new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Aug 29

Decamouflage: A Framework to Detect Image-Scaling Attacks on Convolutional Neural Networks

As an essential processing step in computer vision applications, image resizing or scaling, more specifically downsampling, has to be applied before feeding a normally large image into a convolutional neural network (CNN) model because CNN models typically take small fixed-size images as inputs. However, image scaling functions could be adversarially abused to perform a newly revealed attack called image-scaling attack, which can affect a wide range of computer vision applications building upon image-scaling functions. This work presents an image-scaling attack detection framework, termed as Decamouflage. Decamouflage consists of three independent detection methods: (1) rescaling, (2) filtering/pooling, and (3) steganalysis. While each of these three methods is efficient standalone, they can work in an ensemble manner not only to improve the detection accuracy but also to harden potential adaptive attacks. Decamouflage has a pre-determined detection threshold that is generic. More precisely, as we have validated, the threshold determined from one dataset is also applicable to other different datasets. Extensive experiments show that Decamouflage achieves detection accuracy of 99.9\% and 99.8\% in the white-box (with the knowledge of attack algorithms) and the black-box (without the knowledge of attack algorithms) settings, respectively. To corroborate the efficiency of Decamouflage, we have also measured its run-time overhead on a personal PC with an i5 CPU and found that Decamouflage can detect image-scaling attacks in milliseconds. Overall, Decamouflage can accurately detect image scaling attacks in both white-box and black-box settings with acceptable run-time overhead.

IRAD: Implicit Representation-driven Image Resampling against Adversarial Attacks

We introduce a novel approach to counter adversarial attacks, namely, image resampling. Image resampling transforms a discrete image into a new one, simulating the process of scene recapturing or rerendering as specified by a geometrical transformation. The underlying rationale behind our idea is that image resampling can alleviate the influence of adversarial perturbations while preserving essential semantic information, thereby conferring an inherent advantage in defending against adversarial attacks. To validate this concept, we present a comprehensive study on leveraging image resampling to defend against adversarial attacks. We have developed basic resampling methods that employ interpolation strategies and coordinate shifting magnitudes. Our analysis reveals that these basic methods can partially mitigate adversarial attacks. However, they come with apparent limitations: the accuracy of clean images noticeably decreases, while the improvement in accuracy on adversarial examples is not substantial. We propose implicit representation-driven image resampling (IRAD) to overcome these limitations. First, we construct an implicit continuous representation that enables us to represent any input image within a continuous coordinate space. Second, we introduce SampleNet, which automatically generates pixel-wise shifts for resampling in response to different inputs. Furthermore, we can extend our approach to the state-of-the-art diffusion-based method, accelerating it with fewer time steps while preserving its defense capability. Extensive experiments demonstrate that our method significantly enhances the adversarial robustness of diverse deep models against various attacks while maintaining high accuracy on clean images.

Evaluating the Effectiveness and Robustness of Visual Similarity-based Phishing Detection Models

Phishing attacks pose a significant threat to Internet users, with cybercriminals elaborately replicating the visual appearance of legitimate websites to deceive victims. Visual similarity-based detection systems have emerged as an effective countermeasure, but their effectiveness and robustness in real-world scenarios have been underexplored. In this paper, we comprehensively scrutinize and evaluate the effectiveness and robustness of popular visual similarity-based anti-phishing models using a large-scale dataset of 451k real-world phishing websites. Our analyses of the effectiveness reveal that while certain visual similarity-based models achieve high accuracy on curated datasets in the experimental settings, they exhibit notably low performance on real-world datasets, highlighting the importance of real-world evaluation. Furthermore, we find that the attackers evade the detectors mainly in three ways: (1) directly attacking the model pipelines, (2) mimicking benign logos, and (3) employing relatively simple strategies such as eliminating logos from screenshots. To statistically assess the resilience and robustness of existing models against adversarial attacks, we categorize the strategies attackers employ into visible and perturbation-based manipulations and apply them to website logos. We then evaluate the models' robustness using these adversarial samples. Our findings reveal potential vulnerabilities in several models, emphasizing the need for more robust visual similarity techniques capable of withstanding sophisticated evasion attempts. We provide actionable insights for enhancing the security of phishing defense systems, encouraging proactive actions.

Fast and Accurate Model Scaling

In this work we analyze strategies for convolutional neural network scaling; that is, the process of scaling a base convolutional network to endow it with greater computational complexity and consequently representational power. Example scaling strategies may include increasing model width, depth, resolution, etc. While various scaling strategies exist, their tradeoffs are not fully understood. Existing analysis typically focuses on the interplay of accuracy and flops (floating point operations). Yet, as we demonstrate, various scaling strategies affect model parameters, activations, and consequently actual runtime quite differently. In our experiments we show the surprising result that numerous scaling strategies yield networks with similar accuracy but with widely varying properties. This leads us to propose a simple fast compound scaling strategy that encourages primarily scaling model width, while scaling depth and resolution to a lesser extent. Unlike currently popular scaling strategies, which result in about O(s) increase in model activation w.r.t. scaling flops by a factor of s, the proposed fast compound scaling results in close to O(s) increase in activations, while achieving excellent accuracy. This leads to comparable speedups on modern memory-limited hardware (e.g., GPU, TPU). More generally, we hope this work provides a framework for analyzing and selecting scaling strategies under various computational constraints.

Revisiting ResNets: Improved Training and Scaling Strategies

Novel computer vision architectures monopolize the spotlight, but the impact of the model architecture is often conflated with simultaneous changes to training methodology and scaling strategies. Our work revisits the canonical ResNet (He et al., 2015) and studies these three aspects in an effort to disentangle them. Perhaps surprisingly, we find that training and scaling strategies may matter more than architectural changes, and further, that the resulting ResNets match recent state-of-the-art models. We show that the best performing scaling strategy depends on the training regime and offer two new scaling strategies: (1) scale model depth in regimes where overfitting can occur (width scaling is preferable otherwise); (2) increase image resolution more slowly than previously recommended (Tan & Le, 2019). Using improved training and scaling strategies, we design a family of ResNet architectures, ResNet-RS, which are 1.7x - 2.7x faster than EfficientNets on TPUs, while achieving similar accuracies on ImageNet. In a large-scale semi-supervised learning setup, ResNet-RS achieves 86.2% top-1 ImageNet accuracy, while being 4.7x faster than EfficientNet NoisyStudent. The training techniques improve transfer performance on a suite of downstream tasks (rivaling state-of-the-art self-supervised algorithms) and extend to video classification on Kinetics-400. We recommend practitioners use these simple revised ResNets as baselines for future research.

Robustness of AI-Image Detectors: Fundamental Limits and Practical Attacks

In light of recent advancements in generative AI models, it has become essential to distinguish genuine content from AI-generated one to prevent the malicious usage of fake materials as authentic ones and vice versa. Various techniques have been introduced for identifying AI-generated images, with watermarking emerging as a promising approach. In this paper, we analyze the robustness of various AI-image detectors including watermarking and classifier-based deepfake detectors. For watermarking methods that introduce subtle image perturbations (i.e., low perturbation budget methods), we reveal a fundamental trade-off between the evasion error rate (i.e., the fraction of watermarked images detected as non-watermarked ones) and the spoofing error rate (i.e., the fraction of non-watermarked images detected as watermarked ones) upon an application of a diffusion purification attack. In this regime, we also empirically show that diffusion purification effectively removes watermarks with minimal changes to images. For high perturbation watermarking methods where notable changes are applied to images, the diffusion purification attack is not effective. In this case, we develop a model substitution adversarial attack that can successfully remove watermarks. Moreover, we show that watermarking methods are vulnerable to spoofing attacks where the attacker aims to have real images (potentially obscene) identified as watermarked ones, damaging the reputation of the developers. In particular, by just having black-box access to the watermarking method, we show that one can generate a watermarked noise image which can be added to the real images to have them falsely flagged as watermarked ones. Finally, we extend our theory to characterize a fundamental trade-off between the robustness and reliability of classifier-based deep fake detectors and demonstrate it through experiments.

CopyrightMeter: Revisiting Copyright Protection in Text-to-image Models

Text-to-image diffusion models have emerged as powerful tools for generating high-quality images from textual descriptions. However, their increasing popularity has raised significant copyright concerns, as these models can be misused to reproduce copyrighted content without authorization. In response, recent studies have proposed various copyright protection methods, including adversarial perturbation, concept erasure, and watermarking techniques. However, their effectiveness and robustness against advanced attacks remain largely unexplored. Moreover, the lack of unified evaluation frameworks has hindered systematic comparison and fair assessment of different approaches. To bridge this gap, we systematize existing copyright protection methods and attacks, providing a unified taxonomy of their design spaces. We then develop CopyrightMeter, a unified evaluation framework that incorporates 17 state-of-the-art protections and 16 representative attacks. Leveraging CopyrightMeter, we comprehensively evaluate protection methods across multiple dimensions, thereby uncovering how different design choices impact fidelity, efficacy, and resilience under attacks. Our analysis reveals several key findings: (i) most protections (16/17) are not resilient against attacks; (ii) the "best" protection varies depending on the target priority; (iii) more advanced attacks significantly promote the upgrading of protections. These insights provide concrete guidance for developing more robust protection methods, while its unified evaluation protocol establishes a standard benchmark for future copyright protection research in text-to-image generation.

Evaluating Adversarial Robustness: A Comparison Of FGSM, Carlini-Wagner Attacks, And The Role of Distillation as Defense Mechanism

This technical report delves into an in-depth exploration of adversarial attacks specifically targeted at Deep Neural Networks (DNNs) utilized for image classification. The study also investigates defense mechanisms aimed at bolstering the robustness of machine learning models. The research focuses on comprehending the ramifications of two prominent attack methodologies: the Fast Gradient Sign Method (FGSM) and the Carlini-Wagner (CW) approach. These attacks are examined concerning three pre-trained image classifiers: Resnext50_32x4d, DenseNet-201, and VGG-19, utilizing the Tiny-ImageNet dataset. Furthermore, the study proposes the robustness of defensive distillation as a defense mechanism to counter FGSM and CW attacks. This defense mechanism is evaluated using the CIFAR-10 dataset, where CNN models, specifically resnet101 and Resnext50_32x4d, serve as the teacher and student models, respectively. The proposed defensive distillation model exhibits effectiveness in thwarting attacks such as FGSM. However, it is noted to remain susceptible to more sophisticated techniques like the CW attack. The document presents a meticulous validation of the proposed scheme. It provides detailed and comprehensive results, elucidating the efficacy and limitations of the defense mechanisms employed. Through rigorous experimentation and analysis, the study offers insights into the dynamics of adversarial attacks on DNNs, as well as the effectiveness of defensive strategies in mitigating their impact.

All You Need is RAW: Defending Against Adversarial Attacks with Camera Image Pipelines

Existing neural networks for computer vision tasks are vulnerable to adversarial attacks: adding imperceptible perturbations to the input images can fool these methods to make a false prediction on an image that was correctly predicted without the perturbation. Various defense methods have proposed image-to-image mapping methods, either including these perturbations in the training process or removing them in a preprocessing denoising step. In doing so, existing methods often ignore that the natural RGB images in today's datasets are not captured but, in fact, recovered from RAW color filter array captures that are subject to various degradations in the capture. In this work, we exploit this RAW data distribution as an empirical prior for adversarial defense. Specifically, we proposed a model-agnostic adversarial defensive method, which maps the input RGB images to Bayer RAW space and back to output RGB using a learned camera image signal processing (ISP) pipeline to eliminate potential adversarial patterns. The proposed method acts as an off-the-shelf preprocessing module and, unlike model-specific adversarial training methods, does not require adversarial images to train. As a result, the method generalizes to unseen tasks without additional retraining. Experiments on large-scale datasets (e.g., ImageNet, COCO) for different vision tasks (e.g., classification, semantic segmentation, object detection) validate that the method significantly outperforms existing methods across task domains.

RAID: A Dataset for Testing the Adversarial Robustness of AI-Generated Image Detectors

AI-generated images have reached a quality level at which humans are incapable of reliably distinguishing them from real images. To counteract the inherent risk of fraud and disinformation, the detection of AI-generated images is a pressing challenge and an active research topic. While many of the presented methods claim to achieve high detection accuracy, they are usually evaluated under idealized conditions. In particular, the adversarial robustness is often neglected, potentially due to a lack of awareness or the substantial effort required to conduct a comprehensive robustness analysis. In this work, we tackle this problem by providing a simpler means to assess the robustness of AI-generated image detectors. We present RAID (Robust evaluation of AI-generated image Detectors), a dataset of 72k diverse and highly transferable adversarial examples. The dataset is created by running attacks against an ensemble of seven state-of-the-art detectors and images generated by four different text-to-image models. Extensive experiments show that our methodology generates adversarial images that transfer with a high success rate to unseen detectors, which can be used to quickly provide an approximate yet still reliable estimate of a detector's adversarial robustness. Our findings indicate that current state-of-the-art AI-generated image detectors can be easily deceived by adversarial examples, highlighting the critical need for the development of more robust methods. We release our dataset at https://huggingface.co/datasets/aimagelab/RAID and evaluation code at https://github.com/pralab/RAID.

The Brittleness of AI-Generated Image Watermarking Techniques: Examining Their Robustness Against Visual Paraphrasing Attacks

The rapid advancement of text-to-image generation systems, exemplified by models like Stable Diffusion, Midjourney, Imagen, and DALL-E, has heightened concerns about their potential misuse. In response, companies like Meta and Google have intensified their efforts to implement watermarking techniques on AI-generated images to curb the circulation of potentially misleading visuals. However, in this paper, we argue that current image watermarking methods are fragile and susceptible to being circumvented through visual paraphrase attacks. The proposed visual paraphraser operates in two steps. First, it generates a caption for the given image using KOSMOS-2, one of the latest state-of-the-art image captioning systems. Second, it passes both the original image and the generated caption to an image-to-image diffusion system. During the denoising step of the diffusion pipeline, the system generates a visually similar image that is guided by the text caption. The resulting image is a visual paraphrase and is free of any watermarks. Our empirical findings demonstrate that visual paraphrase attacks can effectively remove watermarks from images. This paper provides a critical assessment, empirically revealing the vulnerability of existing watermarking techniques to visual paraphrase attacks. While we do not propose solutions to this issue, this paper serves as a call to action for the scientific community to prioritize the development of more robust watermarking techniques. Our first-of-its-kind visual paraphrase dataset and accompanying code are publicly available.

Beyond neural scaling laws: beating power law scaling via data pruning

Widely observed neural scaling laws, in which error falls off as a power of the training set size, model size, or both, have driven substantial performance improvements in deep learning. However, these improvements through scaling alone require considerable costs in compute and energy. Here we focus on the scaling of error with dataset size and show how in theory we can break beyond power law scaling and potentially even reduce it to exponential scaling instead if we have access to a high-quality data pruning metric that ranks the order in which training examples should be discarded to achieve any pruned dataset size. We then test this improved scaling prediction with pruned dataset size empirically, and indeed observe better than power law scaling in practice on ResNets trained on CIFAR-10, SVHN, and ImageNet. Next, given the importance of finding high-quality pruning metrics, we perform the first large-scale benchmarking study of ten different data pruning metrics on ImageNet. We find most existing high performing metrics scale poorly to ImageNet, while the best are computationally intensive and require labels for every image. We therefore developed a new simple, cheap and scalable self-supervised pruning metric that demonstrates comparable performance to the best supervised metrics. Overall, our work suggests that the discovery of good data-pruning metrics may provide a viable path forward to substantially improved neural scaling laws, thereby reducing the resource costs of modern deep learning.

AnyAttack: Targeted Adversarial Attacks on Vision-Language Models toward Any Images

Due to their multimodal capabilities, Vision-Language Models (VLMs) have found numerous impactful applications in real-world scenarios. However, recent studies have revealed that VLMs are vulnerable to image-based adversarial attacks, particularly targeted adversarial images that manipulate the model to generate harmful content specified by the adversary. Current attack methods rely on predefined target labels to create targeted adversarial attacks, which limits their scalability and applicability for large-scale robustness evaluations. In this paper, we propose AnyAttack, a self-supervised framework that generates targeted adversarial images for VLMs without label supervision, allowing any image to serve as a target for the attack. Our framework employs the pre-training and fine-tuning paradigm, with the adversarial noise generator pre-trained on the large-scale LAION-400M dataset. This large-scale pre-training endows our method with powerful transferability across a wide range of VLMs. Extensive experiments on five mainstream open-source VLMs (CLIP, BLIP, BLIP2, InstructBLIP, and MiniGPT-4) across three multimodal tasks (image-text retrieval, multimodal classification, and image captioning) demonstrate the effectiveness of our attack. Additionally, we successfully transfer AnyAttack to multiple commercial VLMs, including Google Gemini, Claude Sonnet, Microsoft Copilot and OpenAI GPT. These results reveal an unprecedented risk to VLMs, highlighting the need for effective countermeasures.

Robust Watermarking Using Generative Priors Against Image Editing: From Benchmarking to Advances

Current image watermarking methods are vulnerable to advanced image editing techniques enabled by large-scale text-to-image models. These models can distort embedded watermarks during editing, posing significant challenges to copyright protection. In this work, we introduce W-Bench, the first comprehensive benchmark designed to evaluate the robustness of watermarking methods against a wide range of image editing techniques, including image regeneration, global editing, local editing, and image-to-video generation. Through extensive evaluations of eleven representative watermarking methods against prevalent editing techniques, we demonstrate that most methods fail to detect watermarks after such edits. To address this limitation, we propose VINE, a watermarking method that significantly enhances robustness against various image editing techniques while maintaining high image quality. Our approach involves two key innovations: (1) we analyze the frequency characteristics of image editing and identify that blurring distortions exhibit similar frequency properties, which allows us to use them as surrogate attacks during training to bolster watermark robustness; (2) we leverage a large-scale pretrained diffusion model SDXL-Turbo, adapting it for the watermarking task to achieve more imperceptible and robust watermark embedding. Experimental results show that our method achieves outstanding watermarking performance under various image editing techniques, outperforming existing methods in both image quality and robustness. Code is available at https://github.com/Shilin-LU/VINE.

REAP: A Large-Scale Realistic Adversarial Patch Benchmark

Machine learning models are known to be susceptible to adversarial perturbation. One famous attack is the adversarial patch, a sticker with a particularly crafted pattern that makes the model incorrectly predict the object it is placed on. This attack presents a critical threat to cyber-physical systems that rely on cameras such as autonomous cars. Despite the significance of the problem, conducting research in this setting has been difficult; evaluating attacks and defenses in the real world is exceptionally costly while synthetic data are unrealistic. In this work, we propose the REAP (REalistic Adversarial Patch) benchmark, a digital benchmark that allows the user to evaluate patch attacks on real images, and under real-world conditions. Built on top of the Mapillary Vistas dataset, our benchmark contains over 14,000 traffic signs. Each sign is augmented with a pair of geometric and lighting transformations, which can be used to apply a digitally generated patch realistically onto the sign. Using our benchmark, we perform the first large-scale assessments of adversarial patch attacks under realistic conditions. Our experiments suggest that adversarial patch attacks may present a smaller threat than previously believed and that the success rate of an attack on simpler digital simulations is not predictive of its actual effectiveness in practice. We release our benchmark publicly at https://github.com/wagner-group/reap-benchmark.

Adversarial Watermarking for Face Recognition

Watermarking is an essential technique for embedding an identifier (i.e., watermark message) within digital images to assert ownership and monitor unauthorized alterations. In face recognition systems, watermarking plays a pivotal role in ensuring data integrity and security. However, an adversary could potentially interfere with the watermarking process, significantly impairing recognition performance. We explore the interaction between watermarking and adversarial attacks on face recognition models. Our findings reveal that while watermarking or input-level perturbation alone may have a negligible effect on recognition accuracy, the combined effect of watermarking and perturbation can result in an adversarial watermarking attack, significantly degrading recognition performance. Specifically, we introduce a novel threat model, the adversarial watermarking attack, which remains stealthy in the absence of watermarking, allowing images to be correctly recognized initially. However, once watermarking is applied, the attack is activated, causing recognition failures. Our study reveals a previously unrecognized vulnerability: adversarial perturbations can exploit the watermark message to evade face recognition systems. Evaluated on the CASIA-WebFace dataset, our proposed adversarial watermarking attack reduces face matching accuracy by 67.2% with an ell_infty norm-measured perturbation strength of {2}/{255} and by 95.9% with a strength of {4}/{255}.

The Effect of Intrinsic Dataset Properties on Generalization: Unraveling Learning Differences Between Natural and Medical Images

This paper investigates discrepancies in how neural networks learn from different imaging domains, which are commonly overlooked when adopting computer vision techniques from the domain of natural images to other specialized domains such as medical images. Recent works have found that the generalization error of a trained network typically increases with the intrinsic dimension (d_{data}) of its training set. Yet, the steepness of this relationship varies significantly between medical (radiological) and natural imaging domains, with no existing theoretical explanation. We address this gap in knowledge by establishing and empirically validating a generalization scaling law with respect to d_{data}, and propose that the substantial scaling discrepancy between the two considered domains may be at least partially attributed to the higher intrinsic ``label sharpness'' (K_F) of medical imaging datasets, a metric which we propose. Next, we demonstrate an additional benefit of measuring the label sharpness of a training set: it is negatively correlated with the trained model's adversarial robustness, which notably leads to models for medical images having a substantially higher vulnerability to adversarial attack. Finally, we extend our d_{data} formalism to the related metric of learned representation intrinsic dimension (d_{repr}), derive a generalization scaling law with respect to d_{repr}, and show that d_{data} serves as an upper bound for d_{repr}. Our theoretical results are supported by thorough experiments with six models and eleven natural and medical imaging datasets over a range of training set sizes. Our findings offer insights into the influence of intrinsic dataset properties on generalization, representation learning, and robustness in deep neural networks. Code link: https://github.com/mazurowski-lab/intrinsic-properties

Downstream Transfer Attack: Adversarial Attacks on Downstream Models with Pre-trained Vision Transformers

With the advancement of vision transformers (ViTs) and self-supervised learning (SSL) techniques, pre-trained large ViTs have become the new foundation models for computer vision applications. However, studies have shown that, like convolutional neural networks (CNNs), ViTs are also susceptible to adversarial attacks, where subtle perturbations in the input can fool the model into making false predictions. This paper studies the transferability of such an adversarial vulnerability from a pre-trained ViT model to downstream tasks. We focus on sample-wise transfer attacks and propose a novel attack method termed Downstream Transfer Attack (DTA). For a given test image, DTA leverages a pre-trained ViT model to craft the adversarial example and then applies the adversarial example to attack a fine-tuned version of the model on a downstream dataset. During the attack, DTA identifies and exploits the most vulnerable layers of the pre-trained model guided by a cosine similarity loss to craft highly transferable attacks. Through extensive experiments with pre-trained ViTs by 3 distinct pre-training methods, 3 fine-tuning schemes, and across 10 diverse downstream datasets, we show that DTA achieves an average attack success rate (ASR) exceeding 90\%, surpassing existing methods by a huge margin. When used with adversarial training, the adversarial examples generated by our DTA can significantly improve the model's robustness to different downstream transfer attacks.

SEAL: Semantic Aware Image Watermarking

Generative models have rapidly evolved to generate realistic outputs. However, their synthetic outputs increasingly challenge the clear distinction between natural and AI-generated content, necessitating robust watermarking techniques. Watermarks are typically expected to preserve the integrity of the target image, withstand removal attempts, and prevent unauthorized replication onto unrelated images. To address this need, recent methods embed persistent watermarks into images produced by diffusion models using the initial noise. Yet, to do so, they either distort the distribution of generated images or rely on searching through a long dictionary of used keys for detection. In this paper, we propose a novel watermarking method that embeds semantic information about the generated image directly into the watermark, enabling a distortion-free watermark that can be verified without requiring a database of key patterns. Instead, the key pattern can be inferred from the semantic embedding of the image using locality-sensitive hashing. Furthermore, conditioning the watermark detection on the original image content improves robustness against forgery attacks. To demonstrate that, we consider two largely overlooked attack strategies: (i) an attacker extracting the initial noise and generating a novel image with the same pattern; (ii) an attacker inserting an unrelated (potentially harmful) object into a watermarked image, possibly while preserving the watermark. We empirically validate our method's increased robustness to these attacks. Taken together, our results suggest that content-aware watermarks can mitigate risks arising from image-generative models.

On the Proactive Generation of Unsafe Images From Text-To-Image Models Using Benign Prompts

Text-to-image models like Stable Diffusion have had a profound impact on daily life by enabling the generation of photorealistic images from textual prompts, fostering creativity, and enhancing visual experiences across various applications. However, these models also pose risks. Previous studies have successfully demonstrated that manipulated prompts can elicit text-to-image models to generate unsafe images, e.g., hateful meme variants. Yet, these studies only unleash the harmful power of text-to-image models in a passive manner. In this work, we focus on the proactive generation of unsafe images using targeted benign prompts via poisoning attacks. We propose two poisoning attacks: a basic attack and a utility-preserving attack. We qualitatively and quantitatively evaluate the proposed attacks using four representative hateful memes and multiple query prompts. Experimental results indicate that text-to-image models are vulnerable to the basic attack even with five poisoning samples. However, the poisoning effect can inadvertently spread to non-targeted prompts, leading to undesirable side effects. Root cause analysis identifies conceptual similarity as an important contributing factor to the side effects. To address this, we introduce the utility-preserving attack as a viable mitigation strategy to maintain the attack stealthiness, while ensuring decent attack performance. Our findings underscore the potential risks of adopting text-to-image models in real-world scenarios, calling for future research and safety measures in this space.

Adversarial Perturbations Prevail in the Y-Channel of the YCbCr Color Space

Deep learning offers state of the art solutions for image recognition. However, deep models are vulnerable to adversarial perturbations in images that are subtle but significantly change the model's prediction. In a white-box attack, these perturbations are generally learned for deep models that operate on RGB images and, hence, the perturbations are equally distributed in the RGB color space. In this paper, we show that the adversarial perturbations prevail in the Y-channel of the YCbCr space. Our finding is motivated from the fact that the human vision and deep models are more responsive to shape and texture rather than color. Based on our finding, we propose a defense against adversarial images. Our defence, coined ResUpNet, removes perturbations only from the Y-channel by exploiting ResNet features in an upsampling framework without the need for a bottleneck. At the final stage, the untouched CbCr-channels are combined with the refined Y-channel to restore the clean image. Note that ResUpNet is model agnostic as it does not modify the DNN structure. ResUpNet is trained end-to-end in Pytorch and the results are compared to existing defence techniques in the input transformation category. Our results show that our approach achieves the best balance between defence against adversarial attacks such as FGSM, PGD and DDN and maintaining the original accuracies of VGG-16, ResNet50 and DenseNet121 on clean images. We perform another experiment to show that learning adversarial perturbations only for the Y-channel results in higher fooling rates for the same perturbation magnitude.

Combined Scaling for Zero-shot Transfer Learning

We present a combined scaling method - named BASIC - that achieves 85.7% top-1 accuracy on the ImageNet ILSVRC-2012 validation set without learning from any labeled ImageNet example. This accuracy surpasses best published similar models - CLIP and ALIGN - by 9.3%. Our BASIC model also shows significant improvements in robustness benchmarks. For instance, on 5 test sets with natural distribution shifts such as ImageNet-{A,R,V2,Sketch} and ObjectNet, our model achieves 84.3% top-1 average accuracy, only a small drop from its original ImageNet accuracy. To achieve these results, we scale up the contrastive learning framework of CLIP and ALIGN in three dimensions: data size, model size, and batch size. Our dataset has 6.6B noisy image-text pairs, which is 4x larger than ALIGN, and 16x larger than CLIP. Our largest model has 3B weights, which is 3.75x larger in parameters and 8x larger in FLOPs than ALIGN and CLIP. Finally, our batch size is 65536 which is 2x more than CLIP and 4x more than ALIGN. We encountered two main challenges with the scaling rules of BASIC. First, the main challenge with implementing the combined scaling rules of BASIC is the limited memory of accelerators, such as GPUs and TPUs. To overcome the memory limit, we propose two simple methods which make use of gradient checkpointing and model parallelism. Second, while increasing the dataset size and the model size has been the defacto method to improve the performance of deep learning models like BASIC, the effect of a large contrastive batch size on such contrastive-trained image-text models is not well-understood. To shed light on the benefits of large contrastive batch sizes, we develop a theoretical framework which shows that larger contrastive batch sizes lead to smaller generalization gaps for image-text models such as BASIC.

Unsegment Anything by Simulating Deformation

Foundation segmentation models, while powerful, pose a significant risk: they enable users to effortlessly extract any objects from any digital content with a single click, potentially leading to copyright infringement or malicious misuse. To mitigate this risk, we introduce a new task "Anything Unsegmentable" to grant any image "the right to be unsegmented". The ambitious pursuit of the task is to achieve highly transferable adversarial attacks against all prompt-based segmentation models, regardless of model parameterizations and prompts. We highlight the non-transferable and heterogeneous nature of prompt-specific adversarial noises. Our approach focuses on disrupting image encoder features to achieve prompt-agnostic attacks. Intriguingly, targeted feature attacks exhibit better transferability compared to untargeted ones, suggesting the optimal update direction aligns with the image manifold. Based on the observations, we design a novel attack named Unsegment Anything by Simulating Deformation (UAD). Our attack optimizes a differentiable deformation function to create a target deformed image, which alters structural information while preserving achievable feature distance by adversarial example. Extensive experiments verify the effectiveness of our approach, compromising a variety of promptable segmentation models with different architectures and prompt interfaces. We release the code at https://github.com/jiahaolu97/anything-unsegmentable.

AnyPattern: Towards In-context Image Copy Detection

This paper explores in-context learning for image copy detection (ICD), i.e., prompting an ICD model to identify replicated images with new tampering patterns without the need for additional training. The prompts (or the contexts) are from a small set of image-replica pairs that reflect the new patterns and are used at inference time. Such in-context ICD has good realistic value, because it requires no fine-tuning and thus facilitates fast reaction against the emergence of unseen patterns. To accommodate the "seen rightarrow unseen" generalization scenario, we construct the first large-scale pattern dataset named AnyPattern, which has the largest number of tamper patterns (90 for training and 10 for testing) among all the existing ones. We benchmark AnyPattern with popular ICD methods and reveal that existing methods barely generalize to novel tamper patterns. We further propose a simple in-context ICD method named ImageStacker. ImageStacker learns to select the most representative image-replica pairs and employs them as the pattern prompts in a stacking manner (rather than the popular concatenation manner). Experimental results show (1) training with our large-scale dataset substantially benefits pattern generalization (+26.66 % mu AP), (2) the proposed ImageStacker facilitates effective in-context ICD (another round of +16.75 % mu AP), and (3) AnyPattern enables in-context ICD, i.e. without such a large-scale dataset, in-context learning does not emerge even with our ImageStacker. The project (including the proposed dataset AnyPattern and the code for ImageStacker) is publicly available at https://anypattern.github.io under the MIT Licence.

Reverse Engineering of Imperceptible Adversarial Image Perturbations

It has been well recognized that neural network based image classifiers are easily fooled by images with tiny perturbations crafted by an adversary. There has been a vast volume of research to generate and defend such adversarial attacks. However, the following problem is left unexplored: How to reverse-engineer adversarial perturbations from an adversarial image? This leads to a new adversarial learning paradigm--Reverse Engineering of Deceptions (RED). If successful, RED allows us to estimate adversarial perturbations and recover the original images. However, carefully crafted, tiny adversarial perturbations are difficult to recover by optimizing a unilateral RED objective. For example, the pure image denoising method may overfit to minimizing the reconstruction error but hardly preserve the classification properties of the true adversarial perturbations. To tackle this challenge, we formalize the RED problem and identify a set of principles crucial to the RED approach design. Particularly, we find that prediction alignment and proper data augmentation (in terms of spatial transformations) are two criteria to achieve a generalizable RED approach. By integrating these RED principles with image denoising, we propose a new Class-Discriminative Denoising based RED framework, termed CDD-RED. Extensive experiments demonstrate the effectiveness of CDD-RED under different evaluation metrics (ranging from the pixel-level, prediction-level to the attribution-level alignment) and a variety of attack generation methods (e.g., FGSM, PGD, CW, AutoAttack, and adaptive attacks).

Oscillation-free Quantization for Low-bit Vision Transformers

Weight oscillation is an undesirable side effect of quantization-aware training, in which quantized weights frequently jump between two quantized levels, resulting in training instability and a sub-optimal final model. We discover that the learnable scaling factor, a widely-used de facto setting in quantization aggravates weight oscillation. In this study, we investigate the connection between the learnable scaling factor and quantized weight oscillation and use ViT as a case driver to illustrate the findings and remedies. In addition, we also found that the interdependence between quantized weights in query and key of a self-attention layer makes ViT vulnerable to oscillation. We, therefore, propose three techniques accordingly: statistical weight quantization (rm StatsQ) to improve quantization robustness compared to the prevalent learnable-scale-based method; confidence-guided annealing (rm CGA) that freezes the weights with high confidence and calms the oscillating weights; and query-key reparameterization (rm QKR) to resolve the query-key intertwined oscillation and mitigate the resulting gradient misestimation. Extensive experiments demonstrate that these proposed techniques successfully abate weight oscillation and consistently achieve substantial accuracy improvement on ImageNet. Specifically, our 2-bit DeiT-T/DeiT-S algorithms outperform the previous state-of-the-art by 9.8% and 7.7%, respectively. Code and models are available at: https://github.com/nbasyl/OFQ.

I See Dead People: Gray-Box Adversarial Attack on Image-To-Text Models

Modern image-to-text systems typically adopt the encoder-decoder framework, which comprises two main components: an image encoder, responsible for extracting image features, and a transformer-based decoder, used for generating captions. Taking inspiration from the analysis of neural networks' robustness against adversarial perturbations, we propose a novel gray-box algorithm for creating adversarial examples in image-to-text models. Unlike image classification tasks that have a finite set of class labels, finding visually similar adversarial examples in an image-to-text task poses greater challenges because the captioning system allows for a virtually infinite space of possible captions. In this paper, we present a gray-box adversarial attack on image-to-text, both untargeted and targeted. We formulate the process of discovering adversarial perturbations as an optimization problem that uses only the image-encoder component, meaning the proposed attack is language-model agnostic. Through experiments conducted on the ViT-GPT2 model, which is the most-used image-to-text model in Hugging Face, and the Flickr30k dataset, we demonstrate that our proposed attack successfully generates visually similar adversarial examples, both with untargeted and targeted captions. Notably, our attack operates in a gray-box manner, requiring no knowledge about the decoder module. We also show that our attacks fool the popular open-source platform Hugging Face.

Training-Free Watermarking for Autoregressive Image Generation

Invisible image watermarking can protect image ownership and prevent malicious misuse of visual generative models. However, existing generative watermarking methods are mainly designed for diffusion models while watermarking for autoregressive image generation models remains largely underexplored. We propose IndexMark, a training-free watermarking framework for autoregressive image generation models. IndexMark is inspired by the redundancy property of the codebook: replacing autoregressively generated indices with similar indices produces negligible visual differences. The core component in IndexMark is a simple yet effective match-then-replace method, which carefully selects watermark tokens from the codebook based on token similarity, and promotes the use of watermark tokens through token replacement, thereby embedding the watermark without affecting the image quality. Watermark verification is achieved by calculating the proportion of watermark tokens in generated images, with precision further improved by an Index Encoder. Furthermore, we introduce an auxiliary validation scheme to enhance robustness against cropping attacks. Experiments demonstrate that IndexMark achieves state-of-the-art performance in terms of image quality and verification accuracy, and exhibits robustness against various perturbations, including cropping, noises, Gaussian blur, random erasing, color jittering, and JPEG compression.

SCAM: A Real-World Typographic Robustness Evaluation for Multimodal Foundation Models

Typographic attacks exploit the interplay between text and visual content in multimodal foundation models, causing misclassifications when misleading text is embedded within images. However, existing datasets are limited in size and diversity, making it difficult to study such vulnerabilities. In this paper, we introduce SCAM, the largest and most diverse dataset of real-world typographic attack images to date, containing 1,162 images across hundreds of object categories and attack words. Through extensive benchmarking of Vision-Language Models (VLMs) on SCAM, we demonstrate that typographic attacks significantly degrade performance, and identify that training data and model architecture influence the susceptibility to these attacks. Our findings reveal that typographic attacks persist in state-of-the-art Large Vision-Language Models (LVLMs) due to the choice of their vision encoder, though larger Large Language Models (LLMs) backbones help mitigate their vulnerability. Additionally, we demonstrate that synthetic attacks closely resemble real-world (handwritten) attacks, validating their use in research. Our work provides a comprehensive resource and empirical insights to facilitate future research toward robust and trustworthy multimodal AI systems. We publicly release the datasets introduced in this paper under https://huggingface.co/datasets/BLISS-e-V/SCAM, along with the code for evaluations at https://github.com/Bliss-e-V/SCAM.

LocalStyleFool: Regional Video Style Transfer Attack Using Segment Anything Model

Previous work has shown that well-crafted adversarial perturbations can threaten the security of video recognition systems. Attackers can invade such models with a low query budget when the perturbations are semantic-invariant, such as StyleFool. Despite the query efficiency, the naturalness of the minutia areas still requires amelioration, since StyleFool leverages style transfer to all pixels in each frame. To close the gap, we propose LocalStyleFool, an improved black-box video adversarial attack that superimposes regional style-transfer-based perturbations on videos. Benefiting from the popularity and scalably usability of Segment Anything Model (SAM), we first extract different regions according to semantic information and then track them through the video stream to maintain the temporal consistency. Then, we add style-transfer-based perturbations to several regions selected based on the associative criterion of transfer-based gradient information and regional area. Perturbation fine adjustment is followed to make stylized videos adversarial. We demonstrate that LocalStyleFool can improve both intra-frame and inter-frame naturalness through a human-assessed survey, while maintaining competitive fooling rate and query efficiency. Successful experiments on the high-resolution dataset also showcase that scrupulous segmentation of SAM helps to improve the scalability of adversarial attacks under high-resolution data.

A Frustratingly Simple Yet Highly Effective Attack Baseline: Over 90% Success Rate Against the Strong Black-box Models of GPT-4.5/4o/o1

Despite promising performance on open-source large vision-language models (LVLMs), transfer-based targeted attacks often fail against black-box commercial LVLMs. Analyzing failed adversarial perturbations reveals that the learned perturbations typically originate from a uniform distribution and lack clear semantic details, resulting in unintended responses. This critical absence of semantic information leads commercial LVLMs to either ignore the perturbation entirely or misinterpret its embedded semantics, thereby causing the attack to fail. To overcome these issues, we notice that identifying core semantic objects is a key objective for models trained with various datasets and methodologies. This insight motivates our approach that refines semantic clarity by encoding explicit semantic details within local regions, thus ensuring interoperability and capturing finer-grained features, and by concentrating modifications on semantically rich areas rather than applying them uniformly. To achieve this, we propose a simple yet highly effective solution: at each optimization step, the adversarial image is cropped randomly by a controlled aspect ratio and scale, resized, and then aligned with the target image in the embedding space. Experimental results confirm our hypothesis. Our adversarial examples crafted with local-aggregated perturbations focused on crucial regions exhibit surprisingly good transferability to commercial LVLMs, including GPT-4.5, GPT-4o, Gemini-2.0-flash, Claude-3.5-sonnet, Claude-3.7-sonnet, and even reasoning models like o1, Claude-3.7-thinking and Gemini-2.0-flash-thinking. Our approach achieves success rates exceeding 90% on GPT-4.5, 4o, and o1, significantly outperforming all prior state-of-the-art attack methods. Our optimized adversarial examples under different configurations and training code are available at https://github.com/VILA-Lab/M-Attack.

Toward effective protection against diffusion based mimicry through score distillation

While generative diffusion models excel in producing high-quality images, they can also be misused to mimic authorized images, posing a significant threat to AI systems. Efforts have been made to add calibrated perturbations to protect images from diffusion-based mimicry pipelines. However, most of the existing methods are too ineffective and even impractical to be used by individual users due to their high computation and memory requirements. In this work, we present novel findings on attacking latent diffusion models (LDM) and propose new plug-and-play strategies for more effective protection. In particular, we explore the bottleneck in attacking an LDM, discovering that the encoder module rather than the denoiser module is the vulnerable point. Based on this insight, we present our strategy using Score Distillation Sampling (SDS) to double the speed of protection and reduce memory occupation by half without compromising its strength. Additionally, we provide a robust protection strategy by counterintuitively minimizing the semantic loss, which can assist in generating more natural perturbations. Finally, we conduct extensive experiments to substantiate our findings and comprehensively evaluate our newly proposed strategies. We hope our insights and protective measures can contribute to better defense against malicious diffusion-based mimicry, advancing the development of secure AI systems. The code is available in https://github.com/xavihart/Diff-Protect

Towards Million-Scale Adversarial Robustness Evaluation With Stronger Individual Attacks

As deep learning models are increasingly deployed in safety-critical applications, evaluating their vulnerabilities to adversarial perturbations is essential for ensuring their reliability and trustworthiness. Over the past decade, a large number of white-box adversarial robustness evaluation methods (i.e., attacks) have been proposed, ranging from single-step to multi-step methods and from individual to ensemble methods. Despite these advances, challenges remain in conducting meaningful and comprehensive robustness evaluations, particularly when it comes to large-scale testing and ensuring evaluations reflect real-world adversarial risks. In this work, we focus on image classification models and propose a novel individual attack method, Probability Margin Attack (PMA), which defines the adversarial margin in the probability space rather than the logits space. We analyze the relationship between PMA and existing cross-entropy or logits-margin-based attacks, and show that PMA can outperform the current state-of-the-art individual methods. Building on PMA, we propose two types of ensemble attacks that balance effectiveness and efficiency. Furthermore, we create a million-scale dataset, CC1M, derived from the existing CC3M dataset, and use it to conduct the first million-scale white-box adversarial robustness evaluation of adversarially-trained ImageNet models. Our findings provide valuable insights into the robustness gaps between individual versus ensemble attacks and small-scale versus million-scale evaluations.

Attack as Defense: Run-time Backdoor Implantation for Image Content Protection

As generative models achieve great success, tampering and modifying the sensitive image contents (i.e., human faces, artist signatures, commercial logos, etc.) have induced a significant threat with social impact. The backdoor attack is a method that implants vulnerabilities in a target model, which can be activated through a trigger. In this work, we innovatively prevent the abuse of image content modification by implanting the backdoor into image-editing models. Once the protected sensitive content on an image is modified by an editing model, the backdoor will be triggered, making the editing fail. Unlike traditional backdoor attacks that use data poisoning, to enable protection on individual images and eliminate the need for model training, we developed the first framework for run-time backdoor implantation, which is both time- and resource- efficient. We generate imperceptible perturbations on the images to inject the backdoor and define the protected area as the only backdoor trigger. Editing other unprotected insensitive areas will not trigger the backdoor, which minimizes the negative impact on legal image modifications. Evaluations with state-of-the-art image editing models show that our protective method can increase the CLIP-FID of generated images from 12.72 to 39.91, or reduce the SSIM from 0.503 to 0.167 when subjected to malicious editing. At the same time, our method exhibits minimal impact on benign editing, which demonstrates the efficacy of our proposed framework. The proposed run-time backdoor can also achieve effective protection on the latest diffusion models. Code are available.

TrojanEdit: Backdooring Text-Based Image Editing Models

As diffusion models have achieved success in image generation tasks, many studies have extended them to other related fields like image editing. Unlike image generation, image editing aims to modify an image based on user requests while keeping other parts of the image unchanged. Among these, text-based image editing is the most representative task.Some studies have shown that diffusion models are vulnerable to backdoor attacks, where attackers may poison the training data to inject the backdoor into models. However, previous backdoor attacks on diffusion models primarily focus on image generation models without considering image editing models. Given that image editing models accept multimodal inputs, it raises a new question regarding the effectiveness of different modalities triggers in backdoor attacks on these models. To address this question, we propose a backdoor attack framework for image editing models, named TrojanEdit, which can handle different modalities triggers. We explore five types of visual triggers, three types of textual triggers, and combine them together as fifteen types of multimodal triggers, conducting extensive experiments for three types of backdoor attack goals. Our experimental results show that the image editing model has a backdoor bias for texture triggers. Compared to visual triggers, textual triggers have stronger attack effectiveness but also cause more damage to the model's normal functionality. Furthermore, we found that multimodal triggers can achieve a good balance between the attack effectiveness and model's normal functionality.

Finding Dori: Memorization in Text-to-Image Diffusion Models Is Less Local Than Assumed

Text-to-image diffusion models (DMs) have achieved remarkable success in image generation. However, concerns about data privacy and intellectual property remain due to their potential to inadvertently memorize and replicate training data. Recent mitigation efforts have focused on identifying and pruning weights responsible for triggering replication, based on the assumption that memorization can be localized. Our research assesses the robustness of these pruning-based approaches. We demonstrate that even after pruning, minor adjustments to text embeddings of input prompts are sufficient to re-trigger data replication, highlighting the fragility of these defenses. Furthermore, we challenge the fundamental assumption of memorization locality, by showing that replication can be triggered from diverse locations within the text embedding space, and follows different paths in the model. Our findings indicate that existing mitigation strategies are insufficient and underscore the need for methods that truly remove memorized content, rather than attempting to suppress its retrieval. As a first step in this direction, we introduce a novel adversarial fine-tuning method that iteratively searches for replication triggers and updates the model to increase robustness. Through our research, we provide fresh insights into the nature of memorization in text-to-image DMs and a foundation for building more trustworthy and compliant generative AI.

Fooling Contrastive Language-Image Pre-trained Models with CLIPMasterPrints

Models leveraging both visual and textual data such as Contrastive Language-Image Pre-training (CLIP), are the backbone of many recent advances in artificial intelligence. In this work, we show that despite their versatility, such models are vulnerable to what we refer to as fooling master images. Fooling master images are capable of maximizing the confidence score of a CLIP model for a significant number of widely varying prompts, while being either unrecognizable or unrelated to the attacked prompts for humans. The existence of such images is problematic as it could be used by bad actors to maliciously interfere with CLIP-trained image retrieval models in production with comparably small effort as a single image can attack many different prompts. We demonstrate how fooling master images for CLIP (CLIPMasterPrints) can be mined using stochastic gradient descent, projected gradient descent, or blackbox optimization. Contrary to many common adversarial attacks, the blackbox optimization approach allows us to mine CLIPMasterPrints even when the weights of the model are not accessible. We investigate the properties of the mined images, and find that images trained on a small number of image captions generalize to a much larger number of semantically related captions. We evaluate possible mitigation strategies, where we increase the robustness of the model and introduce an approach to automatically detect CLIPMasterPrints to sanitize the input of vulnerable models. Finally, we find that vulnerability to CLIPMasterPrints is related to a modality gap in contrastive pre-trained multi-modal networks. Code available at https://github.com/matfrei/CLIPMasterPrints.

IAG: Input-aware Backdoor Attack on VLMs for Visual Grounding

Vision-language models (VLMs) have shown significant advancements in tasks such as visual grounding, where they localize specific objects in images based on natural language queries and images. However, security issues in visual grounding tasks for VLMs remain underexplored, especially in the context of backdoor attacks. In this paper, we introduce a novel input-aware backdoor attack method, IAG, designed to manipulate the grounding behavior of VLMs. This attack forces the model to ground a specific target object in the input image, regardless of the user's query. We propose an adaptive trigger generator that embeds the semantic information of the attack target's description into the original image using a text-conditional U-Net, thereby overcoming the open-vocabulary attack challenge. To ensure the attack's stealthiness, we utilize a reconstruction loss to minimize visual discrepancies between poisoned and clean images. Additionally, we introduce a unified method for generating attack data. IAG is evaluated theoretically and empirically, demonstrating its feasibility and effectiveness. Notably, our [email protected] on InternVL-2.5-8B reaches over 65\% on various testing sets. IAG also shows promising potential on manipulating Ferret-7B and LlaVA-1.5-7B with very little accuracy decrease on clean samples. Extensive specific experiments, such as ablation study and potential defense, also indicate the robustness and transferability of our attack.

Improving Fractal Pre-training

The deep neural networks used in modern computer vision systems require enormous image datasets to train them. These carefully-curated datasets typically have a million or more images, across a thousand or more distinct categories. The process of creating and curating such a dataset is a monumental undertaking, demanding extensive effort and labelling expense and necessitating careful navigation of technical and social issues such as label accuracy, copyright ownership, and content bias. What if we had a way to harness the power of large image datasets but with few or none of the major issues and concerns currently faced? This paper extends the recent work of Kataoka et. al. (2020), proposing an improved pre-training dataset based on dynamically-generated fractal images. Challenging issues with large-scale image datasets become points of elegance for fractal pre-training: perfect label accuracy at zero cost; no need to store/transmit large image archives; no privacy/demographic bias/concerns of inappropriate content, as no humans are pictured; limitless supply and diversity of images; and the images are free/open-source. Perhaps surprisingly, avoiding these difficulties imposes only a small penalty in performance. Leveraging a newly-proposed pre-training task -- multi-instance prediction -- our experiments demonstrate that fine-tuning a network pre-trained using fractals attains 92.7-98.1% of the accuracy of an ImageNet pre-trained network.

Can Adversarial Examples Be Parsed to Reveal Victim Model Information?

Numerous adversarial attack methods have been developed to generate imperceptible image perturbations that can cause erroneous predictions of state-of-the-art machine learning (ML) models, in particular, deep neural networks (DNNs). Despite intense research on adversarial attacks, little effort was made to uncover 'arcana' carried in adversarial attacks. In this work, we ask whether it is possible to infer data-agnostic victim model (VM) information (i.e., characteristics of the ML model or DNN used to generate adversarial attacks) from data-specific adversarial instances. We call this 'model parsing of adversarial attacks' - a task to uncover 'arcana' in terms of the concealed VM information in attacks. We approach model parsing via supervised learning, which correctly assigns classes of VM's model attributes (in terms of architecture type, kernel size, activation function, and weight sparsity) to an attack instance generated from this VM. We collect a dataset of adversarial attacks across 7 attack types generated from 135 victim models (configured by 5 architecture types, 3 kernel size setups, 3 activation function types, and 3 weight sparsity ratios). We show that a simple, supervised model parsing network (MPN) is able to infer VM attributes from unseen adversarial attacks if their attack settings are consistent with the training setting (i.e., in-distribution generalization assessment). We also provide extensive experiments to justify the feasibility of VM parsing from adversarial attacks, and the influence of training and evaluation factors in the parsing performance (e.g., generalization challenge raised in out-of-distribution evaluation). We further demonstrate how the proposed MPN can be used to uncover the source VM attributes from transfer attacks, and shed light on a potential connection between model parsing and attack transferability.

Ensemble everything everywhere: Multi-scale aggregation for adversarial robustness

Adversarial examples pose a significant challenge to the robustness, reliability and alignment of deep neural networks. We propose a novel, easy-to-use approach to achieving high-quality representations that lead to adversarial robustness through the use of multi-resolution input representations and dynamic self-ensembling of intermediate layer predictions. We demonstrate that intermediate layer predictions exhibit inherent robustness to adversarial attacks crafted to fool the full classifier, and propose a robust aggregation mechanism based on Vickrey auction that we call CrossMax to dynamically ensemble them. By combining multi-resolution inputs and robust ensembling, we achieve significant adversarial robustness on CIFAR-10 and CIFAR-100 datasets without any adversarial training or extra data, reaching an adversarial accuracy of approx72% (CIFAR-10) and approx48% (CIFAR-100) on the RobustBench AutoAttack suite (L_infty=8/255) with a finetuned ImageNet-pretrained ResNet152. This represents a result comparable with the top three models on CIFAR-10 and a +5 % gain compared to the best current dedicated approach on CIFAR-100. Adding simple adversarial training on top, we get approx78% on CIFAR-10 and approx51% on CIFAR-100, improving SOTA by 5 % and 9 % respectively and seeing greater gains on the harder dataset. We validate our approach through extensive experiments and provide insights into the interplay between adversarial robustness, and the hierarchical nature of deep representations. We show that simple gradient-based attacks against our model lead to human-interpretable images of the target classes as well as interpretable image changes. As a byproduct, using our multi-resolution prior, we turn pre-trained classifiers and CLIP models into controllable image generators and develop successful transferable attacks on large vision language models.

Prompt Stealing Attacks Against Text-to-Image Generation Models

Text-to-Image generation models have revolutionized the artwork design process and enabled anyone to create high-quality images by entering text descriptions called prompts. Creating a high-quality prompt that consists of a subject and several modifiers can be time-consuming and costly. In consequence, a trend of trading high-quality prompts on specialized marketplaces has emerged. In this paper, we propose a novel attack, namely prompt stealing attack, which aims to steal prompts from generated images by text-to-image generation models. Successful prompt stealing attacks direct violate the intellectual property and privacy of prompt engineers and also jeopardize the business model of prompt trading marketplaces. We first perform a large-scale analysis on a dataset collected by ourselves and show that a successful prompt stealing attack should consider a prompt's subject as well as its modifiers. We then propose the first learning-based prompt stealing attack, PromptStealer, and demonstrate its superiority over two baseline methods quantitatively and qualitatively. We also make some initial attempts to defend PromptStealer. In general, our study uncovers a new attack surface in the ecosystem created by the popular text-to-image generation models. We hope our results can help to mitigate the threat. To facilitate research in this field, we will share our dataset and code with the community.

One Surrogate to Fool Them All: Universal, Transferable, and Targeted Adversarial Attacks with CLIP

Deep Neural Networks (DNNs) have achieved widespread success yet remain prone to adversarial attacks. Typically, such attacks either involve frequent queries to the target model or rely on surrogate models closely mirroring the target model -- often trained with subsets of the target model's training data -- to achieve high attack success rates through transferability. However, in realistic scenarios where training data is inaccessible and excessive queries can raise alarms, crafting adversarial examples becomes more challenging. In this paper, we present UnivIntruder, a novel attack framework that relies solely on a single, publicly available CLIP model and publicly available datasets. By using textual concepts, UnivIntruder generates universal, transferable, and targeted adversarial perturbations that mislead DNNs into misclassifying inputs into adversary-specified classes defined by textual concepts. Our extensive experiments show that our approach achieves an Attack Success Rate (ASR) of up to 85% on ImageNet and over 99% on CIFAR-10, significantly outperforming existing transfer-based methods. Additionally, we reveal real-world vulnerabilities, showing that even without querying target models, UnivIntruder compromises image search engines like Google and Baidu with ASR rates up to 84%, and vision language models like GPT-4 and Claude-3.5 with ASR rates up to 80%. These findings underscore the practicality of our attack in scenarios where traditional avenues are blocked, highlighting the need to reevaluate security paradigms in AI applications.

Set-level Guidance Attack: Boosting Adversarial Transferability of Vision-Language Pre-training Models

Vision-language pre-training (VLP) models have shown vulnerability to adversarial examples in multimodal tasks. Furthermore, malicious adversaries can be deliberately transferred to attack other black-box models. However, existing work has mainly focused on investigating white-box attacks. In this paper, we present the first study to investigate the adversarial transferability of recent VLP models. We observe that existing methods exhibit much lower transferability, compared to the strong attack performance in white-box settings. The transferability degradation is partly caused by the under-utilization of cross-modal interactions. Particularly, unlike unimodal learning, VLP models rely heavily on cross-modal interactions and the multimodal alignments are many-to-many, e.g., an image can be described in various natural languages. To this end, we propose a highly transferable Set-level Guidance Attack (SGA) that thoroughly leverages modality interactions and incorporates alignment-preserving augmentation with cross-modal guidance. Experimental results demonstrate that SGA could generate adversarial examples that can strongly transfer across different VLP models on multiple downstream vision-language tasks. On image-text retrieval, SGA significantly enhances the attack success rate for transfer attacks from ALBEF to TCL by a large margin (at least 9.78% and up to 30.21%), compared to the state-of-the-art.

Scaling Laws in Patchification: An Image Is Worth 50,176 Tokens And More

Since the introduction of Vision Transformer (ViT), patchification has long been regarded as a de facto image tokenization approach for plain visual architectures. By compressing the spatial size of images, this approach can effectively shorten the token sequence and reduce the computational cost of ViT-like plain architectures. In this work, we aim to thoroughly examine the information loss caused by this patchification-based compressive encoding paradigm and how it affects visual understanding. We conduct extensive patch size scaling experiments and excitedly observe an intriguing scaling law in patchification: the models can consistently benefit from decreased patch sizes and attain improved predictive performance, until it reaches the minimum patch size of 1x1, i.e., pixel tokenization. This conclusion is broadly applicable across different vision tasks, various input scales, and diverse architectures such as ViT and the recent Mamba models. Moreover, as a by-product, we discover that with smaller patches, task-specific decoder heads become less critical for dense prediction. In the experiments, we successfully scale up the visual sequence to an exceptional length of 50,176 tokens, achieving a competitive test accuracy of 84.6% with a base-sized model on the ImageNet-1k benchmark. We hope this study can provide insights and theoretical foundations for future works of building non-compressive vision models. Code is available at https://github.com/wangf3014/Patch_Scaling.

BadVideo: Stealthy Backdoor Attack against Text-to-Video Generation

Text-to-video (T2V) generative models have rapidly advanced and found widespread applications across fields like entertainment, education, and marketing. However, the adversarial vulnerabilities of these models remain rarely explored. We observe that in T2V generation tasks, the generated videos often contain substantial redundant information not explicitly specified in the text prompts, such as environmental elements, secondary objects, and additional details, providing opportunities for malicious attackers to embed hidden harmful content. Exploiting this inherent redundancy, we introduce BadVideo, the first backdoor attack framework tailored for T2V generation. Our attack focuses on designing target adversarial outputs through two key strategies: (1) Spatio-Temporal Composition, which combines different spatiotemporal features to encode malicious information; (2) Dynamic Element Transformation, which introduces transformations in redundant elements over time to convey malicious information. Based on these strategies, the attacker's malicious target seamlessly integrates with the user's textual instructions, providing high stealthiness. Moreover, by exploiting the temporal dimension of videos, our attack successfully evades traditional content moderation systems that primarily analyze spatial information within individual frames. Extensive experiments demonstrate that BadVideo achieves high attack success rates while preserving original semantics and maintaining excellent performance on clean inputs. Overall, our work reveals the adversarial vulnerability of T2V models, calling attention to potential risks and misuse. Our project page is at https://wrt2000.github.io/BadVideo2025/.

WOUAF: Weight Modulation for User Attribution and Fingerprinting in Text-to-Image Diffusion Models

The rapid advancement of generative models, facilitating the creation of hyper-realistic images from textual descriptions, has concurrently escalated critical societal concerns such as misinformation. Traditional fake detection mechanisms, although providing some mitigation, fall short in attributing responsibility for the malicious use of synthetic images. This paper introduces a novel approach to model fingerprinting that assigns responsibility for the generated images, thereby serving as a potential countermeasure to model misuse. Our method modifies generative models based on each user's unique digital fingerprint, imprinting a unique identifier onto the resultant content that can be traced back to the user. This approach, incorporating fine-tuning into Text-to-Image (T2I) tasks using the Stable Diffusion Model, demonstrates near-perfect attribution accuracy with a minimal impact on output quality. We rigorously scrutinize our method's secrecy under two distinct scenarios: one where a malicious user attempts to detect the fingerprint, and another where a user possesses a comprehensive understanding of our method. We also evaluate the robustness of our approach against various image post-processing manipulations typically executed by end-users. Through extensive evaluation of the Stable Diffusion models, our method presents a promising and novel avenue for accountable model distribution and responsible use.

Mind the Gap: A Practical Attack on GGUF Quantization

With the increasing size of frontier LLMs, post-training quantization has become the standard for memory-efficient deployment. Recent work has shown that basic rounding-based quantization schemes pose security risks, as they can be exploited to inject malicious behaviors into quantized models that remain hidden in full precision. However, existing attacks cannot be applied to more complex quantization methods, such as the GGUF family used in the popular ollama and llama.cpp frameworks. In this work, we address this gap by introducing the first attack on GGUF. Our key insight is that the quantization error -- the difference between the full-precision weights and their (de-)quantized version -- provides sufficient flexibility to construct malicious quantized models that appear benign in full precision. Leveraging this, we develop an attack that trains the target malicious LLM while constraining its weights based on quantization errors. We demonstrate the effectiveness of our attack on three popular LLMs across nine GGUF quantization data types on three diverse attack scenarios: insecure code generation (Delta=88.7%), targeted content injection (Delta=85.0%), and benign instruction refusal (Delta=30.1%). Our attack highlights that (1) the most widely used post-training quantization method is susceptible to adversarial interferences, and (2) the complexity of quantization schemes alone is insufficient as a defense.

Influencer Backdoor Attack on Semantic Segmentation

When a small number of poisoned samples are injected into the training dataset of a deep neural network, the network can be induced to exhibit malicious behavior during inferences, which poses potential threats to real-world applications. While they have been intensively studied in classification, backdoor attacks on semantic segmentation have been largely overlooked. Unlike classification, semantic segmentation aims to classify every pixel within a given image. In this work, we explore backdoor attacks on segmentation models to misclassify all pixels of a victim class by injecting a specific trigger on non-victim pixels during inferences, which is dubbed Influencer Backdoor Attack (IBA). IBA is expected to maintain the classification accuracy of non-victim pixels and mislead classifications of all victim pixels in every single inference and could be easily applied to real-world scenes. Based on the context aggregation ability of segmentation models, we proposed a simple, yet effective, Nearest-Neighbor trigger injection strategy. We also introduce an innovative Pixel Random Labeling strategy which maintains optimal performance even when the trigger is placed far from the victim pixels. Our extensive experiments reveal that current segmentation models do suffer from backdoor attacks, demonstrate IBA real-world applicability, and show that our proposed techniques can further increase attack performance.

Concept Arithmetics for Circumventing Concept Inhibition in Diffusion Models

Motivated by ethical and legal concerns, the scientific community is actively developing methods to limit the misuse of Text-to-Image diffusion models for reproducing copyrighted, violent, explicit, or personal information in the generated images. Simultaneously, researchers put these newly developed safety measures to the test by assuming the role of an adversary to find vulnerabilities and backdoors in them. We use compositional property of diffusion models, which allows to leverage multiple prompts in a single image generation. This property allows us to combine other concepts, that should not have been affected by the inhibition, to reconstruct the vector, responsible for target concept generation, even though the direct computation of this vector is no longer accessible. We provide theoretical and empirical evidence why the proposed attacks are possible and discuss the implications of these findings for safe model deployment. We argue that it is essential to consider all possible approaches to image generation with diffusion models that can be employed by an adversary. Our work opens up the discussion about the implications of concept arithmetics and compositional inference for safety mechanisms in diffusion models. Content Advisory: This paper contains discussions and model-generated content that may be considered offensive. Reader discretion is advised. Project page: https://cs-people.bu.edu/vpetsiuk/arc

Downstream-agnostic Adversarial Examples

Self-supervised learning usually uses a large amount of unlabeled data to pre-train an encoder which can be used as a general-purpose feature extractor, such that downstream users only need to perform fine-tuning operations to enjoy the benefit of "large model". Despite this promising prospect, the security of pre-trained encoder has not been thoroughly investigated yet, especially when the pre-trained encoder is publicly available for commercial use. In this paper, we propose AdvEncoder, the first framework for generating downstream-agnostic universal adversarial examples based on the pre-trained encoder. AdvEncoder aims to construct a universal adversarial perturbation or patch for a set of natural images that can fool all the downstream tasks inheriting the victim pre-trained encoder. Unlike traditional adversarial example works, the pre-trained encoder only outputs feature vectors rather than classification labels. Therefore, we first exploit the high frequency component information of the image to guide the generation of adversarial examples. Then we design a generative attack framework to construct adversarial perturbations/patches by learning the distribution of the attack surrogate dataset to improve their attack success rates and transferability. Our results show that an attacker can successfully attack downstream tasks without knowing either the pre-training dataset or the downstream dataset. We also tailor four defenses for pre-trained encoders, the results of which further prove the attack ability of AdvEncoder.

Efficient and Transferable Adversarial Examples from Bayesian Neural Networks

An established way to improve the transferability of black-box evasion attacks is to craft the adversarial examples on an ensemble-based surrogate to increase diversity. We argue that transferability is fundamentally related to uncertainty. Based on a state-of-the-art Bayesian Deep Learning technique, we propose a new method to efficiently build a surrogate by sampling approximately from the posterior distribution of neural network weights, which represents the belief about the value of each parameter. Our extensive experiments on ImageNet, CIFAR-10 and MNIST show that our approach improves the success rates of four state-of-the-art attacks significantly (up to 83.2 percentage points), in both intra-architecture and inter-architecture transferability. On ImageNet, our approach can reach 94% of success rate while reducing training computations from 11.6 to 2.4 exaflops, compared to an ensemble of independently trained DNNs. Our vanilla surrogate achieves 87.5% of the time higher transferability than three test-time techniques designed for this purpose. Our work demonstrates that the way to train a surrogate has been overlooked, although it is an important element of transfer-based attacks. We are, therefore, the first to review the effectiveness of several training methods in increasing transferability. We provide new directions to better understand the transferability phenomenon and offer a simple but strong baseline for future work.

Towards Effective and Sparse Adversarial Attack on Spiking Neural Networks via Breaking Invisible Surrogate Gradients

Spiking neural networks (SNNs) have shown their competence in handling spatial-temporal event-based data with low energy consumption. Similar to conventional artificial neural networks (ANNs), SNNs are also vulnerable to gradient-based adversarial attacks, wherein gradients are calculated by spatial-temporal back-propagation (STBP) and surrogate gradients (SGs). However, the SGs may be invisible for an inference-only model as they do not influence the inference results, and current gradient-based attacks are ineffective for binary dynamic images captured by the dynamic vision sensor (DVS). While some approaches addressed the issue of invisible SGs through universal SGs, their SGs lack a correlation with the victim model, resulting in sub-optimal performance. Moreover, the imperceptibility of existing SNN-based binary attacks is still insufficient. In this paper, we introduce an innovative potential-dependent surrogate gradient (PDSG) method to establish a robust connection between the SG and the model, thereby enhancing the adaptability of adversarial attacks across various models with invisible SGs. Additionally, we propose the sparse dynamic attack (SDA) to effectively attack binary dynamic images. Utilizing a generation-reduction paradigm, SDA can fully optimize the sparsity of adversarial perturbations. Experimental results demonstrate that our PDSG and SDA outperform state-of-the-art SNN-based attacks across various models and datasets. Specifically, our PDSG achieves 100% attack success rate on ImageNet, and our SDA obtains 82% attack success rate by modifying only 0.24% of the pixels on CIFAR10DVS. The code is available at https://github.com/ryime/PDSG-SDA .

Hard No-Box Adversarial Attack on Skeleton-Based Human Action Recognition with Skeleton-Motion-Informed Gradient

Recently, methods for skeleton-based human activity recognition have been shown to be vulnerable to adversarial attacks. However, these attack methods require either the full knowledge of the victim (i.e. white-box attacks), access to training data (i.e. transfer-based attacks) or frequent model queries (i.e. black-box attacks). All their requirements are highly restrictive, raising the question of how detrimental the vulnerability is. In this paper, we show that the vulnerability indeed exists. To this end, we consider a new attack task: the attacker has no access to the victim model or the training data or labels, where we coin the term hard no-box attack. Specifically, we first learn a motion manifold where we define an adversarial loss to compute a new gradient for the attack, named skeleton-motion-informed (SMI) gradient. Our gradient contains information of the motion dynamics, which is different from existing gradient-based attack methods that compute the loss gradient assuming each dimension in the data is independent. The SMI gradient can augment many gradient-based attack methods, leading to a new family of no-box attack methods. Extensive evaluation and comparison show that our method imposes a real threat to existing classifiers. They also show that the SMI gradient improves the transferability and imperceptibility of adversarial samples in both no-box and transfer-based black-box settings.

UnsafeBench: Benchmarking Image Safety Classifiers on Real-World and AI-Generated Images

Image safety classifiers play an important role in identifying and mitigating the spread of unsafe images online (e.g., images including violence, hateful rhetoric, etc.). At the same time, with the advent of text-to-image models and increasing concerns about the safety of AI models, developers are increasingly relying on image safety classifiers to safeguard their models. Yet, the performance of current image safety classifiers remains unknown for real-world and AI-generated images. To bridge this research gap, in this work, we propose UnsafeBench, a benchmarking framework that evaluates the effectiveness and robustness of image safety classifiers. First, we curate a large dataset of 10K real-world and AI-generated images that are annotated as safe or unsafe based on a set of 11 unsafe categories of images (sexual, violent, hateful, etc.). Then, we evaluate the effectiveness and robustness of five popular image safety classifiers, as well as three classifiers that are powered by general-purpose visual language models. Our assessment indicates that existing image safety classifiers are not comprehensive and effective enough in mitigating the multifaceted problem of unsafe images. Also, we find that classifiers trained only on real-world images tend to have degraded performance when applied to AI-generated images. Motivated by these findings, we design and implement a comprehensive image moderation tool called PerspectiveVision, which effectively identifies 11 categories of real-world and AI-generated unsafe images. The best PerspectiveVision model achieves an overall F1-Score of 0.810 on six evaluation datasets, which is comparable with closed-source and expensive state-of-the-art models like GPT-4V. UnsafeBench and PerspectiveVision can aid the research community in better understanding the landscape of image safety classification in the era of generative AI.

AI-generated Image Detection: Passive or Watermark?

While text-to-image models offer numerous benefits, they also pose significant societal risks. Detecting AI-generated images is crucial for mitigating these risks. Detection methods can be broadly categorized into passive and watermark-based approaches: passive detectors rely on artifacts present in AI-generated images, whereas watermark-based detectors proactively embed watermarks into such images. A key question is which type of detector performs better in terms of effectiveness, robustness, and efficiency. However, the current literature lacks a comprehensive understanding of this issue. In this work, we aim to bridge that gap by developing ImageDetectBench, the first comprehensive benchmark to compare the effectiveness, robustness, and efficiency of passive and watermark-based detectors. Our benchmark includes four datasets, each containing a mix of AI-generated and non-AI-generated images. We evaluate five passive detectors and four watermark-based detectors against eight types of common perturbations and three types of adversarial perturbations. Our benchmark results reveal several interesting findings. For instance, watermark-based detectors consistently outperform passive detectors, both in the presence and absence of perturbations. Based on these insights, we provide recommendations for detecting AI-generated images, e.g., when both types of detectors are applicable, watermark-based detectors should be the preferred choice. Our code and data are publicly available at https://github.com/moyangkuo/ImageDetectBench.git.

IConMark: Robust Interpretable Concept-Based Watermark For AI Images

With the rapid rise of generative AI and synthetic media, distinguishing AI-generated images from real ones has become crucial in safeguarding against misinformation and ensuring digital authenticity. Traditional watermarking techniques have shown vulnerabilities to adversarial attacks, undermining their effectiveness in the presence of attackers. We propose IConMark, a novel in-generation robust semantic watermarking method that embeds interpretable concepts into AI-generated images, as a first step toward interpretable watermarking. Unlike traditional methods, which rely on adding noise or perturbations to AI-generated images, IConMark incorporates meaningful semantic attributes, making it interpretable to humans and hence, resilient to adversarial manipulation. This method is not only robust against various image augmentations but also human-readable, enabling manual verification of watermarks. We demonstrate a detailed evaluation of IConMark's effectiveness, demonstrating its superiority in terms of detection accuracy and maintaining image quality. Moreover, IConMark can be combined with existing watermarking techniques to further enhance and complement its robustness. We introduce IConMark+SS and IConMark+TM, hybrid approaches combining IConMark with StegaStamp and TrustMark, respectively, to further bolster robustness against multiple types of image manipulations. Our base watermarking technique (IConMark) and its variants (+TM and +SS) achieve 10.8%, 14.5%, and 15.9% higher mean area under the receiver operating characteristic curve (AUROC) scores for watermark detection, respectively, compared to the best baseline on various datasets.

Adversarial Video Promotion Against Text-to-Video Retrieval

Thanks to the development of cross-modal models, text-to-video retrieval (T2VR) is advancing rapidly, but its robustness remains largely unexamined. Existing attacks against T2VR are designed to push videos away from queries, i.e., suppressing the ranks of videos, while the attacks that pull videos towards selected queries, i.e., promoting the ranks of videos, remain largely unexplored. These attacks can be more impactful as attackers may gain more views/clicks for financial benefits and widespread (mis)information. To this end, we pioneer the first attack against T2VR to promote videos adversarially, dubbed the Video Promotion attack (ViPro). We further propose Modal Refinement (MoRe) to capture the finer-grained, intricate interaction between visual and textual modalities to enhance black-box transferability. Comprehensive experiments cover 2 existing baselines, 3 leading T2VR models, 3 prevailing datasets with over 10k videos, evaluated under 3 scenarios. All experiments are conducted in a multi-target setting to reflect realistic scenarios where attackers seek to promote the video regarding multiple queries simultaneously. We also evaluated our attacks for defences and imperceptibility. Overall, ViPro surpasses other baselines by over 30/10/4% for white/grey/black-box settings on average. Our work highlights an overlooked vulnerability, provides a qualitative analysis on the upper/lower bound of our attacks, and offers insights into potential counterplays. Code will be publicly available at https://github.com/michaeltian108/ViPro.

Prompt2Perturb (P2P): Text-Guided Diffusion-Based Adversarial Attacks on Breast Ultrasound Images

Deep neural networks (DNNs) offer significant promise for improving breast cancer diagnosis in medical imaging. However, these models are highly susceptible to adversarial attacks--small, imperceptible changes that can mislead classifiers--raising critical concerns about their reliability and security. Traditional attacks rely on fixed-norm perturbations, misaligning with human perception. In contrast, diffusion-based attacks require pre-trained models, demanding substantial data when these models are unavailable, limiting practical use in data-scarce scenarios. In medical imaging, however, this is often unfeasible due to the limited availability of datasets. Building on recent advancements in learnable prompts, we propose Prompt2Perturb (P2P), a novel language-guided attack method capable of generating meaningful attack examples driven by text instructions. During the prompt learning phase, our approach leverages learnable prompts within the text encoder to create subtle, yet impactful, perturbations that remain imperceptible while guiding the model towards targeted outcomes. In contrast to current prompt learning-based approaches, our P2P stands out by directly updating text embeddings, avoiding the need for retraining diffusion models. Further, we leverage the finding that optimizing only the early reverse diffusion steps boosts efficiency while ensuring that the generated adversarial examples incorporate subtle noise, thus preserving ultrasound image quality without introducing noticeable artifacts. We show that our method outperforms state-of-the-art attack techniques across three breast ultrasound datasets in FID and LPIPS. Moreover, the generated images are both more natural in appearance and more effective compared to existing adversarial attacks. Our code will be publicly available https://github.com/yasamin-med/P2P.

PubDef: Defending Against Transfer Attacks From Public Models

Adversarial attacks have been a looming and unaddressed threat in the industry. However, through a decade-long history of the robustness evaluation literature, we have learned that mounting a strong or optimal attack is challenging. It requires both machine learning and domain expertise. In other words, the white-box threat model, religiously assumed by a large majority of the past literature, is unrealistic. In this paper, we propose a new practical threat model where the adversary relies on transfer attacks through publicly available surrogate models. We argue that this setting will become the most prevalent for security-sensitive applications in the future. We evaluate the transfer attacks in this setting and propose a specialized defense method based on a game-theoretic perspective. The defenses are evaluated under 24 public models and 11 attack algorithms across three datasets (CIFAR-10, CIFAR-100, and ImageNet). Under this threat model, our defense, PubDef, outperforms the state-of-the-art white-box adversarial training by a large margin with almost no loss in the normal accuracy. For instance, on ImageNet, our defense achieves 62% accuracy under the strongest transfer attack vs only 36% of the best adversarially trained model. Its accuracy when not under attack is only 2% lower than that of an undefended model (78% vs 80%). We release our code at https://github.com/wagner-group/pubdef.

Intriguing Properties of Adversarial Examples

It is becoming increasingly clear that many machine learning classifiers are vulnerable to adversarial examples. In attempting to explain the origin of adversarial examples, previous studies have typically focused on the fact that neural networks operate on high dimensional data, they overfit, or they are too linear. Here we argue that the origin of adversarial examples is primarily due to an inherent uncertainty that neural networks have about their predictions. We show that the functional form of this uncertainty is independent of architecture, dataset, and training protocol; and depends only on the statistics of the logit differences of the network, which do not change significantly during training. This leads to adversarial error having a universal scaling, as a power-law, with respect to the size of the adversarial perturbation. We show that this universality holds for a broad range of datasets (MNIST, CIFAR10, ImageNet, and random data), models (including state-of-the-art deep networks, linear models, adversarially trained networks, and networks trained on randomly shuffled labels), and attacks (FGSM, step l.l., PGD). Motivated by these results, we study the effects of reducing prediction entropy on adversarial robustness. Finally, we study the effect of network architectures on adversarial sensitivity. To do this, we use neural architecture search with reinforcement learning to find adversarially robust architectures on CIFAR10. Our resulting architecture is more robust to white and black box attacks compared to previous attempts.

QuadAttack: A Quadratic Programming Approach to Ordered Top-K Attacks

The adversarial vulnerability of Deep Neural Networks (DNNs) has been well-known and widely concerned, often under the context of learning top-1 attacks (e.g., fooling a DNN to classify a cat image as dog). This paper shows that the concern is much more serious by learning significantly more aggressive ordered top-K clear-box~ This is often referred to as white/black-box attacks in the literature. We choose to adopt neutral terminology, clear/opaque-box attacks in this paper, and omit the prefix clear-box for simplicity. targeted attacks proposed in Adversarial Distillation. We propose a novel and rigorous quadratic programming (QP) method of learning ordered top-K attacks with low computing cost, dubbed as QuadAttacK. Our QuadAttacK directly solves the QP to satisfy the attack constraint in the feature embedding space (i.e., the input space to the final linear classifier), which thus exploits the semantics of the feature embedding space (i.e., the principle of class coherence). With the optimized feature embedding vector perturbation, it then computes the adversarial perturbation in the data space via the vanilla one-step back-propagation. In experiments, the proposed QuadAttacK is tested in the ImageNet-1k classification using ResNet-50, DenseNet-121, and Vision Transformers (ViT-B and DEiT-S). It successfully pushes the boundary of successful ordered top-K attacks from K=10 up to K=20 at a cheap budget (1times 60) and further improves attack success rates for K=5 for all tested models, while retaining the performance for K=1.