset to be able to follow instructions for various financial tasks. To support the evaluation of financial LLMs, we propose a standardized benchmark that covers a set of critical financial tasks, including five financial NLP tasks and one financial prediction task. With this benchmark, we conduct a detailed analysis of FinMA and several existing LLMs, uncovering their strengths and weaknesses in handling critical financial tasks. The model, datasets, benchmark, and experimental results are open-sourced to facilitate future research in financial AI.
SwiftEval: Developing a Language-Specific Benchmark for LLM-generated Code Evaluation
In recent years, large language models (LLMs) have showcased significant advancements in code generation. However, most evaluation benchmarks are primarily oriented towards Python, making it difficult to evaluate other programming languages, such as Swift, with high quality. By examining widely established multilingual benchmarks like HumanEval-XL and MultiPL-E, we identified critical issues specific to their Swift components, making them insufficient or even irrelevant for assessing LLM coding capabilities on Swift. Unlike these existing approaches, which prioritize rapid scaling and generalization by automatically translating Python-centric benchmarks with LLMs, we adopt a quality-over-quantity methodology. We present SwiftEval, the first Swift-oriented benchmark consisting of 28 carefully hand-crafted problems, and evaluate 44 popular Code LLMs on it. Our results show significant LLM scores drop for problems requiring language-specific features, most noticeable in the models of smaller sizes.
S-Eval: Automatic and Adaptive Test Generation for Benchmarking Safety Evaluation of Large Language Models
Large Language Models have gained considerable attention for their revolutionary capabilities. However, there is also growing concern on their safety implications, making a comprehensive safety evaluation for LLMs urgently needed before model deployment. In this work, we propose S-Eval, a new comprehensive, multi-dimensional and open-ended safety evaluation benchmark. At the core of S-Eval is a novel LLM-based automatic test prompt generation and selection framework, which trains an expert testing LLM Mt combined with a range of test selection strategies to automatically construct a high-quality test suite for the safety evaluation. The key to the automation of this process is a novel expert safety-critique LLM Mc able to quantify the riskiness score of a LLM's response, and additionally produce risk tags and explanations. Besides, the generation process is also guided by a carefully designed risk taxonomy with four different levels, covering comprehensive and multi-dimensional safety risks of concern. Based on these, we systematically construct a new and large-scale safety evaluation benchmark for LLMs consisting of 220,000 evaluation prompts, including 20,000 base risk prompts (10,000 in Chinese and 10,000 in English) and 200, 000 corresponding attack prompts derived from 10 popular adversarial instruction attacks against LLMs. Moreover, considering the rapid evolution of LLMs and accompanied safety threats, S-Eval can be flexibly configured and adapted to include new risks, attacks and models. S-Eval is extensively evaluated on 20 popular and representative LLMs. The results confirm that S-Eval can better reflect and inform the safety risks of LLMs compared to existing benchmarks. We also explore the impacts of parameter scales, language environments, and decoding parameters on the evaluation, providing a systematic methodology for evaluating the safety of LLMs.
Pralekha: An Indic Document Alignment Evaluation Benchmark
Mining parallel document pairs poses a significant challenge because existing sentence embedding models often have limited context windows, preventing them from effectively capturing document-level information. Another overlooked issue is the lack of concrete evaluation benchmarks comprising high-quality parallel document pairs for assessing document-level mining approaches, particularly for Indic languages. In this study, we introduce Pralekha, a large-scale benchmark for document-level alignment evaluation. Pralekha includes over 2 million documents, with a 1:2 ratio of unaligned to aligned pairs, covering 11 Indic languages and English. Using Pralekha, we evaluate various document-level mining approaches across three dimensions: the embedding models, the granularity levels, and the alignment algorithm. To address the challenge of aligning documents using sentence and chunk-level alignments, we propose a novel scoring method, Document Alignment Coefficient (DAC). DAC demonstrates substantial improvements over baseline pooling approaches, particularly in noisy scenarios, achieving average gains of 20-30% in precision and 15-20% in F1 score. These results highlight DAC's effectiveness in parallel document mining for Indic languages.
OMGEval: An Open Multilingual Generative Evaluation Benchmark for Large Language Models
Modern large language models (LLMs) should generally benefit individuals from various cultural backgrounds around the world. However, most recent advanced generative evaluation benchmarks tailed for LLMs mainly focus on English. To this end, we introduce OMGEval, the first Open-source Multilingual Generative test set that can assess the capability of LLMs in different languages. For each language, OMGEval provides 804 open-ended questions, covering a wide range of important capabilities of LLMs, such as general knowledge, logical reasoning, and so on. Each question is rigorously verified by human annotators. Notably, to sufficiently reflect the compatibility of LLMs in different cultural backgrounds, we perform localization for each non-English language. Specifically, the current version of OMGEval includes 5 languages (i.e., Zh, Ru, Fr, Es, Ar). Following AlpacaEval, we employ GPT-4 as the adjudicator to automatically score different model outputs, which is shown closely related to human evaluation. We evaluate several representative multilingual LLMs on the proposed OMGEval, which we believe will provide a valuable reference for the community to further understand and improve the multilingual capability of LLMs. OMGEval is available at https://github.com/blcuicall/OMGEval.
Igbo-English Machine Translation: An Evaluation Benchmark
Although researchers and practitioners are pushing the boundaries and enhancing the capacities of NLP tools and methods, works on African languages are lagging. A lot of focus on well resourced languages such as English, Japanese, German, French, Russian, Mandarin Chinese etc. Over 97% of the world's 7000 languages, including African languages, are low resourced for NLP i.e. they have little or no data, tools, and techniques for NLP research. For instance, only 5 out of 2965, 0.19% authors of full text papers in the ACL Anthology extracted from the 5 major conferences in 2018 ACL, NAACL, EMNLP, COLING and CoNLL, are affiliated to African institutions. In this work, we discuss our effort toward building a standard machine translation benchmark dataset for Igbo, one of the 3 major Nigerian languages. Igbo is spoken by more than 50 million people globally with over 50% of the speakers are in southeastern Nigeria. Igbo is low resourced although there have been some efforts toward developing IgboNLP such as part of speech tagging and diacritic restoration
ToolSandbox: A Stateful, Conversational, Interactive Evaluation Benchmark for LLM Tool Use Capabilities
Recent large language models (LLMs) advancements sparked a growing research interest in tool assisted LLMs solving real-world challenges, which calls for comprehensive evaluation of tool-use capabilities. While previous works focused on either evaluating over stateless web services (RESTful API), based on a single turn user prompt, or an off-policy dialog trajectory, ToolSandbox includes stateful tool execution, implicit state dependencies between tools, a built-in user simulator supporting on-policy conversational evaluation and a dynamic evaluation strategy for intermediate and final milestones over an arbitrary trajectory. We show that open source and proprietary models have a significant performance gap, and complex tasks like State Dependency, Canonicalization and Insufficient Information defined in ToolSandbox are challenging even the most capable SOTA LLMs, providing brand-new insights into tool-use LLM capabilities. ToolSandbox evaluation framework is released at https://github.com/apple/ToolSandbox
How Many Unicorns Are in This Image? A Safety Evaluation Benchmark for Vision LLMs
This work focuses on the potential of Vision LLMs (VLLMs) in visual reasoning. Different from prior studies, we shift our focus from evaluating standard performance to introducing a comprehensive safety evaluation suite, covering both out-of-distribution (OOD) generalization and adversarial robustness. For the OOD evaluation, we present two novel VQA datasets, each with one variant, designed to test model performance under challenging conditions. In exploring adversarial robustness, we propose a straightforward attack strategy for misleading VLLMs to produce visual-unrelated responses. Moreover, we assess the efficacy of two jailbreaking strategies, targeting either the vision or language component of VLLMs. Our evaluation of 21 diverse models, ranging from open-source VLLMs to GPT-4V, yields interesting observations: 1) Current VLLMs struggle with OOD texts but not images, unless the visual information is limited; and 2) These VLLMs can be easily misled by deceiving vision encoders only, and their vision-language training often compromise safety protocols. We release this safety evaluation suite at https://github.com/UCSC-VLAA/vllm-safety-benchmark.
M4LE: A Multi-Ability Multi-Range Multi-Task Multi-Domain Long-Context Evaluation Benchmark for Large Language Models
Managing long sequences has become an important and necessary feature for large language models (LLMs). However, it is still an open question of how to comprehensively and systematically evaluate the long-sequence capability of LLMs. One of the reasons is that conventional and widely-used benchmarks mainly consist of short sequences. In this paper, we propose M4LE, a Multi-ability, Multi-range, Multi-task, Multi-domain benchmark for Long-context Evaluation. M4LE is based on a diverse NLP task pool comprising 36 NLP datasets, 11 task types and 12 domains. To alleviate the scarcity of tasks with naturally long sequences and incorporate multiple-ability assessment, we propose an automatic approach (but with negligible human annotations) to convert short-sequence tasks into a unified long-sequence scenario where LLMs have to identify single or multiple relevant spans in long contexts based on explicit or semantic hints. Specifically, the scenario includes five different types of abilities: (1) explicit single-span; (2) semantic single-span; (3) explicit multiple-span; (4) semantic multiple-span; and (5) global context understanding. The resulting samples in M4LE are evenly distributed from 1k to 8k input length. We conducted a systematic evaluation on 11 well-established LLMs, especially those optimized for long-sequence inputs. Our results reveal that: 1) Current LLMs struggle to understand long context, particularly when tasks require multiple-span attention. 2) Semantic retrieval task is more difficult for competent LLMs. 3) Models fine-tuned on longer text with position interpolation have comparable performance to those using Neural Tangent Kernel (NTK) aware scaling methods without fine-tuning. We make our benchmark publicly available to encourage future research in this challenging area.
My Boli: Code-mixed Marathi-English Corpora, Pretrained Language Models and Evaluation Benchmarks
The research on code-mixed data is limited due to the unavailability of dedicated code-mixed datasets and pre-trained language models. In this work, we focus on the low-resource Indian language Marathi which lacks any prior work in code-mixing. We present L3Cube-MeCorpus, a large code-mixed Marathi-English (Mr-En) corpus with 10 million social media sentences for pretraining. We also release L3Cube-MeBERT and MeRoBERTa, code-mixed BERT-based transformer models pre-trained on MeCorpus. Furthermore, for benchmarking, we present three supervised datasets MeHate, MeSent, and MeLID for downstream tasks like code-mixed Mr-En hate speech detection, sentiment analysis, and language identification respectively. These evaluation datasets individually consist of manually annotated ~12,000 Marathi-English code-mixed tweets. Ablations show that the models trained on this novel corpus significantly outperform the existing state-of-the-art BERT models. This is the first work that presents artifacts for code-mixed Marathi research. All datasets and models are publicly released at https://github.com/l3cube-pune/MarathiNLP .
Who's the MVP? A Game-Theoretic Evaluation Benchmark for Modular Attribution in LLM Agents
Large Language Model (LLM) agents frameworks often employ modular architectures, incorporating components such as planning, reasoning, action execution, and reflection to tackle complex tasks. However, quantifying the contribution of each module to overall system performance remains a significant challenge, impeding optimization and interpretability. To address this, we introduce CapaBench (Capability-level Assessment Benchmark), an evaluation framework grounded in cooperative game theory's Shapley Value, which systematically measures the marginal impact of individual modules and their interactions within an agent's architecture. By replacing default modules with test variants across all possible combinations, CapaBench provides a principle method for attributing performance contributions. Key contributions include: (1) We are the first to propose a Shapley Value-based methodology for quantifying the contributions of capabilities in LLM agents; (2) Modules with high Shapley Values consistently lead to predictable performance gains when combined, enabling targeted optimization; and (3) We build a multi-round dataset of over 1,500 entries spanning diverse domains and practical task scenarios, enabling comprehensive evaluation of agent capabilities. CapaBench bridges the gap between component-level evaluation and holistic system assessment, providing actionable insights for optimizing modular LLM agents and advancing their deployment in complex, real-world scenarios.
Automatic Evaluation for Text-to-image Generation: Task-decomposed Framework, Distilled Training, and Meta-evaluation Benchmark
Driven by the remarkable progress in diffusion models, text-to-image generation has made significant strides, creating a pressing demand for automatic quality evaluation of generated images. Current state-of-the-art automatic evaluation methods heavily rely on Multi-modal Large Language Models (MLLMs), particularly powerful commercial models like GPT-4o. While these models are highly effective, their substantial costs limit scalability in large-scale evaluations. Adopting open-source MLLMs is an alternative; however, their performance falls short due to significant limitations in processing multi-modal data compared to commercial MLLMs. To tackle these problems, we first propose a task decomposition evaluation framework based on GPT-4o to automatically construct a new training dataset, where the complex evaluation task is decoupled into simpler sub-tasks, effectively reducing the learning complexity. Based on this dataset, we design innovative training strategies to effectively distill GPT-4o's evaluation capabilities into a 7B open-source MLLM, MiniCPM-V-2.6. Furthermore, to reliably and comprehensively assess prior works and our proposed model, we manually annotate a meta-evaluation benchmark that includes chain-of-thought explanations alongside quality scores for generated images. Experimental results demonstrate that our distilled open-source MLLM significantly outperforms the current state-of-the-art GPT-4o-base baseline, VIEScore, with over 4.6\% improvement in Spearman and Kendall correlations with human judgments.
M3KE: A Massive Multi-Level Multi-Subject Knowledge Evaluation Benchmark for Chinese Large Language Models
Large language models have recently made tremendous progress in a variety of aspects, e.g., cross-task generalization, instruction following. Comprehensively evaluating the capability of large language models in multiple tasks is of great importance. In this paper, we propose M3KE, a Massive Multi-Level Multi-Subject Knowledge Evaluation benchmark, which is developed to measure knowledge acquired by Chinese large language models by testing their multitask accuracy in zero- and few-shot settings. We have collected 20,477 questions from 71 tasks. Our selection covers all major levels of Chinese education system, ranging from the primary school to college, as well as a wide variety of subjects, including humanities, history, politics, law, education, psychology, science, technology, art and religion. All questions are multiple-choice questions with four options, hence guaranteeing a standardized and unified assessment process. We've assessed a number of state-of-the-art open-source Chinese large language models on the proposed benchmark. The size of these models varies from 335M to 130B parameters. Experiment results demonstrate that they perform significantly worse than GPT-3.5 that reaches an accuracy of ~ 48% on M3KE. The dataset is available at https://github.com/tjunlp-lab/M3KE.
Transfer Learning in Biomedical Natural Language Processing: An Evaluation of BERT and ELMo on Ten Benchmarking Datasets
Inspired by the success of the General Language Understanding Evaluation benchmark, we introduce the Biomedical Language Understanding Evaluation (BLUE) benchmark to facilitate research in the development of pre-training language representations in the biomedicine domain. The benchmark consists of five tasks with ten datasets that cover both biomedical and clinical texts with different dataset sizes and difficulties. We also evaluate several baselines based on BERT and ELMo and find that the BERT model pre-trained on PubMed abstracts and MIMIC-III clinical notes achieves the best results. We make the datasets, pre-trained models, and codes publicly available at https://github.com/ncbi-nlp/BLUE_Benchmark.
SWE-Factory: Your Automated Factory for Issue Resolution Training Data and Evaluation Benchmarks
Constructing large-scale datasets for the GitHub issue resolution task is crucial for both training and evaluating the software engineering capabilities of Large Language Models (LLMs). However, the traditional process for creating such benchmarks is notoriously challenging and labor-intensive, particularly in the stages of setting up evaluation environments, grading test outcomes, and validating task instances. In this paper, we propose SWE-Factory, an automated pipeline designed to address these challenges. To tackle these issues, our pipeline integrates three core automated components. First, we introduce SWE-Builder, a multi-agent system that automates evaluation environment construction, which employs four specialized agents that work in a collaborative, iterative loop and leverages an environment memory pool to enhance efficiency. Second, we introduce a standardized, exit-code-based grading method that eliminates the need for manually writing custom parsers. Finally, we automate the fail2pass validation process using these reliable exit code signals. Experiments on 671 issues across four programming languages show that our pipeline can effectively construct valid task instances; for example, with GPT-4.1-mini, our SWE-Builder constructs 269 valid instances at 0.045 per instance, while with Gemini-2.5-flash, it achieves comparable performance at the lowest cost of 0.024 per instance. We also demonstrate that our exit-code-based grading achieves 100% accuracy compared to manual inspection, and our automated fail2pass validation reaches a precision of 0.92 and a recall of 1.00. We hope our automated pipeline will accelerate the collection of large-scale, high-quality GitHub issue resolution datasets for both training and evaluation. Our code and datasets are released at https://github.com/DeepSoftwareAnalytics/swe-factory.
MIntRec2.0: A Large-scale Benchmark Dataset for Multimodal Intent Recognition and Out-of-scope Detection in Conversations
Multimodal intent recognition poses significant challenges, requiring the incorporation of non-verbal modalities from real-world contexts to enhance the comprehension of human intentions. Existing benchmark datasets are limited in scale and suffer from difficulties in handling out-of-scope samples that arise in multi-turn conversational interactions. We introduce MIntRec2.0, a large-scale benchmark dataset for multimodal intent recognition in multi-party conversations. It contains 1,245 dialogues with 15,040 samples, each annotated within a new intent taxonomy of 30 fine-grained classes. Besides 9,304 in-scope samples, it also includes 5,736 out-of-scope samples appearing in multi-turn contexts, which naturally occur in real-world scenarios. Furthermore, we provide comprehensive information on the speakers in each utterance, enriching its utility for multi-party conversational research. We establish a general framework supporting the organization of single-turn and multi-turn dialogue data, modality feature extraction, multimodal fusion, as well as in-scope classification and out-of-scope detection. Evaluation benchmarks are built using classic multimodal fusion methods, ChatGPT, and human evaluators. While existing methods incorporating nonverbal information yield improvements, effectively leveraging context information and detecting out-of-scope samples remains a substantial challenge. Notably, large language models exhibit a significant performance gap compared to humans, highlighting the limitations of machine learning methods in the cognitive intent understanding task. We believe that MIntRec2.0 will serve as a valuable resource, providing a pioneering foundation for research in human-machine conversational interactions, and significantly facilitating related applications. The full dataset and codes are available at https://github.com/thuiar/MIntRec2.0.
The Fault in our Stars: Quality Assessment of Code Generation Benchmarks
Large Language Models (LLMs) are gaining popularity among software engineers. A crucial aspect of developing effective code generation LLMs is to evaluate these models using a robust benchmark. Evaluation benchmarks with quality issues can provide a false sense of performance. In this work, we conduct the first-of-its-kind study of the quality of prompts within benchmarks used to compare the performance of different code generation models. To conduct this study, we analyzed 3,566 prompts from 9 code generation benchmarks to identify quality issues in them. We also investigated whether fixing the identified quality issues in the benchmarks' prompts affects a model's performance. We also studied memorization issues of the evaluation dataset, which can put into question a benchmark's trustworthiness. We found that code generation evaluation benchmarks mainly focused on Python and coding exercises and had very limited contextual dependencies to challenge the model. These datasets and the developers' prompts suffer from quality issues like spelling and grammatical errors, unclear sentences to express developers' intent, and not using proper documentation style. Fixing all these issues in the benchmarks can lead to a better performance for Python code generation, but not a significant improvement was observed for Java code generation. We also found evidence that GPT-3.5-Turbo and CodeGen-2.5 models may have data contamination issues.
A Benchmark for Math Misconceptions: Bridging Gaps in Middle School Algebra with AI-Supported Instruction
This study introduces an evaluation benchmark for middle school algebra to be used in artificial intelligence(AI) based educational platforms. The goal is to support the design of AI systems that can enhance learner conceptual understanding of algebra by taking into account their current level of algebra comprehension. The data set comprises 55 misconceptions about algebra, common errors, and 220 diagnostic examples identified in previous peer-reviewed studies. We provide an example application using a large language model, observing a range of precision and recall scores depending on the topic and experimental setup that reaches 83.9% when including educator feedback and restricting it by topic. We found that topics such as ratios and proportions prove as difficult for LLMs as they are for students. We included a human assessment of LLMs results and feedback from five middle school math educators on the clarity and occurrence of misconceptions in the dataset and the potential use of AI in conjunction with the dataset. Most educators (80% or more) indicated that they encounter these misconceptions among their students, suggesting the relevance of the data set to teaching middle school algebra. Despite varying familiarity with AI tools, four out of five educators expressed interest in using the data set with AI to diagnose student misconceptions or train teachers. The results emphasize the importance of topic-constrained testing, the need for multimodal approaches, and the relevance of human expertise to gain practical insights when using AI for human learning.
Plutus: Benchmarking Large Language Models in Low-Resource Greek Finance
Despite Greece's pivotal role in the global economy, large language models (LLMs) remain underexplored for Greek financial context due to the linguistic complexity of Greek and the scarcity of domain-specific datasets. Previous efforts in multilingual financial natural language processing (NLP) have exposed considerable performance disparities, yet no dedicated Greek financial benchmarks or Greek-specific financial LLMs have been developed until now. To bridge this gap, we introduce Plutus-ben, the first Greek Financial Evaluation Benchmark, and Plutus-8B, the pioneering Greek Financial LLM, fine-tuned with Greek domain-specific data. Plutus-ben addresses five core financial NLP tasks in Greek: numeric and textual named entity recognition, question answering, abstractive summarization, and topic classification, thereby facilitating systematic and reproducible LLM assessments. To underpin these tasks, we present three novel, high-quality Greek financial datasets, thoroughly annotated by expert native Greek speakers, augmented by two existing resources. Our comprehensive evaluation of 22 LLMs on Plutus-ben reveals that Greek financial NLP remains challenging due to linguistic complexity, domain-specific terminology, and financial reasoning gaps. These findings underscore the limitations of cross-lingual transfer, the necessity for financial expertise in Greek-trained models, and the challenges of adapting financial LLMs to Greek text. We release Plutus-ben, Plutus-8B, and all associated datasets publicly to promote reproducible research and advance Greek financial NLP, fostering broader multilingual inclusivity in finance.
StructFlowBench: A Structured Flow Benchmark for Multi-turn Instruction Following
Multi-turn instruction following capability constitutes a core competency of large language models (LLMs) in real-world applications. Existing evaluation benchmarks predominantly focus on fine-grained constraint satisfaction and domain-specific capability assessment, yet overlook the crucial structural dependency between dialogue turns that distinguishes multi-turn from single-turn interactions. This structural dependency not only reflects user intent but also establishes a second dimension for instruction following evaluation beyond constraint satisfaction. To address this gap, we propose StructFlowBench, a multi-turn instruction following benchmark with structural flow modeling. The benchmark innovatively defines a structural flow framework comprising six fundamental inter-turn relationships, which not only introduces novel structural constraints for model evaluation but also serves as generation parameters for creating customized dialogue flows tailored to specific scenarios. Adopting established LLM-based automatic evaluation methodologies, we conduct systematic evaluations of 13 leading open-source and closed-source LLMs. Experimental results reveal significant deficiencies in current models' comprehension of multi-turn dialogue structures. The code is available at https://github.com/MLGroupJLU/StructFlowBench.
MIRACL-VISION: A Large, multilingual, visual document retrieval benchmark
Document retrieval is an important task for search and Retrieval-Augmented Generation (RAG) applications. Large Language Models (LLMs) have contributed to improving the accuracy of text-based document retrieval. However, documents with complex layout and visual elements like tables, charts and infographics are not perfectly represented in textual format. Recently, image-based document retrieval pipelines have become popular, which use visual large language models (VLMs) to retrieve relevant page images given a query. Current evaluation benchmarks on visual document retrieval are limited, as they primarily focus only English language, rely on synthetically generated questions and offer a small corpus size. Therefore, we introduce MIRACL-VISION, a multilingual visual document retrieval evaluation benchmark. MIRACL-VISION covers 18 languages, and is an extension of the MIRACL dataset, a popular benchmark to evaluate text-based multilingual retrieval pipelines. MIRACL was built using a human-intensive annotation process to generate high-quality questions. In order to reduce MIRACL-VISION corpus size to make evaluation more compute friendly while keeping the datasets challenging, we have designed a method for eliminating the "easy" negatives from the corpus. We conducted extensive experiments comparing MIRACL-VISION with other benchmarks, using popular public text and image models. We observe a gap in state-of-the-art VLM-based embedding models on multilingual capabilities, with up to 59.7% lower retrieval accuracy than a text-based retrieval models. Even for the English language, the visual models retrieval accuracy is 12.1% lower compared to text-based models. MIRACL-VISION is a challenging, representative, multilingual evaluation benchmark for visual retrieval pipelines and will help the community build robust models for document retrieval.
A Benchmark for Long-Form Medical Question Answering
There is a lack of benchmarks for evaluating large language models (LLMs) in long-form medical question answering (QA). Most existing medical QA evaluation benchmarks focus on automatic metrics and multiple-choice questions. While valuable, these benchmarks fail to fully capture or assess the complexities of real-world clinical applications where LLMs are being deployed. Furthermore, existing studies on evaluating long-form answer generation in medical QA are primarily closed-source, lacking access to human medical expert annotations, which makes it difficult to reproduce results and enhance existing baselines. In this work, we introduce a new publicly available benchmark featuring real-world consumer medical questions with long-form answer evaluations annotated by medical doctors. We performed pairwise comparisons of responses from various open and closed-source medical and general-purpose LLMs based on criteria such as correctness, helpfulness, harmfulness, and bias. Additionally, we performed a comprehensive LLM-as-a-judge analysis to study the alignment between human judgments and LLMs. Our preliminary results highlight the strong potential of open LLMs in medical QA compared to leading closed models. Code & Data: https://github.com/lavita-ai/medical-eval-sphere
Seeing Clearly, Answering Incorrectly: A Multimodal Robustness Benchmark for Evaluating MLLMs on Leading Questions
Multimodal Large Language Models (MLLMs) have exhibited impressive capabilities in visual understanding and reasoning, providing sightly reasonable answers, such as image descriptions. This has spurred extensive research on the evaluation of MLLMs. Most evaluation benchmarks assume that incorrect answers indicate a lack of understanding of the visual content. However, our findings reveal that, in many cases, MLLMs answer questions incorrectly despite correctly understanding the visual content. This suggests that incorrect answers do not necessarily imply a lack of comprehension but may instead result from lacking robustness to leading questions. To comprehensively measure MLLMs' understanding capability and robustness to leading questions, we introduce a MultiModal Robustness benchmark (MMR). MMR contains paired positive and negative questions across 12 categories, meticulously annotated by humans. We evaluate 18 leading MLLMs on the MMB benchmark, revealing that MLLMs suffer from fragility to leading questions despite understanding the visual content. To enhance MLLMs' understanding capability and robustness, we further present a training set with paired positive and negative visual question-answer samples. Experiments verify that MLLMs' robustness can be significantly enhanced by tuning on this new training set. The benchmark, training set, and code can be found at https://github.com/BAAI-DCAI/Multimodal-Robustness-Benchmark.
Suvach -- Generated Hindi QA benchmark
Current evaluation benchmarks for question answering (QA) in Indic languages often rely on machine translation of existing English datasets. This approach suffers from bias and inaccuracies inherent in machine translation, leading to datasets that may not reflect the true capabilities of EQA models for Indic languages. This paper proposes a new benchmark specifically designed for evaluating Hindi EQA models and discusses the methodology to do the same for any task. This method leverages large language models (LLMs) to generate a high-quality dataset in an extractive setting, ensuring its relevance for the target language. We believe this new resource will foster advancements in Hindi NLP research by providing a more accurate and reliable evaluation tool.
From Rankings to Insights: Evaluation Should Shift Focus from Leaderboard to Feedback
Automatic evaluation benchmarks such as MT-Bench, Arena-Hard, and Auto-Arena are seeing growing adoption for the evaluation of Large Language Models (LLMs). Existing research has primarily focused on approximating human-based model rankings using limited data and LLM-as-a-Judge. However, the fundamental premise of these studies, which attempts to replicate human rankings, is flawed. Specifically, these benchmarks typically offer only overall scores, limiting their utility to leaderboard rankings, rather than providing feedback that can guide model optimization and support model profiling. Therefore, we advocate for an evaluation paradigm shift from approximating human-based model rankings to providing feedback with analytical value. To this end, we introduce Feedbacker, an evaluation framework that provides comprehensive and fine-grained results, thereby enabling thorough identification of a model's specific strengths and weaknesses. Such feedback not only supports the targeted optimization of the model but also enhances the understanding of its behavior. Feedbacker comprises three key components: an extensible tree-based query taxonomy builder, an automated query synthesis scheme, and a suite of visualization and analysis tools. Furthermore, we propose a novel LLM-as-a-Judge method: PC2 (Pre-Comparison-derived Criteria) pointwise evaluation. This method derives evaluation criteria by pre-comparing the differences between several auxiliary responses, achieving the accuracy of pairwise evaluation while maintaining the time complexity of pointwise evaluation. Finally, leveraging the evaluation results of 17 mainstream LLMs, we demonstrate the usage of Feedbacker and highlight its effectiveness and potential. Our homepage project is available at https://liudan193.github.io/Feedbacker.
ExecRepoBench: Multi-level Executable Code Completion Evaluation
Code completion has become an essential tool for daily software development. Existing evaluation benchmarks often employ static methods that do not fully capture the dynamic nature of real-world coding environments and face significant challenges, including limited context length, reliance on superficial evaluation metrics, and potential overfitting to training datasets. In this work, we introduce a novel framework for enhancing code completion in software development through the creation of a repository-level benchmark ExecRepoBench and the instruction corpora Repo-Instruct, aim at improving the functionality of open-source large language models (LLMs) in real-world coding scenarios that involve complex interdependencies across multiple files. ExecRepoBench includes 1.2K samples from active Python repositories. Plus, we present a multi-level grammar-based completion methodology conditioned on the abstract syntax tree to mask code fragments at various logical units (e.g. statements, expressions, and functions). Then, we fine-tune the open-source LLM with 7B parameters on Repo-Instruct to produce a strong code completion baseline model Qwen2.5-Coder-Instruct-C based on the open-source model. Qwen2.5-Coder-Instruct-C is rigorously evaluated against existing benchmarks, including MultiPL-E and ExecRepoBench, which consistently outperforms prior baselines across all programming languages. The deployment of can be used as a high-performance, local service for programming development\url{https://execrepobench.github.io/}.
Holistic Evaluation for Interleaved Text-and-Image Generation
Interleaved text-and-image generation has been an intriguing research direction, where the models are required to generate both images and text pieces in an arbitrary order. Despite the emerging advancements in interleaved generation, the progress in its evaluation still significantly lags behind. Existing evaluation benchmarks do not support arbitrarily interleaved images and text for both inputs and outputs, and they only cover a limited number of domains and use cases. Also, current works predominantly use similarity-based metrics which fall short in assessing the quality in open-ended scenarios. To this end, we introduce InterleavedBench, the first benchmark carefully curated for the evaluation of interleaved text-and-image generation. InterleavedBench features a rich array of tasks to cover diverse real-world use cases. In addition, we present InterleavedEval, a strong reference-free metric powered by GPT-4o to deliver accurate and explainable evaluation. We carefully define five essential evaluation aspects for InterleavedEval, including text quality, perceptual quality, image coherence, text-image coherence, and helpfulness, to ensure a comprehensive and fine-grained assessment. Through extensive experiments and rigorous human evaluation, we show that our benchmark and metric can effectively evaluate the existing models with a strong correlation with human judgments surpassing previous reference-based metrics. We also provide substantial findings and insights to foster future research in interleaved generation and its evaluation.
GeoBench: Benchmarking and Analyzing Monocular Geometry Estimation Models
Recent advances in discriminative and generative pretraining have yielded geometry estimation models with strong generalization capabilities. While discriminative monocular geometry estimation methods rely on large-scale fine-tuning data to achieve zero-shot generalization, several generative-based paradigms show the potential of achieving impressive generalization performance on unseen scenes by leveraging pre-trained diffusion models and fine-tuning on even a small scale of synthetic training data. Frustratingly, these models are trained with different recipes on different datasets, making it hard to find out the critical factors that determine the evaluation performance. Besides, current geometry evaluation benchmarks have two main drawbacks that may prevent the development of the field, i.e., limited scene diversity and unfavorable label quality. To resolve the above issues, (1) we build fair and strong baselines in a unified codebase for evaluating and analyzing the geometry estimation models; (2) we evaluate monocular geometry estimators on more challenging benchmarks for geometry estimation task with diverse scenes and high-quality annotations. Our results reveal that pre-trained using large data, discriminative models such as DINOv2, can outperform generative counterparts with a small amount of high-quality synthetic data under the same training configuration, which suggests that fine-tuning data quality is a more important factor than the data scale and model architecture. Our observation also raises a question: if simply fine-tuning a general vision model such as DINOv2 using a small amount of synthetic depth data produces SOTA results, do we really need complex generative models for depth estimation? We believe this work can propel advancements in geometry estimation tasks as well as a wide range of downstream applications.
VBench: Comprehensive Benchmark Suite for Video Generative Models
Video generation has witnessed significant advancements, yet evaluating these models remains a challenge. A comprehensive evaluation benchmark for video generation is indispensable for two reasons: 1) Existing metrics do not fully align with human perceptions; 2) An ideal evaluation system should provide insights to inform future developments of video generation. To this end, we present VBench, a comprehensive benchmark suite that dissects "video generation quality" into specific, hierarchical, and disentangled dimensions, each with tailored prompts and evaluation methods. VBench has three appealing properties: 1) Comprehensive Dimensions: VBench comprises 16 dimensions in video generation (e.g., subject identity inconsistency, motion smoothness, temporal flickering, and spatial relationship, etc). The evaluation metrics with fine-grained levels reveal individual models' strengths and weaknesses. 2) Human Alignment: We also provide a dataset of human preference annotations to validate our benchmarks' alignment with human perception, for each evaluation dimension respectively. 3) Valuable Insights: We look into current models' ability across various evaluation dimensions, and various content types. We also investigate the gaps between video and image generation models. We will open-source VBench, including all prompts, evaluation methods, generated videos, and human preference annotations, and also include more video generation models in VBench to drive forward the field of video generation.
FRMT: A Benchmark for Few-Shot Region-Aware Machine Translation
We present FRMT, a new dataset and evaluation benchmark for Few-shot Region-aware Machine Translation, a type of style-targeted translation. The dataset consists of professional translations from English into two regional variants each of Portuguese and Mandarin Chinese. Source documents are selected to enable detailed analysis of phenomena of interest, including lexically distinct terms and distractor terms. We explore automatic evaluation metrics for FRMT and validate their correlation with expert human evaluation across both region-matched and mismatched rating scenarios. Finally, we present a number of baseline models for this task, and offer guidelines for how researchers can train, evaluate, and compare their own models. Our dataset and evaluation code are publicly available: https://bit.ly/frmt-task
GroUSE: A Benchmark to Evaluate Evaluators in Grounded Question Answering
Retrieval-Augmented Generation (RAG) has emerged as a common paradigm to use Large Language Models (LLMs) alongside private and up-to-date knowledge bases. In this work, we address the challenges of using LLM-as-a-Judge when evaluating grounded answers generated by RAG systems. To assess the calibration and discrimination capabilities of judge models, we identify 7 generator failure modes and introduce GroUSE (Grounded QA Unitary Scoring of Evaluators), a meta-evaluation benchmark of 144 unit tests. This benchmark reveals that existing automated RAG evaluation frameworks often overlook important failure modes, even when using GPT-4 as a judge. To improve on the current design of automated RAG evaluation frameworks, we propose a novel pipeline and find that while closed models perform well on GroUSE, state-of-the-art open-source judges do not generalize to our proposed criteria, despite strong correlation with GPT-4's judgement. Our findings suggest that correlation with GPT-4 is an incomplete proxy for the practical performance of judge models and should be supplemented with evaluations on unit tests for precise failure mode detection. We further show that finetuning Llama-3 on GPT-4's reasoning traces significantly boosts its evaluation capabilities, improving upon both correlation with GPT-4's evaluations and calibration on reference situations.
VBench++: Comprehensive and Versatile Benchmark Suite for Video Generative Models
Video generation has witnessed significant advancements, yet evaluating these models remains a challenge. A comprehensive evaluation benchmark for video generation is indispensable for two reasons: 1) Existing metrics do not fully align with human perceptions; 2) An ideal evaluation system should provide insights to inform future developments of video generation. To this end, we present VBench, a comprehensive benchmark suite that dissects "video generation quality" into specific, hierarchical, and disentangled dimensions, each with tailored prompts and evaluation methods. VBench has several appealing properties: 1) Comprehensive Dimensions: VBench comprises 16 dimensions in video generation (e.g., subject identity inconsistency, motion smoothness, temporal flickering, and spatial relationship, etc). The evaluation metrics with fine-grained levels reveal individual models' strengths and weaknesses. 2) Human Alignment: We also provide a dataset of human preference annotations to validate our benchmarks' alignment with human perception, for each evaluation dimension respectively. 3) Valuable Insights: We look into current models' ability across various evaluation dimensions, and various content types. We also investigate the gaps between video and image generation models. 4) Versatile Benchmarking: VBench++ supports evaluating text-to-video and image-to-video. We introduce a high-quality Image Suite with an adaptive aspect ratio to enable fair evaluations across different image-to-video generation settings. Beyond assessing technical quality, VBench++ evaluates the trustworthiness of video generative models, providing a more holistic view of model performance. 5) Full Open-Sourcing: We fully open-source VBench++ and continually add new video generation models to our leaderboard to drive forward the field of video generation.
RoboVerse: Towards a Unified Platform, Dataset and Benchmark for Scalable and Generalizable Robot Learning
Data scaling and standardized evaluation benchmarks have driven significant advances in natural language processing and computer vision. However, robotics faces unique challenges in scaling data and establishing evaluation protocols. Collecting real-world data is resource-intensive and inefficient, while benchmarking in real-world scenarios remains highly complex. Synthetic data and simulation offer promising alternatives, yet existing efforts often fall short in data quality, diversity, and benchmark standardization. To address these challenges, we introduce RoboVerse, a comprehensive framework comprising a simulation platform, a synthetic dataset, and unified benchmarks. Our simulation platform supports multiple simulators and robotic embodiments, enabling seamless transitions between different environments. The synthetic dataset, featuring high-fidelity physics and photorealistic rendering, is constructed through multiple approaches. Additionally, we propose unified benchmarks for imitation learning and reinforcement learning, enabling evaluation across different levels of generalization. At the core of the simulation platform is MetaSim, an infrastructure that abstracts diverse simulation environments into a universal interface. It restructures existing simulation environments into a simulator-agnostic configuration system, as well as an API aligning different simulator functionalities, such as launching simulation environments, loading assets with initial states, stepping the physics engine, etc. This abstraction ensures interoperability and extensibility. Comprehensive experiments demonstrate that RoboVerse enhances the performance of imitation learning, reinforcement learning, world model learning, and sim-to-real transfer. These results validate the reliability of our dataset and benchmarks, establishing RoboVerse as a robust solution for advancing robot learning.
MIRAGE: Multimodal foundation model and benchmark for comprehensive retinal OCT image analysis
Artificial intelligence (AI) has become a fundamental tool for assisting clinicians in analyzing ophthalmic images, such as optical coherence tomography (OCT). However, developing AI models often requires extensive annotation, and existing models tend to underperform on independent, unseen data. Foundation models (FMs), large AI models trained on vast unlabeled datasets, have shown promise in overcoming these challenges. Nonetheless, available FMs for ophthalmology lack extensive validation, especially for segmentation tasks, and focus on a single imaging modality. In this context, we propose MIRAGE, a novel multimodal FM for the analysis of OCT and scanning laser ophthalmoscopy (SLO) images. Additionally, we propose a new evaluation benchmark with OCT/SLO classification and segmentation tasks. The comparison with general and specialized FMs and segmentation methods shows the superiority of MIRAGE in both types of tasks, highlighting its suitability as a basis for the development of robust AI systems for retinal OCT image analysis. Both MIRAGE and the evaluation benchmark are publicly available: https://github.com/j-morano/MIRAGE.
LiveCodeBench: Holistic and Contamination Free Evaluation of Large Language Models for Code
Large Language Models (LLMs) applied to code-related applications have emerged as a prominent field, attracting significant interest from both academia and industry. However, as new and improved LLMs are developed, existing evaluation benchmarks (e.g., HumanEval, MBPP) are no longer sufficient for assessing their capabilities. In this work, we propose LiveCodeBench, a comprehensive and contamination-free evaluation of LLMs for code, which continuously collects new problems over time from contests across three competition platforms, namely LeetCode, AtCoder, and CodeForces. Notably, our benchmark also focuses on a broader range of code related capabilities, such as self-repair, code execution, and test output prediction, beyond just code generation. Currently, LiveCodeBench hosts four hundred high-quality coding problems that were published between May 2023 and February 2024. We have evaluated 9 base LLMs and 20 instruction-tuned LLMs on LiveCodeBench. We present empirical findings on contamination, holistic performance comparisons, potential overfitting in existing benchmarks as well as individual model comparisons. We will release all prompts and model completions for further community analysis, along with a general toolkit for adding new scenarios and model
DesignBench: A Comprehensive Benchmark for MLLM-based Front-end Code Generation
Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in automated front-end engineering, e.g., generating UI code from visual designs. However, existing front-end UI code generation benchmarks have the following limitations: (1) While framework-based development becomes predominant in modern front-end programming, current benchmarks fail to incorporate mainstream development frameworks. (2) Existing evaluations focus solely on the UI code generation task, whereas practical UI development involves several iterations, including refining editing, and repairing issues. (3) Current benchmarks employ unidimensional evaluation, lacking investigation into influencing factors like task difficulty, input context variations, and in-depth code-level analysis. To bridge these gaps, we introduce DesignBench, a multi-framework, multi-task evaluation benchmark for assessing MLLMs' capabilities in automated front-end engineering. DesignBench encompasses three widely-used UI frameworks (React, Vue, and Angular) alongside vanilla HTML/CSS, and evaluates on three essential front-end tasks (generation, edit, and repair) in real-world development workflows. DesignBench contains 900 webpage samples spanning over 11 topics, 9 edit types, and 6 issue categories, enabling detailed analysis of MLLM performance across multiple dimensions. Our systematic evaluation reveals critical insights into MLLMs' framework-specific limitations, task-related bottlenecks, and performance variations under different conditions, providing guidance for future research in automated front-end development. Our code and data are available at https://github.com/WebPAI/DesignBench.
Safety Evaluation of DeepSeek Models in Chinese Contexts
Recently, the DeepSeek series of models, leveraging their exceptional reasoning capabilities and open-source strategy, is reshaping the global AI landscape. Despite these advantages, they exhibit significant safety deficiencies. Research conducted by Robust Intelligence, a subsidiary of Cisco, in collaboration with the University of Pennsylvania, revealed that DeepSeek-R1 has a 100\% attack success rate when processing harmful prompts. Additionally, multiple safety companies and research institutions have confirmed critical safety vulnerabilities in this model. As models demonstrating robust performance in Chinese and English, DeepSeek models require equally crucial safety assessments in both language contexts. However, current research has predominantly focused on safety evaluations in English environments, leaving a gap in comprehensive assessments of their safety performance in Chinese contexts. In response to this gap, this study introduces CHiSafetyBench, a Chinese-specific safety evaluation benchmark. This benchmark systematically evaluates the safety of DeepSeek-R1 and DeepSeek-V3 in Chinese contexts, revealing their performance across safety categories. The experimental results quantify the deficiencies of these two models in Chinese contexts, providing key insights for subsequent improvements. It should be noted that, despite our efforts to establish a comprehensive, objective, and authoritative evaluation benchmark, the selection of test samples, characteristics of data distribution, and the setting of evaluation criteria may inevitably introduce certain biases into the evaluation results. We will continuously optimize the evaluation benchmark and periodically update this report to provide more comprehensive and accurate assessment outcomes. Please refer to the latest version of the paper for the most recent evaluation results and conclusions.
PolygloToxicityPrompts: Multilingual Evaluation of Neural Toxic Degeneration in Large Language Models
Recent advances in large language models (LLMs) have led to their extensive global deployment, and ensuring their safety calls for comprehensive and multilingual toxicity evaluations. However, existing toxicity benchmarks are overwhelmingly focused on English, posing serious risks to deploying LLMs in other languages. We address this by introducing PolygloToxicityPrompts (PTP), the first large-scale multilingual toxicity evaluation benchmark of 425K naturally occurring prompts spanning 17 languages. We overcome the scarcity of naturally occurring toxicity in web-text and ensure coverage across languages with varying resources by automatically scraping over 100M web-text documents. Using PTP, we investigate research questions to study the impact of model size, prompt language, and instruction and preference-tuning methods on toxicity by benchmarking over 60 LLMs. Notably, we find that toxicity increases as language resources decrease or model size increases. Although instruction- and preference-tuning reduce toxicity, the choice of preference-tuning method does not have any significant impact. Our findings shed light on crucial shortcomings of LLM safeguarding and highlight areas for future research.
Revisiting the MIMIC-IV Benchmark: Experiments Using Language Models for Electronic Health Records
The lack of standardized evaluation benchmarks in the medical domain for text inputs can be a barrier to widely adopting and leveraging the potential of natural language models for health-related downstream tasks. This paper revisited an openly available MIMIC-IV benchmark for electronic health records (EHRs) to address this issue. First, we integrate the MIMIC-IV data within the Hugging Face datasets library to allow an easy share and use of this collection. Second, we investigate the application of templates to convert EHR tabular data to text. Experiments using fine-tuned and zero-shot LLMs on the mortality of patients task show that fine-tuned text-based models are competitive against robust tabular classifiers. In contrast, zero-shot LLMs struggle to leverage EHR representations. This study underlines the potential of text-based approaches in the medical field and highlights areas for further improvement.
HREF: Human Response-Guided Evaluation of Instruction Following in Language Models
Evaluating the capability of Large Language Models (LLMs) in following instructions has heavily relied on a powerful LLM as the judge, introducing unresolved biases that deviate the judgments from human judges. In this work, we reevaluate various choices for automatic evaluation on a wide range of instruction-following tasks. We experiment with methods that leverage human-written responses and observe that they enhance the reliability of automatic evaluations across a wide range of tasks, resulting in up to a 3.2% improvement in agreement with human judges. We also discovered that human-written responses offer an orthogonal perspective to model-generated responses in following instructions and should be used as an additional context when comparing model responses. Based on these observations, we develop a new evaluation benchmark, Human Response-Guided Evaluation of Instruction Following (HREF), comprising 4,258 samples across 11 task categories with a composite evaluation setup, employing a composite evaluation setup that selects the most reliable method for each category. In addition to providing reliable evaluation, HREF emphasizes individual task performance and is free from contamination. Finally, we study the impact of key design choices in HREF, including the size of the evaluation set, the judge model, the baseline model, and the prompt template. We host a live leaderboard that evaluates LLMs on the private evaluation set of HREF.
EgoCVR: An Egocentric Benchmark for Fine-Grained Composed Video Retrieval
In Composed Video Retrieval, a video and a textual description which modifies the video content are provided as inputs to the model. The aim is to retrieve the relevant video with the modified content from a database of videos. In this challenging task, the first step is to acquire large-scale training datasets and collect high-quality benchmarks for evaluation. In this work, we introduce EgoCVR, a new evaluation benchmark for fine-grained Composed Video Retrieval using large-scale egocentric video datasets. EgoCVR consists of 2,295 queries that specifically focus on high-quality temporal video understanding. We find that existing Composed Video Retrieval frameworks do not achieve the necessary high-quality temporal video understanding for this task. To address this shortcoming, we adapt a simple training-free method, propose a generic re-ranking framework for Composed Video Retrieval, and demonstrate that this achieves strong results on EgoCVR. Our code and benchmark are freely available at https://github.com/ExplainableML/EgoCVR.
LogicVista: Multimodal LLM Logical Reasoning Benchmark in Visual Contexts
We propose LogicVista, an evaluation benchmark that assesses the integrated logical reasoning capabilities of multimodal large language models (MLLMs) in Visual contexts. Recent advancements in MLLMs have demonstrated various fascinating abilities, from crafting poetry based on an image to performing mathematical reasoning. However, there is still a lack of systematic evaluation of MLLMs' proficiency in logical reasoning tasks, which are essential for activities like navigation and puzzle-solving. Thus we evaluate general logical cognition abilities across 5 logical reasoning tasks encompassing 9 different capabilities, using a sample of 448 multiple-choice questions. Each question is annotated with the correct answer and the human-written reasoning behind the selection, enabling both open-ended and multiple-choice evaluation. A total of 8 MLLMs are comprehensively evaluated using LogicVista. Code and Data Available at https://github.com/Yijia-Xiao/LogicVista.
Benchmark Data Contamination of Large Language Models: A Survey
The rapid development of Large Language Models (LLMs) like GPT-4, Claude-3, and Gemini has transformed the field of natural language processing. However, it has also resulted in a significant issue known as Benchmark Data Contamination (BDC). This occurs when language models inadvertently incorporate evaluation benchmark information from their training data, leading to inaccurate or unreliable performance during the evaluation phase of the process. This paper reviews the complex challenge of BDC in LLM evaluation and explores alternative assessment methods to mitigate the risks associated with traditional benchmarks. The paper also examines challenges and future directions in mitigating BDC risks, highlighting the complexity of the issue and the need for innovative solutions to ensure the reliability of LLM evaluation in real-world applications.
Survey on Evaluation of LLM-based Agents
The emergence of LLM-based agents represents a paradigm shift in AI, enabling autonomous systems to plan, reason, use tools, and maintain memory while interacting with dynamic environments. This paper provides the first comprehensive survey of evaluation methodologies for these increasingly capable agents. We systematically analyze evaluation benchmarks and frameworks across four critical dimensions: (1) fundamental agent capabilities, including planning, tool use, self-reflection, and memory; (2) application-specific benchmarks for web, software engineering, scientific, and conversational agents; (3) benchmarks for generalist agents; and (4) frameworks for evaluating agents. Our analysis reveals emerging trends, including a shift toward more realistic, challenging evaluations with continuously updated benchmarks. We also identify critical gaps that future research must address-particularly in assessing cost-efficiency, safety, and robustness, and in developing fine-grained, and scalable evaluation methods. This survey maps the rapidly evolving landscape of agent evaluation, reveals the emerging trends in the field, identifies current limitations, and proposes directions for future research.
Chinese SimpleQA: A Chinese Factuality Evaluation for Large Language Models
New LLM evaluation benchmarks are important to align with the rapid development of Large Language Models (LLMs). In this work, we present Chinese SimpleQA, the first comprehensive Chinese benchmark to evaluate the factuality ability of language models to answer short questions, and Chinese SimpleQA mainly has five properties (i.e., Chinese, Diverse, High-quality, Static, Easy-to-evaluate). Specifically, first, we focus on the Chinese language over 6 major topics with 99 diverse subtopics. Second, we conduct a comprehensive quality control process to achieve high-quality questions and answers, where the reference answers are static and cannot be changed over time. Third, following SimpleQA, the questions and answers are very short, and the grading process is easy-to-evaluate based on OpenAI API. Based on Chinese SimpleQA, we perform a comprehensive evaluation on the factuality abilities of existing LLMs. Finally, we hope that Chinese SimpleQA could guide the developers to better understand the Chinese factuality abilities of their models and facilitate the growth of foundation models.
From Crowdsourced Data to High-Quality Benchmarks: Arena-Hard and BenchBuilder Pipeline
The rapid evolution of language models has necessitated the development of more challenging benchmarks. Current static benchmarks often struggle to consistently distinguish between the capabilities of different models and fail to align with real-world user preferences. On the other hand, live crowd-sourced platforms like the Chatbot Arena collect a wide range of natural prompts and user feedback. However, these prompts vary in sophistication and the feedback cannot be applied offline to new models. In order to ensure that benchmarks keep up with the pace of LLM development, we address how one can evaluate benchmarks on their ability to confidently separate models and their alignment with human preference. Under these principles, we developed BenchBuilder, a living benchmark that filters high-quality prompts from live data sources to enable offline evaluation on fresh, challenging prompts. BenchBuilder identifies seven indicators of a high-quality prompt, such as the requirement for domain knowledge, and utilizes an LLM annotator to select a high-quality subset of prompts from various topic clusters. The LLM evaluation process employs an LLM judge to ensure a fully automated, high-quality, and constantly updating benchmark. We apply BenchBuilder on prompts from the Chatbot Arena to create Arena-Hard-Auto v0.1: 500 challenging user prompts from a wide range of tasks. Arena-Hard-Auto v0.1 offers 3x tighter confidence intervals than MT-Bench and achieves a state-of-the-art 89.1% agreement with human preference rankings, all at a cost of only $25 and without human labelers. The BenchBuilder pipeline enhances evaluation benchmarks and provides a valuable tool for developers, enabling them to extract high-quality benchmarks from extensive data with minimal effort.
FreshStack: Building Realistic Benchmarks for Evaluating Retrieval on Technical Documents
We introduce FreshStack, a reusable framework for automatically building information retrieval (IR) evaluation benchmarks from community-asked questions and answers. FreshStack conducts the following steps: (1) automatic corpus collection from code and technical documentation, (2) nugget generation from community-asked questions and answers, and (3) nugget-level support, retrieving documents using a fusion of retrieval techniques and hybrid architectures. We use FreshStack to build five datasets on fast-growing, recent, and niche topics to ensure the tasks are sufficiently challenging. On FreshStack, existing retrieval models, when applied out-of-the-box, significantly underperform oracle approaches on all five topics, denoting plenty of headroom to improve IR quality. In addition, we identify cases where rerankers do not clearly improve first-stage retrieval accuracy (two out of five topics). We hope that FreshStack will facilitate future work toward constructing realistic, scalable, and uncontaminated IR and RAG evaluation benchmarks. FreshStack datasets are available at: https://fresh-stack.github.io.
Ada-LEval: Evaluating long-context LLMs with length-adaptable benchmarks
Recently, the large language model (LLM) community has shown increasing interest in enhancing LLMs' capability to handle extremely long documents. As various long-text techniques and model architectures emerge, the precise and detailed evaluation of models' long-text capabilities has become increasingly important. Existing long-text evaluation benchmarks, such as L-Eval and LongBench, construct long-text test sets based on open-source datasets, focusing mainly on QA and summarization tasks. These datasets include test samples of varying lengths (from 2k to 32k+) entangled together, making it challenging to assess model capabilities across different length ranges. Moreover, they do not cover the ultralong settings (100k+ tokens) that the latest LLMs claim to achieve. In this paper, we introduce Ada-LEval, a length-adaptable benchmark for evaluating the long-context understanding of LLMs. Ada-LEval includes two challenging subsets, TSort and BestAnswer, which enable a more reliable evaluation of LLMs' long context capabilities. These benchmarks support intricate manipulation of the length of test cases, and can easily produce text samples up to 128k tokens. We evaluate 4 state-of-the-art closed-source API models and 6 open-source models with Ada-LEval. The evaluation results demonstrate the limitations of current LLMs, especially in ultra-long-context settings. Our code is available at https://github.com/open-compass/Ada-LEval.
Abstractive Visual Understanding of Multi-modal Structured Knowledge: A New Perspective for MLLM Evaluation
Multi-modal large language models (MLLMs) incorporate heterogeneous modalities into LLMs, enabling a comprehensive understanding of diverse scenarios and objects. Despite the proliferation of evaluation benchmarks and leaderboards for MLLMs, they predominantly overlook the critical capacity of MLLMs to comprehend world knowledge with structured abstractions that appear in visual form. To address this gap, we propose a novel evaluation paradigm and devise M3STR, an innovative benchmark grounded in the Multi-Modal Map for STRuctured understanding. This benchmark leverages multi-modal knowledge graphs to synthesize images encapsulating subgraph architectures enriched with multi-modal entities. M3STR necessitates that MLLMs not only recognize the multi-modal entities within the visual inputs but also decipher intricate relational topologies among them. We delineate the benchmark's statistical profiles and automated construction pipeline, accompanied by an extensive empirical analysis of 26 state-of-the-art MLLMs. Our findings reveal persistent deficiencies in processing abstractive visual information with structured knowledge, thereby charting a pivotal trajectory for advancing MLLMs' holistic reasoning capacities. Our code and data are released at https://github.com/zjukg/M3STR
Are LLMs Prescient? A Continuous Evaluation using Daily News as the Oracle
Many existing evaluation benchmarks for Large Language Models (LLMs) quickly become outdated due to the emergence of new models and training data. These benchmarks also fall short in assessing how LLM performance changes over time, as they consist of static questions without a temporal dimension. To address these limitations, we propose using future event prediction as a continuous evaluation method to assess LLMs' temporal generalization and forecasting abilities. Our benchmark, Daily Oracle, automatically generates question-answer (QA) pairs from daily news, challenging LLMs to predict "future" event outcomes. Our findings reveal that as pre-training data becomes outdated, LLM performance degrades over time. While Retrieval Augmented Generation (RAG) has the potential to enhance prediction accuracy, the performance degradation pattern persists, highlighting the need for continuous model updates.
GPT-ImgEval: A Comprehensive Benchmark for Diagnosing GPT4o in Image Generation
The recent breakthroughs in OpenAI's GPT4o model have demonstrated surprisingly good capabilities in image generation and editing, resulting in significant excitement in the community. This technical report presents the first-look evaluation benchmark (named GPT-ImgEval), quantitatively and qualitatively diagnosing GPT-4o's performance across three critical dimensions: (1) generation quality, (2) editing proficiency, and (3) world knowledge-informed semantic synthesis. Across all three tasks, GPT-4o demonstrates strong performance, significantly surpassing existing methods in both image generation control and output quality, while also showcasing exceptional knowledge reasoning capabilities. Furthermore, based on the GPT-4o's generated data, we propose a classification-model-based approach to investigate the underlying architecture of GPT-4o, where our empirical results suggest the model consists of an auto-regressive (AR) combined with a diffusion-based head for image decoding, rather than the VAR-like architectures. We also provide a complete speculation on GPT-4o's overall architecture. In addition, we conduct a series of analyses to identify and visualize GPT-4o's specific limitations and the synthetic artifacts commonly observed in its image generation. We also present a comparative study of multi-round image editing between GPT-4o and Gemini 2.0 Flash, and discuss the safety implications of GPT-4o's outputs, particularly their detectability by existing image forensic models. We hope that our work can offer valuable insight and provide a reliable benchmark to guide future research, foster reproducibility, and accelerate innovation in the field of image generation and beyond. The codes and datasets used for evaluating GPT-4o can be found at https://github.com/PicoTrex/GPT-ImgEval.
The FinBen: An Holistic Financial Benchmark for Large Language Models
LLMs have transformed NLP and shown promise in various fields, yet their potential in finance is underexplored due to a lack of thorough evaluations and the complexity of financial tasks. This along with the rapid development of LLMs, highlights the urgent need for a systematic financial evaluation benchmark for LLMs. In this paper, we introduce FinBen, the first comprehensive open-sourced evaluation benchmark, specifically designed to thoroughly assess the capabilities of LLMs in the financial domain. FinBen encompasses 35 datasets across 23 financial tasks, organized into three spectrums of difficulty inspired by the Cattell-Horn-Carroll theory, to evaluate LLMs' cognitive abilities in inductive reasoning, associative memory, quantitative reasoning, crystallized intelligence, and more. Our evaluation of 15 representative LLMs, including GPT-4, ChatGPT, and the latest Gemini, reveals insights into their strengths and limitations within the financial domain. The findings indicate that GPT-4 leads in quantification, extraction, numerical reasoning, and stock trading, while Gemini shines in generation and forecasting; however, both struggle with complex extraction and forecasting, showing a clear need for targeted enhancements. Instruction tuning boosts simple task performance but falls short in improving complex reasoning and forecasting abilities. FinBen seeks to continuously evaluate LLMs in finance, fostering AI development with regular updates of tasks and models.
GreekBarBench: A Challenging Benchmark for Free-Text Legal Reasoning and Citations
We introduce GreekBarBench, a benchmark that evaluates LLMs on legal questions across five different legal areas from the Greek Bar exams, requiring citations to statutory articles and case facts. To tackle the challenges of free-text evaluation, we propose a three-dimensional scoring system combined with an LLM-as-a-judge approach. We also develop a meta-evaluation benchmark to assess the correlation between LLM-judges and human expert evaluations, revealing that simple, span-based rubrics improve their alignment. Our systematic evaluation of 13 proprietary and open-weight LLMs shows that even though the best models outperform average expert scores, they fall short of the 95th percentile of experts.
VisTW: Benchmarking Vision-Language Models for Traditional Chinese in Taiwan
In this paper, we propose a comprehensive evaluation benchmark for Visual Language Models (VLM) in Traditional Chinese. Our evaluation suite, the first of its kind, contains two complementary components: (1) VisTW-MCQ, a collection of manually curated exam multi-choice questions from 21 academic subjects designed to test the broad knowledge and reasoning capabilities of VLMs; and (2) VisTW-Dialogue, an open dialogue benchmark comprising 131 image-question pairs manually created to evaluate VLMs' ability in free-form dialogue generation within Taiwanese cultural contexts. These benchmarks address a critical gap in the evaluation landscape, where existing benchmarks predominantly focus on English or Simplified Chinese, neglecting the unique linguistic and cultural aspects of Traditional Chinese used in regions like Taiwan and Hong Kong. Our analysis reveals significant performance differences across various VLMs and highlights specific challenges in processing Traditional Chinese visual content.
Dynamic Evaluation of Large Language Models by Meta Probing Agents
Evaluation of large language models (LLMs) has raised great concerns in the community due to the issue of data contamination. Existing work designed evaluation protocols using well-defined algorithms for specific tasks, which cannot be easily extended to diverse scenarios. Moreover, current evaluation benchmarks can only provide the overall benchmark results and cannot support a fine-grained and multifaceted analysis of LLMs' abilities. In this paper, we propose meta probing agents (MPA), a general dynamic evaluation protocol inspired by psychometrics to evaluate LLMs. MPA is the key component of DyVal 2, which naturally extends the previous DyVal~zhu2023dyval. MPA designs the probing and judging agents to automatically transform an original evaluation problem into a new one following psychometric theory on three basic cognitive abilities: language understanding, problem solving, and domain knowledge. These basic abilities are also dynamically configurable, allowing multifaceted analysis. We conducted extensive evaluations using MPA and found that most LLMs achieve poorer performance, indicating room for improvement. Our multifaceted analysis demonstrated the strong correlation between the basic abilities and an implicit Matthew effect on model size, i.e., larger models possess stronger correlations of the abilities. MPA can also be used as a data augmentation approach to enhance LLMs. Code is available at: https://github.com/microsoft/promptbench.
RocketEval: Efficient Automated LLM Evaluation via Grading Checklist
Evaluating large language models (LLMs) in diverse and challenging scenarios is essential to align them with human preferences. To mitigate the prohibitive costs associated with human evaluations, utilizing a powerful LLM as a judge has emerged as a favored approach. Nevertheless, this methodology encounters several challenges, including substantial expenses, concerns regarding privacy and security, and reproducibility. In this paper, we propose a straightforward, replicable, and accurate automated evaluation method by leveraging a lightweight LLM as the judge, named RocketEval. Initially, we identify that the performance disparity between lightweight and powerful LLMs in evaluation tasks primarily stems from their ability to conduct comprehensive analyses, which is not easily enhanced through techniques such as chain-of-thought reasoning. By reframing the evaluation task as a multi-faceted Q&A using an instance-specific checklist, we demonstrate that the limited judgment accuracy of lightweight LLMs is largely attributes to high uncertainty and positional bias. To address these challenges, we introduce an automated evaluation process grounded in checklist grading, which is designed to accommodate a variety of scenarios and questions. This process encompasses the creation of checklists, the grading of these checklists by lightweight LLMs, and the reweighting of checklist items to align with the supervised annotations. Our experiments carried out on the automated evaluation benchmarks, MT-Bench and WildBench datasets, reveal that RocketEval, when using Gemma-2-2B as the judge, achieves a high correlation (0.965) with human preferences, which is comparable to GPT-4o. Moreover, RocketEval provides a cost reduction exceeding 50-fold for large-scale evaluation and comparison scenarios. Our code is available at https://github.com/Joinn99/RocketEval-ICLR .