new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Aug 5

XHand: Real-time Expressive Hand Avatar

Hand avatars play a pivotal role in a wide array of digital interfaces, enhancing user immersion and facilitating natural interaction within virtual environments. While previous studies have focused on photo-realistic hand rendering, little attention has been paid to reconstruct the hand geometry with fine details, which is essential to rendering quality. In the realms of extended reality and gaming, on-the-fly rendering becomes imperative. To this end, we introduce an expressive hand avatar, named XHand, that is designed to comprehensively generate hand shape, appearance, and deformations in real-time. To obtain fine-grained hand meshes, we make use of three feature embedding modules to predict hand deformation displacements, albedo, and linear blending skinning weights, respectively. To achieve photo-realistic hand rendering on fine-grained meshes, our method employs a mesh-based neural renderer by leveraging mesh topological consistency and latent codes from embedding modules. During training, a part-aware Laplace smoothing strategy is proposed by incorporating the distinct levels of regularization to effectively maintain the necessary details and eliminate the undesired artifacts. The experimental evaluations on InterHand2.6M and DeepHandMesh datasets demonstrate the efficacy of XHand, which is able to recover high-fidelity geometry and texture for hand animations across diverse poses in real-time. To reproduce our results, we will make the full implementation publicly available at https://github.com/agnJason/XHand.

ImmerseGen: Agent-Guided Immersive World Generation with Alpha-Textured Proxies

Automatic creation of 3D scenes for immersive VR presence has been a significant research focus for decades. However, existing methods often rely on either high-poly mesh modeling with post-hoc simplification or massive 3D Gaussians, resulting in a complex pipeline or limited visual realism. In this paper, we demonstrate that such exhaustive modeling is unnecessary for achieving compelling immersive experience. We introduce ImmerseGen, a novel agent-guided framework for compact and photorealistic world modeling. ImmerseGen represents scenes as hierarchical compositions of lightweight geometric proxies, i.e., simplified terrain and billboard meshes, and generates photorealistic appearance by synthesizing RGBA textures onto these proxies. Specifically, we propose terrain-conditioned texturing for user-centric base world synthesis, and RGBA asset texturing for midground and foreground scenery. This reformulation offers several advantages: (i) it simplifies modeling by enabling agents to guide generative models in producing coherent textures that integrate seamlessly with the scene; (ii) it bypasses complex geometry creation and decimation by directly synthesizing photorealistic textures on proxies, preserving visual quality without degradation; (iii) it enables compact representations suitable for real-time rendering on mobile VR headsets. To automate scene creation from text prompts, we introduce VLM-based modeling agents enhanced with semantic grid-based analysis for improved spatial reasoning and accurate asset placement. ImmerseGen further enriches scenes with dynamic effects and ambient audio to support multisensory immersion. Experiments on scene generation and live VR showcases demonstrate that ImmerseGen achieves superior photorealism, spatial coherence and rendering efficiency compared to prior methods. Project webpage: https://immersegen.github.io.

LLM Agents for Psychology: A Study on Gamified Assessments

Psychological measurement is essential for mental health, self-understanding, and personal development. Traditional methods, such as self-report scales and psychologist interviews, often face challenges with engagement and accessibility. While game-based and LLM-based tools have been explored to improve user interest and automate assessment, they struggle to balance engagement with generalizability. In this work, we propose PsychoGAT (Psychological Game AgenTs) to achieve a generic gamification of psychological assessment. The main insight is that powerful LLMs can function both as adept psychologists and innovative game designers. By incorporating LLM agents into designated roles and carefully managing their interactions, PsychoGAT can transform any standardized scales into personalized and engaging interactive fiction games. To validate the proposed method, we conduct psychometric evaluations to assess its effectiveness and employ human evaluators to examine the generated content across various psychological constructs, including depression, cognitive distortions, and personality traits. Results demonstrate that PsychoGAT serves as an effective assessment tool, achieving statistically significant excellence in psychometric metrics such as reliability, convergent validity, and discriminant validity. Moreover, human evaluations confirm PsychoGAT's enhancements in content coherence, interactivity, interest, immersion, and satisfaction.