Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeDoes Simultaneous Speech Translation need Simultaneous Models?
In simultaneous speech translation (SimulST), finding the best trade-off between high translation quality and low latency is a challenging task. To meet the latency constraints posed by the different application scenarios, multiple dedicated SimulST models are usually trained and maintained, generating high computational costs. In this paper, motivated by the increased social and environmental impact caused by these costs, we investigate whether a single model trained offline can serve not only the offline but also the simultaneous task without the need for any additional training or adaptation. Experiments on en->{de, es} indicate that, aside from facilitating the adoption of well-established offline techniques and architectures without affecting latency, the offline solution achieves similar or better translation quality compared to the same model trained in simultaneous settings, as well as being competitive with the SimulST state of the art.
One Model to Train them All: Hierarchical Self-Distillation for Enhanced Early Layer Embeddings
Deploying language models often requires handling model size vs. performance trade-offs to satisfy downstream latency constraints while preserving the model's usefulness. Model distillation is commonly employed to reduce model size while maintaining acceptable performance. However, distillation can be inefficient since it involves multiple training steps. In this work, we introduce MODULARSTARENCODER, a modular multi-exit encoder with 1B parameters, useful for multiple tasks within the scope of code retrieval. MODULARSTARENCODER is trained with a novel self-distillation mechanism that significantly improves lower-layer representations-allowing different portions of the model to be used while still maintaining a good trade-off in terms of performance. Our architecture focuses on enhancing text-to-code and code-to-code search by systematically capturing syntactic and semantic structures across multiple levels of representation. Specific encoder layers are targeted as exit heads, allowing higher layers to guide earlier layers during training. This self-distillation effect improves intermediate representations, increasing retrieval recall at no extra training cost. In addition to the multi-exit scheme, our approach integrates a repository-level contextual loss that maximally utilizes the training context window, further enhancing the learned representations. We also release a new dataset constructed via code translation, seamlessly expanding traditional text-to-code benchmarks with code-to-code pairs across diverse programming languages. Experimental results highlight the benefits of self-distillation through multi-exit supervision.
Improving FIM Code Completions via Context & Curriculum Based Learning
Fill-in-the-Middle (FIM) models play a vital role in code completion tasks, leveraging both prefix and suffix context to provide more accurate and contextually relevant suggestions. This paper presents approaches to improve FIM code completion while addressing the challenge of maintaining low latency for real-time coding assistance. We enhance FIM code completion by incorporating context and curriculum examples in the training process. We identify patterns where completion suggestions fail more frequently, revealing complexities that smaller language models struggle with. To address these challenges, we develop a curriculum dataset by extracting hard-to-complete patterns from code repositories and generate context examples using semantic and static analysis tools (e.g. TSC compiler). We fine-tune various sized models, including StarCoder and DeepSeek, on this enhanced dataset. Our evaluation encompasses three key dimensions: the Santa Coder FIM task, the Amazon CCEval benchmark, and a new Multi-Line Infilling evaluation benchmark derived from SWE-bench. Comprehensive ablation studies across multiple model sizes reveal that while all fine-tuned models show improvements, the performance gains are more pronounced for smaller parameter models and incorporating difficult-to-complete examples, as part of curriculum learning, improves the code completion performance. This finding is particularly significant given the latency constraints of code completion tasks. While larger models like GPT and Claude perform well in multi-line completions but are prohibitively challenging to use given high latency, and our fine-tuned models achieve a balance between performance and latency. Finally, we validate our approach through online A/B testing, demonstrating tangible improvements in Completion Acceptance Rate (CAR) and Completion Persistence Rate (CPR), with zero latency impact.
NanoFlow: Towards Optimal Large Language Model Serving Throughput
The increasing usage of Large Language Models (LLMs) has resulted in a surging demand for planet-scale serving systems, where tens of thousands of GPUs continuously serve hundreds of millions of users. Consequently, throughput (under reasonable latency constraints) has emerged as a key metric that determines serving systems' performance. To boost throughput, various methods of inter-device parallelism (e.g., data, tensor, pipeline) have been explored. However, existing methods do not consider overlapping the utilization of different resources within a single device, leading to underutilization and sub-optimal performance. We propose NanoFlow, a novel serving framework that exploits intra-device parallelism, which overlaps the usage of resources including compute, memory, and network within a single device through operation co-scheduling. To exploit intra-device parallelism, NanoFlow introduces two key innovations: First, NanoFlow splits requests into nano-batches at the granularity of operations, which breaks the dependency of sequential operations in LLM inference and enables overlapping; then, to get benefit from overlapping, NanoFlow uses an operation-level pipeline with execution unit scheduling, which partitions the device's functional units and simultaneously executes different operations in each unit. NanoFlow automates the pipeline setup using a parameter search algorithm, which enables easily porting NanoFlow to different models. We implement NanoFlow on NVIDIA GPUs and evaluate end-to-end serving throughput on several popular models such as LLaMA-2-70B, Mixtral 8x7B, LLaMA-3-8B, etc.. With practical workloads, NanoFlow provides 1.91x throughput boost compared to state-of-the-art serving systems achieving 59% to 72% of optimal throughput across ported models.
SpaceEvo: Hardware-Friendly Search Space Design for Efficient INT8 Inference
The combination of Neural Architecture Search (NAS) and quantization has proven successful in automatically designing low-FLOPs INT8 quantized neural networks (QNN). However, directly applying NAS to design accurate QNN models that achieve low latency on real-world devices leads to inferior performance. In this work, we find that the poor INT8 latency is due to the quantization-unfriendly issue: the operator and configuration (e.g., channel width) choices in prior art search spaces lead to diverse quantization efficiency and can slow down the INT8 inference speed. To address this challenge, we propose SpaceEvo, an automatic method for designing a dedicated, quantization-friendly search space for each target hardware. The key idea of SpaceEvo is to automatically search hardware-preferred operators and configurations to construct the search space, guided by a metric called Q-T score to quantify how quantization-friendly a candidate search space is. We further train a quantized-for-all supernet over our discovered search space, enabling the searched models to be directly deployed without extra retraining or quantization. Our discovered models establish new SOTA INT8 quantized accuracy under various latency constraints, achieving up to 10.1% accuracy improvement on ImageNet than prior art CNNs under the same latency. Extensive experiments on diverse edge devices demonstrate that SpaceEvo consistently outperforms existing manually-designed search spaces with up to 2.5x faster speed while achieving the same accuracy.
Efficient Interleaved Speech Modeling through Knowledge Distillation
Current speech language models exceed the size and latency constraints of many deployment environments. We build compact, expressive speech generation models through layer-aligned distillation, matching hidden states, attention maps, and softened logits to compress large multimodal transformers by 3x with minimal loss in performance. We introduce TinyWave, a family of 2B-parameter models for speech-to-speech and interleaved speech-text generation, trained on 50,000 hours of public audio. TinyWave supports (i) speech-only generation using phonetic or expressive tokens and (ii) mixed speech-text continuations. Evaluation on Libri-Light shows TinyWave within 1.4 normalized perplexity points of its teacher. Accuracy on spoken StoryCloze and SALMon reaches 93-97% of the teacher's performance, outperforming size-matched baselines. These models are optimized for deployment on commodity hardware, enabling applications in real-time conversational agents, assistive technologies, and low-resource environments. We release models, training code, and evaluation scripts to support reproducible research on compact, expressive speech generation.
No Parameter Left Behind: How Distillation and Model Size Affect Zero-Shot Retrieval
Recent work has shown that small distilled language models are strong competitors to models that are orders of magnitude larger and slower in a wide range of information retrieval tasks. This has made distilled and dense models, due to latency constraints, the go-to choice for deployment in real-world retrieval applications. In this work, we question this practice by showing that the number of parameters and early query-document interaction play a significant role in the generalization ability of retrieval models. Our experiments show that increasing model size results in marginal gains on in-domain test sets, but much larger gains in new domains never seen during fine-tuning. Furthermore, we show that rerankers largely outperform dense ones of similar size in several tasks. Our largest reranker reaches the state of the art in 12 of the 18 datasets of the Benchmark-IR (BEIR) and surpasses the previous state of the art by 3 average points. Finally, we confirm that in-domain effectiveness is not a good indicator of zero-shot effectiveness. Code is available at https://github.com/guilhermemr04/scaling-zero-shot-retrieval.git
Once-for-All: Train One Network and Specialize it for Efficient Deployment
We address the challenging problem of efficient inference across many devices and resource constraints, especially on edge devices. Conventional approaches either manually design or use neural architecture search (NAS) to find a specialized neural network and train it from scratch for each case, which is computationally prohibitive (causing CO_2 emission as much as 5 cars' lifetime) thus unscalable. In this work, we propose to train a once-for-all (OFA) network that supports diverse architectural settings by decoupling training and search, to reduce the cost. We can quickly get a specialized sub-network by selecting from the OFA network without additional training. To efficiently train OFA networks, we also propose a novel progressive shrinking algorithm, a generalized pruning method that reduces the model size across many more dimensions than pruning (depth, width, kernel size, and resolution). It can obtain a surprisingly large number of sub-networks (> 10^{19}) that can fit different hardware platforms and latency constraints while maintaining the same level of accuracy as training independently. On diverse edge devices, OFA consistently outperforms state-of-the-art (SOTA) NAS methods (up to 4.0% ImageNet top1 accuracy improvement over MobileNetV3, or same accuracy but 1.5x faster than MobileNetV3, 2.6x faster than EfficientNet w.r.t measured latency) while reducing many orders of magnitude GPU hours and CO_2 emission. In particular, OFA achieves a new SOTA 80.0% ImageNet top-1 accuracy under the mobile setting (<600M MACs). OFA is the winning solution for the 3rd Low Power Computer Vision Challenge (LPCVC), DSP classification track and the 4th LPCVC, both classification track and detection track. Code and 50 pre-trained models (for many devices & many latency constraints) are released at https://github.com/mit-han-lab/once-for-all.
Serving Large Language Models on Huawei CloudMatrix384
The rapid evolution of large language models (LLMs), driven by growing parameter scales, adoption of mixture-of-experts (MoE) architectures, and expanding context lengths, imposes unprecedented demands on AI infrastructure. Traditional AI clusters face limitations in compute intensity, memory bandwidth, inter-chip communication, and latency, compounded by variable workloads and strict service-level objectives. Addressing these issues requires fundamentally redesigned hardware-software integration. This paper introduces Huawei CloudMatrix, a next-generation AI datacenter architecture, realized in the production-grade CloudMatrix384 supernode. It integrates 384 Ascend 910C NPUs and 192 Kunpeng CPUs interconnected via an ultra-high-bandwidth Unified Bus (UB) network, enabling direct all-to-all communication and dynamic pooling of resources. These features optimize performance for communication-intensive operations, such as large-scale MoE expert parallelism and distributed key-value cache access. To fully leverage CloudMatrix384, we propose CloudMatrix-Infer, an advanced LLM serving solution incorporating three core innovations: a peer-to-peer serving architecture that independently scales prefill, decode, and caching; a large-scale expert parallelism strategy supporting EP320 via efficient UB-based token dispatch; and hardware-aware optimizations including specialized operators, microbatch-based pipelining, and INT8 quantization. Evaluation with the DeepSeek-R1 model shows CloudMatrix-Infer achieves state-of-the-art efficiency: prefill throughput of 6,688 tokens/s per NPU and decode throughput of 1,943 tokens/s per NPU (<50 ms TPOT). It effectively balances throughput and latency, sustaining 538 tokens/s even under stringent 15 ms latency constraints, while INT8 quantization maintains model accuracy across benchmarks.
Post-Training Embedding Alignment for Decoupling Enrollment and Runtime Speaker Recognition Models
Automated speaker identification (SID) is a crucial step for the personalization of a wide range of speech-enabled services. Typical SID systems use a symmetric enrollment-verification framework with a single model to derive embeddings both offline for voice profiles extracted from enrollment utterances, and online from runtime utterances. Due to the distinct circumstances of enrollment and runtime, such as different computation and latency constraints, several applications would benefit from an asymmetric enrollment-verification framework that uses different models for enrollment and runtime embedding generation. To support this asymmetric SID where each of the two models can be updated independently, we propose using a lightweight neural network to map the embeddings from the two independent models to a shared speaker embedding space. Our results show that this approach significantly outperforms cosine scoring in a shared speaker logit space for models that were trained with a contrastive loss on large datasets with many speaker identities. This proposed Neural Embedding Speaker Space Alignment (NESSA) combined with an asymmetric update of only one of the models delivers at least 60% of the performance gain achieved by updating both models in the standard symmetric SID approach.
Fast DistilBERT on CPUs
Transformer-based language models have become the standard approach to solving natural language processing tasks. However, industry adoption usually requires the maximum throughput to comply with certain latency constraints that prevents Transformer models from being used in production. To address this gap, model compression techniques such as quantization and pruning may be used to improve inference efficiency. However, these compression techniques require specialized software to apply and deploy at scale. In this work, we propose a new pipeline for creating and running Fast Transformer models on CPUs, utilizing hardware-aware pruning, knowledge distillation, quantization, and our own Transformer inference runtime engine with optimized kernels for sparse and quantized operators. We demonstrate the efficiency of our pipeline by creating a Fast DistilBERT model showing minimal accuracy loss on the question-answering SQuADv1.1 benchmark, and throughput results under typical production constraints and environments. Our results outperform existing state-of-the-art Neural Magic's DeepSparse runtime performance by up to 50% and up to 4.1x performance speedup over ONNX Runtime. Source code is publicly available at https://github.com/intel/intel-extension-for-transformers.
DeepSpeed Inference: Enabling Efficient Inference of Transformer Models at Unprecedented Scale
The past several years have witnessed the success of transformer-based models, and their scale and application scenarios continue to grow aggressively. The current landscape of transformer models is increasingly diverse: the model size varies drastically with the largest being of hundred-billion parameters; the model characteristics differ due to the sparsity introduced by the Mixture-of-Experts; the target application scenarios can be latency-critical or throughput-oriented; the deployment hardware could be single- or multi-GPU systems with different types of memory and storage, etc. With such increasing diversity and the fast-evolving pace of transformer models, designing a highly performant and efficient inference system is extremely challenging. In this paper, we present DeepSpeed Inference, a comprehensive system solution for transformer model inference to address the above-mentioned challenges. DeepSpeed Inference consists of (1) a multi-GPU inference solution to minimize latency while maximizing the throughput of both dense and sparse transformer models when they fit in aggregate GPU memory, and (2) a heterogeneous inference solution that leverages CPU and NVMe memory in addition to the GPU memory and compute to enable high inference throughput with large models which do not fit in aggregate GPU memory. DeepSpeed Inference reduces latency by up to 7.3X over the state-of-the-art for latency-oriented scenarios and increases throughput by over 1.5x for throughput-oriented scenarios. Moreover, it enables trillion parameter scale inference under real-time latency constraints by leveraging hundreds of GPUs, an unprecedented scale for inference. It can inference 25x larger models than with GPU-only solutions, while delivering a high throughput of 84 TFLOPS (over 50% of A6000 peak).
DistServe: Disaggregating Prefill and Decoding for Goodput-optimized Large Language Model Serving
DistServe improves the performance of large language models (LLMs) serving by disaggregating the prefill and decoding computation. Existing LLM serving systems colocate the two phases and batch the computation of prefill and decoding across all users and requests. We find that this strategy not only leads to strong prefill-decoding interferences but also couples the resource allocation and parallelism plans for both phases. LLM applications often emphasize individual latency for each phase: time to first token (TTFT) for the prefill phase and time per output token (TPOT) of each request for the decoding phase. In the presence of stringent latency requirements, existing systems have to prioritize one latency over the other, or over-provision compute resources to meet both. DistServe assigns prefill and decoding computation to different GPUs, hence eliminating prefill-decoding interferences. Given the application's TTFT and TPOT requirements, DistServe co-optimizes the resource allocation and parallelism strategy tailored for each phase. DistServe also places the two phases according to the serving cluster's bandwidth to minimize the communication caused by disaggregation. As a result, DistServe significantly improves LLM serving performance in terms of the maximum rate that can be served within both TTFT and TPOT constraints on each GPU. Our evaluations show that on various popular LLMs, applications, and latency requirements, DistServe can serve 4.48x more requests or 10.2x tighter SLO, compared to state-of-the-art systems, while staying within latency constraints for > 90% of requests.
Balcony: A Lightweight Approach to Dynamic Inference of Generative Language Models
Deploying large language models (LLMs) in real-world applications is often hindered by strict computational and latency constraints. While dynamic inference offers the flexibility to adjust model behavior based on varying resource budgets, existing methods are frequently limited by hardware inefficiencies or performance degradation. In this paper, we introduce Balcony, a simple yet highly effective framework for depth-based dynamic inference. By freezing the pretrained LLM and inserting additional transformer layers at selected exit points, Balcony maintains the full model's performance while enabling real-time adaptation to different computational budgets. These additional layers are trained using a straightforward self-distillation loss, aligning the sub-model outputs with those of the full model. This approach requires significantly fewer training tokens and tunable parameters, drastically reducing computational costs compared to prior methods. When applied to the LLaMA3-8B model, using only 0.2% of the original pretraining data, Balcony achieves minimal performance degradation while enabling significant speedups. Remarkably, we show that Balcony outperforms state-of-the-art methods such as Flextron and Layerskip as well as other leading compression techniques on multiple models and at various scales, across a variety of benchmarks.
MoE$^2$: Optimizing Collaborative Inference for Edge Large Language Models
Large language models (LLMs) have demonstrated remarkable capabilities across a wide range of natural language processing tasks. Exploiting the heterogeneous capabilities of edge LLMs is crucial for diverse emerging applications, as it enables greater cost-effectiveness and reduced latency. In this work, we introduce Mixture-of-Edge-Experts (MoE^2), a novel collaborative inference framework for edge LLMs. We formulate the joint gating and expert selection problem to optimize inference performance under energy and latency constraints. Unlike conventional MoE problems, LLM expert selection is significantly more challenging due to the combinatorial nature and the heterogeneity of edge LLMs across various attributes. To this end, we propose a two-level expert selection mechanism through which we uncover an optimality-preserving property of gating parameters across expert selections. This property enables the decomposition of the training and selection processes, significantly reducing complexity. Furthermore, we leverage the objective's monotonicity and design a discrete monotonic optimization algorithm for optimal expert selection. We implement edge servers with NVIDIA Jetson AGX Orins and NVIDIA RTX 4090 GPUs, and perform extensive experiments. Our results validate that performance improvements of various LLM models and show that our MoE^2 method can achieve optimal trade-offs among different delay and energy budgets, and outperforms baselines under various system resource constraints.
iFormer: Integrating ConvNet and Transformer for Mobile Application
We present a new family of mobile hybrid vision networks, called iFormer, with a focus on optimizing latency and accuracy on mobile applications. iFormer effectively integrates the fast local representation capacity of convolution with the efficient global modeling ability of self-attention. The local interactions are derived from transforming a standard convolutional network, i.e., ConvNeXt, to design a more lightweight mobile network. Our newly introduced mobile modulation attention removes memory-intensive operations in MHA and employs an efficient modulation mechanism to boost dynamic global representational capacity. We conduct comprehensive experiments demonstrating that iFormer outperforms existing lightweight networks across various tasks. Notably, iFormer achieves an impressive Top-1 accuracy of 80.4\% on ImageNet-1k with a latency of only 1.10 ms on an iPhone 13, surpassing the recently proposed MobileNetV4 under similar latency constraints. Additionally, our method shows significant improvements in downstream tasks, including COCO object detection, instance segmentation, and ADE20k semantic segmentation, while still maintaining low latency on mobile devices for high-resolution inputs in these scenarios.
Hybrid Neural-MPM for Interactive Fluid Simulations in Real-Time
We propose a neural physics system for real-time, interactive fluid simulations. Traditional physics-based methods, while accurate, are computationally intensive and suffer from latency issues. Recent machine-learning methods reduce computational costs while preserving fidelity; yet most still fail to satisfy the latency constraints for real-time use and lack support for interactive applications. To bridge this gap, we introduce a novel hybrid method that integrates numerical simulation, neural physics, and generative control. Our neural physics jointly pursues low-latency simulation and high physical fidelity by employing a fallback safeguard to classical numerical solvers. Furthermore, we develop a diffusion-based controller that is trained using a reverse modeling strategy to generate external dynamic force fields for fluid manipulation. Our system demonstrates robust performance across diverse 2D/3D scenarios, material types, and obstacle interactions, achieving real-time simulations at high frame rates (11~29% latency) while enabling fluid control guided by user-friendly freehand sketches. We present a significant step towards practical, controllable, and physically plausible fluid simulations for real-time interactive applications. We promise to release both models and data upon acceptance.
HEXGEN-TEXT2SQL: Optimizing LLM Inference Request Scheduling for Agentic Text-to-SQL Workflow
Recent advances in leveraging the agentic paradigm of large language models (LLMs) utilization have significantly enhanced Text-to-SQL capabilities, enabling users without specialized database expertise to query data intuitively. However, deploying these agentic LLM-based Text-to-SQL systems in production poses substantial challenges due to their inherently multi-stage workflows, stringent latency constraints, and potentially heterogeneous GPU infrastructure in enterprise environments. Current LLM serving frameworks lack effective mechanisms for handling interdependent inference tasks, dynamic latency variability, and resource heterogeneity, leading to suboptimal performance and frequent service-level objective (SLO) violations. In this paper, we introduce HEXGEN-TEXT2SQL, a novel framework designed explicitly to schedule and execute agentic multi-stage LLM-based Text-to-SQL workflows on heterogeneous GPU clusters that handle multi-tenant end-to-end queries. HEXGEN-TEXT2SQL introduce a hierarchical scheduling approach combining global workload-balanced task dispatching and local adaptive urgency-guided prioritization, guided by a systematic analysis of agentic Text-to-SQL workflows. Additionally, we propose a lightweight simulation-based method for tuning critical scheduling hyperparameters, further enhancing robustness and adaptability. Our extensive evaluation on realistic Text-to-SQL benchmarks demonstrates that HEXGEN-TEXT2SQL significantly outperforms state-of-the-art LLM serving frameworks. Specifically, HEXGEN-TEXT2SQL reduces latency deadlines by up to 1.67times (average: 1.41times) and improves system throughput by up to 1.75times (average: 1.65times) compared to vLLM under diverse, realistic workload conditions. Our code is available at https://github.com/Relaxed-System-Lab/Hexgen-Flow.
Mnemosyne: Parallelization Strategies for Efficiently Serving Multi-Million Context Length LLM Inference Requests Without Approximations
As large language models (LLMs) evolve to handle increasingly longer contexts, serving inference requests for context lengths in the range of millions of tokens presents unique challenges. While existing techniques are effective for training, they fail to address the unique challenges of inference, such as varying prefill and decode phases and their associated latency constraints - like Time to First Token (TTFT) and Time Between Tokens (TBT). Furthermore, there are no long context inference solutions that allow batching requests to increase the hardware utilization today. In this paper, we propose three key innovations for efficient interactive long context LLM inference, without resorting to any approximation: adaptive chunking to reduce prefill overheads in mixed batching, Sequence Pipeline Parallelism (SPP) to lower TTFT, and KV Cache Parallelism (KVP) to minimize TBT. These contributions are combined into a 3D parallelism strategy, enabling Mnemosyne to scale interactive inference to context lengths at least up to 10 million tokens with high throughput enabled with batching. To our knowledge, Mnemosyne is the first to be able to achieve support for 10 million long context inference efficiently, while satisfying production-grade SLOs on TBT (30ms) on contexts up to and including 10 million.
Optimizing Retrieval-Augmented Generation: Analysis of Hyperparameter Impact on Performance and Efficiency
Large language models achieve high task performance yet often hallucinate or rely on outdated knowledge. Retrieval-augmented generation (RAG) addresses these gaps by coupling generation with external search. We analyse how hyperparameters influence speed and quality in RAG systems, covering Chroma and Faiss vector stores, chunking policies, cross-encoder re-ranking, and temperature, and we evaluate six metrics: faithfulness, answer correctness, answer relevancy, context precision, context recall, and answer similarity. Chroma processes queries 13% faster, whereas Faiss yields higher retrieval precision, revealing a clear speed-accuracy trade-off. Naive fixed-length chunking with small windows and minimal overlap outperforms semantic segmentation while remaining the quickest option. Re-ranking provides modest gains in retrieval quality yet increases runtime by roughly a factor of 5, so its usefulness depends on latency constraints. These results help practitioners balance computational cost and accuracy when tuning RAG systems for transparent, up-to-date responses. Finally, we re-evaluate the top configurations with a corrective RAG workflow and show that their advantages persist when the model can iteratively request additional evidence. We obtain a near-perfect context precision (99%), which demonstrates that RAG systems can achieve extremely high retrieval accuracy with the right combination of hyperparameters, with significant implications for applications where retrieval quality directly impacts downstream task performance, such as clinical decision support in healthcare.
An Efficient Sparse Inference Software Accelerator for Transformer-based Language Models on CPUs
In recent years, Transformer-based language models have become the standard approach for natural language processing tasks. However, stringent throughput and latency requirements in industrial applications are limiting their adoption. To mitigate the gap, model compression techniques such as structured pruning are being used to improve inference efficiency. However, most existing neural network inference runtimes lack adequate support for structured sparsity. In this paper, we propose an efficient sparse deep learning inference software stack for Transformer-based language models where the weights are pruned with constant block size. Our sparse software accelerator leverages Intel Deep Learning Boost to maximize the performance of sparse matrix - dense matrix multiplication (commonly abbreviated as SpMM) on CPUs. Our SpMM kernel outperforms the existing sparse libraries (oneMKL, TVM, and LIBXSMM) by an order of magnitude on a wide range of GEMM shapes under 5 representative sparsity ratios (70%, 75%, 80%, 85%, 90%). Moreover, our SpMM kernel shows up to 5x speedup over dense GEMM kernel of oneDNN, a well-optimized dense library widely used in industry. We apply our sparse accelerator on widely-used Transformer-based language models including Bert-Mini, DistilBERT, Bert-Base, and BERT-Large. Our sparse inference software shows up to 1.5x speedup over Neural Magic's Deepsparse under same configurations on Xeon on Amazon Web Services under proxy production latency constraints. We also compare our solution with two framework-based inference solutions, ONNX Runtime and PyTorch, and demonstrate up to 37x speedup over ONNX Runtime and 345x over PyTorch on Xeon under the latency constraints. All the source code is publicly available on Github: https://github.com/intel/intel-extension-for-transformers.
Speculative MoE: Communication Efficient Parallel MoE Inference with Speculative Token and Expert Pre-scheduling
MoE (Mixture of Experts) prevails as a neural architecture that can scale modern transformer-based LLMs (Large Language Models) to unprecedented scales. Nevertheless, large MoEs' great demands of computing power, memory capacity and memory bandwidth make scalable serving a fundamental challenge and efficient parallel inference has become a requisite to attain adequate throughput under latency constraints. DeepSpeed-MoE, one state-of-the-art MoE inference framework, adopts a 3D-parallel paradigm including EP (Expert Parallelism), TP (Tensor Parallel) and DP (Data Parallelism). However, our analysis shows DeepSpeed-MoE's inference efficiency is largely bottlenecked by EP, which is implemented with costly all-to-all collectives to route token activation. Our work aims to boost DeepSpeed-MoE by strategically reducing EP's communication overhead with a technique named Speculative MoE. Speculative MoE has two speculative parallelization schemes, speculative token shuffling and speculative expert grouping, which predict outstanding tokens' expert routing paths and pre-schedule tokens and experts across devices to losslessly trim EP's communication volume. Besides DeepSpeed-MoE, we also build Speculative MoE into a prevailing MoE inference engine SGLang. Experiments show Speculative MoE can significantly boost state-of-the-art MoE inference frameworks on fast homogeneous and slow heterogeneous interconnects.
Inference Scaling vs Reasoning: An Empirical Analysis of Compute-Optimal LLM Problem-Solving
Recent advances in large language models (LLMs) have predominantly focused on maximizing accuracy and reasoning capabilities, often overlooking crucial computational efficiency considerations. While this approach has yielded impressive accuracy improvements, it has led to methods that may be impractical for real-world deployment due to computational overhead and latency constraints. This paper investigates the potential synergy between reasoning enhancement and computational efficiency by analyzing the integration of two contrasting approaches: Quiet-STaR (Self-Taught Reasoner) and REBASE (REward BAlanced SEarch). Through comprehensive empirical analysis using the Mistral-7B model on the GSM8K dataset, we demonstrate that while each method excels in its primary objective-Quiet-STaR achieving superior accuracy (32.03%) despite high computational cost (554.66s runtime, 12.73T FLOPs), and REBASE providing exceptional efficiency (8.47s runtime, 2.35T FLOPs) while maintaining baseline-comparable accuracy (10.94%)-their integration reveals fundamental challenges in reconciling reasoning depth with computational efficiency. The combined approach unexpectedly results in degraded performance (9.38% accuracy, 143.66s runtime), highlighting critical insights about the complex interplay between reasoning enhancement and efficiency optimization in LLMs. Our findings illuminate the need for novel architectures and algorithms specifically designed to bridge the gap between these competing objectives, while providing concrete directions for future research in compute-efficient reasoning methods.
Query Routing for Retrieval-Augmented Language Models
Retrieval-Augmented Generation (RAG) significantly improves the performance of Large Language Models (LLMs) on knowledge-intensive tasks. However, varying response quality across LLMs under RAG necessitates intelligent routing mechanisms, which select the most suitable model for each query from multiple retrieval-augmented LLMs via a dedicated router model. We observe that external documents dynamically affect LLMs' ability to answer queries, while existing routing methods, which rely on static parametric knowledge representations, exhibit suboptimal performance in RAG scenarios. To address this, we formally define the new retrieval-augmented LLM routing problem, incorporating the influence of retrieved documents into the routing framework. We propose RAGRouter, a RAG-aware routing design, which leverages document embeddings and RAG capability embeddings with contrastive learning to capture knowledge representation shifts and enable informed routing decisions. Extensive experiments on diverse knowledge-intensive tasks and retrieval settings show that RAGRouter outperforms the best individual LLM by 3.61% on average and existing routing methods by 3.29%-9.33%. With an extended score-threshold-based mechanism, it also achieves strong performance-efficiency trade-offs under low-latency constraints.
Intra-Query Runtime Elasticity for Cloud-Native Data Analysis
We propose the concept of Intra-Query Runtime Elasticity (IQRE) for cloud-native data analysis. IQRE enables a cloud-native OLAP engine to dynamically adjust a query's Degree of Parallelism (DOP) during execution. This capability allows users to utilize cloud computing resources more cost-effectively. We present Accordion, the first IQRE query engine. Accordion can adjust the parallelism of a query at any point during query execution without pausing data processing. It features a user-friendly interface and an auto-tuner backed by a "what-if" service to allow users to adjust the DOP according to their query latency constraints. The design of Accordion follows the execution model in Presto, an open-source distributed SQL query engine developed at Meta. We present the implementation of Accordion and demonstrate its ease of use, showcasing how it enables users to minimize compute resource consumption while meeting their query time constraints.
R2D2: Reducing Redundancy and Duplication in Data Lakes
Enterprise data lakes often suffer from substantial amounts of duplicate and redundant data, with data volumes ranging from terabytes to petabytes. This leads to both increased storage costs and unnecessarily high maintenance costs for these datasets. In this work, we focus on identifying and reducing redundancy in enterprise data lakes by addressing the problem of 'dataset containment'. To the best of our knowledge, this is one of the first works that addresses table-level containment at a large scale. We propose R2D2: a three-step hierarchical pipeline that efficiently identifies almost all instances of containment by progressively reducing the search space in the data lake. It first builds (i) a schema containment graph, followed by (ii) statistical min-max pruning, and finally, (iii) content level pruning. We further propose minimizing the total storage and access costs by optimally identifying redundant datasets that can be deleted (and reconstructed on demand) while respecting latency constraints. We implement our system on Azure Databricks clusters using Apache Spark for enterprise data stored in ADLS Gen2, and on AWS clusters for open-source data. In contrast to existing modified baselines that are inaccurate or take several days to run, our pipeline can process an enterprise customer data lake at the TB scale in approximately 5 hours with high accuracy. We present theoretical results as well as extensive empirical validation on both enterprise (scale of TBs) and open-source datasets (scale of MBs - GBs), which showcase the effectiveness of our pipeline.
Fast Point Cloud Generation with Straight Flows
Diffusion models have emerged as a powerful tool for point cloud generation. A key component that drives the impressive performance for generating high-quality samples from noise is iteratively denoise for thousands of steps. While beneficial, the complexity of learning steps has limited its applications to many 3D real-world. To address this limitation, we propose Point Straight Flow (PSF), a model that exhibits impressive performance using one step. Our idea is based on the reformulation of the standard diffusion model, which optimizes the curvy learning trajectory into a straight path. Further, we develop a distillation strategy to shorten the straight path into one step without a performance loss, enabling applications to 3D real-world with latency constraints. We perform evaluations on multiple 3D tasks and find that our PSF performs comparably to the standard diffusion model, outperforming other efficient 3D point cloud generation methods. On real-world applications such as point cloud completion and training-free text-guided generation in a low-latency setup, PSF performs favorably.
HardCoRe-NAS: Hard Constrained diffeRentiable Neural Architecture Search
Realistic use of neural networks often requires adhering to multiple constraints on latency, energy and memory among others. A popular approach to find fitting networks is through constrained Neural Architecture Search (NAS), however, previous methods enforce the constraint only softly. Therefore, the resulting networks do not exactly adhere to the resource constraint and their accuracy is harmed. In this work we resolve this by introducing Hard Constrained diffeRentiable NAS (HardCoRe-NAS), that is based on an accurate formulation of the expected resource requirement and a scalable search method that satisfies the hard constraint throughout the search. Our experiments show that HardCoRe-NAS generates state-of-the-art architectures, surpassing other NAS methods, while strictly satisfying the hard resource constraints without any tuning required.
TrimLLM: Progressive Layer Dropping for Domain-Specific LLMs
Specializing large language models (LLMs) for local deployment in domain-specific use cases is necessary for strong performance while meeting latency and privacy constraints. However, conventional task-specific adaptation approaches do not show simultaneous memory saving and inference speedup at deployment time. Practical compression techniques like quantization and pruning require dedicated hardware or kernel support to achieve measured inference speedup. We develop TrimLLM based on the layer-wise specialization phenomenon we empirically observed and verified on contemporary LLMs. TrimLLM reduces the depth of LLMs via progressive layer dropping. We show it retains LLMs' capacity in specific domains and achieves inference speedup irrespective of hardware and deep learning frameworks. We evaluated TrimLLM on LLMs of various sizes for inference; models adapted on medical, legal, and financial datasets all demonstrate 2.1-5.7times inference speedup on consumer GPUs and up to 3.1times speedup on A100 when compared to state-of-the-art model compression algorithms, with no loss in accuracy at 50sim60\% model compression ratio.
StreamAtt: Direct Streaming Speech-to-Text Translation with Attention-based Audio History Selection
Streaming speech-to-text translation (StreamST) is the task of automatically translating speech while incrementally receiving an audio stream. Unlike simultaneous ST (SimulST), which deals with pre-segmented speech, StreamST faces the challenges of handling continuous and unbounded audio streams. This requires additional decisions about what to retain of the previous history, which is impractical to keep entirely due to latency and computational constraints. Despite the real-world demand for real-time ST, research on streaming translation remains limited, with existing works solely focusing on SimulST. To fill this gap, we introduce StreamAtt, the first StreamST policy, and propose StreamLAAL, the first StreamST latency metric designed to be comparable with existing metrics for SimulST. Extensive experiments across all 8 languages of MuST-C v1.0 show the effectiveness of StreamAtt compared to a naive streaming baseline and the related state-of-the-art SimulST policy, providing a first step in StreamST research.
TabNAS: Rejection Sampling for Neural Architecture Search on Tabular Datasets
The best neural architecture for a given machine learning problem depends on many factors: not only the complexity and structure of the dataset, but also on resource constraints including latency, compute, energy consumption, etc. Neural architecture search (NAS) for tabular datasets is an important but under-explored problem. Previous NAS algorithms designed for image search spaces incorporate resource constraints directly into the reinforcement learning (RL) rewards. However, for NAS on tabular datasets, this protocol often discovers suboptimal architectures. This paper develops TabNAS, a new and more effective approach to handle resource constraints in tabular NAS using an RL controller motivated by the idea of rejection sampling. TabNAS immediately discards any architecture that violates the resource constraints without training or learning from that architecture. TabNAS uses a Monte-Carlo-based correction to the RL policy gradient update to account for this extra filtering step. Results on several tabular datasets demonstrate the superiority of TabNAS over previous reward-shaping methods: it finds better models that obey the constraints.
MiniLM: Deep Self-Attention Distillation for Task-Agnostic Compression of Pre-Trained Transformers
Pre-trained language models (e.g., BERT (Devlin et al., 2018) and its variants) have achieved remarkable success in varieties of NLP tasks. However, these models usually consist of hundreds of millions of parameters which brings challenges for fine-tuning and online serving in real-life applications due to latency and capacity constraints. In this work, we present a simple and effective approach to compress large Transformer (Vaswani et al., 2017) based pre-trained models, termed as deep self-attention distillation. The small model (student) is trained by deeply mimicking the self-attention module, which plays a vital role in Transformer networks, of the large model (teacher). Specifically, we propose distilling the self-attention module of the last Transformer layer of the teacher, which is effective and flexible for the student. Furthermore, we introduce the scaled dot-product between values in the self-attention module as the new deep self-attention knowledge, in addition to the attention distributions (i.e., the scaled dot-product of queries and keys) that have been used in existing works. Moreover, we show that introducing a teacher assistant (Mirzadeh et al., 2019) also helps the distillation of large pre-trained Transformer models. Experimental results demonstrate that our monolingual model outperforms state-of-the-art baselines in different parameter size of student models. In particular, it retains more than 99% accuracy on SQuAD 2.0 and several GLUE benchmark tasks using 50% of the Transformer parameters and computations of the teacher model. We also obtain competitive results in applying deep self-attention distillation to multilingual pre-trained models.
INDUS: Effective and Efficient Language Models for Scientific Applications
Large language models (LLMs) trained on general domain corpora showed remarkable results on natural language processing (NLP) tasks. However, previous research demonstrated LLMs trained using domain-focused corpora perform better on specialized tasks. Inspired by this pivotal insight, we developed INDUS, a comprehensive suite of LLMs tailored for the Earth science, biology, physics, heliophysics, planetary sciences and astrophysics domains and trained using curated scientific corpora drawn from diverse data sources. The suite of models include: (1) an encoder model trained using domain-specific vocabulary and corpora to address natural language understanding tasks, (2) a contrastive-learning-based general text embedding model trained using a diverse set of datasets drawn from multiple sources to address information retrieval tasks and (3) smaller versions of these models created using knowledge distillation techniques to address applications which have latency or resource constraints. We also created three new scientific benchmark datasets namely, CLIMATE-CHANGE-NER (entity-recognition), NASA-QA (extractive QA) and NASA-IR (IR) to accelerate research in these multi-disciplinary fields. Finally, we show that our models outperform both general-purpose encoders (RoBERTa) and existing domain-specific encoders (SciBERT) on these new tasks as well as existing benchmark tasks in the domains of interest.
Overcoming Vocabulary Constraints with Pixel-level Fallback
Subword tokenization requires balancing computational efficiency and vocabulary coverage, which often leads to suboptimal performance on languages and scripts not prioritized during training. We propose to augment pretrained language models with a vocabulary-free encoder that generates input embeddings from text rendered as pixels. Through experiments on English-centric language models, we demonstrate that our approach substantially improves machine translation performance and facilitates effective cross-lingual transfer, outperforming tokenizer-based methods. Furthermore, we find that pixel-based representations outperform byte-level approaches and standard vocabulary expansion. Our approach enhances the multilingual capabilities of monolingual language models without extensive retraining and reduces decoding latency via input compression.
Human Latency Conversational Turns for Spoken Avatar Systems
A problem with many current Large Language Model (LLM) driven spoken dialogues is the response time. Some efforts such as Groq address this issue by lightning fast processing of the LLM, but we know from the cognitive psychology literature that in human-to-human dialogue often responses occur prior to the speaker completing their utterance. No amount of delay for LLM processing is acceptable if we wish to maintain human dialogue latencies. In this paper, we discuss methods for understanding an utterance in close to real time and generating a response so that the system can comply with human-level conversational turn delays. This means that the information content of the final part of the speaker's utterance is lost to the LLM. Using the Google NaturalQuestions (NQ) database, our results show GPT-4 can effectively fill in missing context from a dropped word at the end of a question over 60% of the time. We also provide some examples of utterances and the impacts of this information loss on the quality of LLM response in the context of an avatar that is currently under development. These results indicate that a simple classifier could be used to determine whether a question is semantically complete, or requires a filler phrase to allow a response to be generated within human dialogue time constraints.
Apparate: Rethinking Early Exits to Tame Latency-Throughput Tensions in ML Serving
Machine learning (ML) inference platforms are tasked with balancing two competing goals: ensuring high throughput given many requests, and delivering low-latency responses to support interactive applications. Unfortunately, existing platform knobs (e.g., batch sizes) fail to ease this fundamental tension, and instead only enable users to harshly trade off one property for the other. This paper explores an alternate strategy to taming throughput-latency tradeoffs by changing the granularity at which inference is performed. We present Apparate, a system that automatically applies and manages early exits (EEs) in ML models, whereby certain inputs can exit with results at intermediate layers. To cope with the time-varying overhead and accuracy challenges that EEs bring, Apparate repurposes exits to provide continual feedback that powers several novel runtime monitoring and adaptation strategies. Apparate lowers median response latencies by 40.5--91.5% and 10.0--24.2% for diverse CV and NLP classification workloads, and median time-per-token latencies by 22.6--77.9% for generative scenarios, without affecting throughputs or violating tight accuracy constraints.
UPSCALE: Unconstrained Channel Pruning
As neural networks grow in size and complexity, inference speeds decline. To combat this, one of the most effective compression techniques -- channel pruning -- removes channels from weights. However, for multi-branch segments of a model, channel removal can introduce inference-time memory copies. In turn, these copies increase inference latency -- so much so that the pruned model can be slower than the unpruned model. As a workaround, pruners conventionally constrain certain channels to be pruned together. This fully eliminates memory copies but, as we show, significantly impairs accuracy. We now have a dilemma: Remove constraints but increase latency, or add constraints and impair accuracy. In response, our insight is to reorder channels at export time, (1) reducing latency by reducing memory copies and (2) improving accuracy by removing constraints. Using this insight, we design a generic algorithm UPSCALE to prune models with any pruning pattern. By removing constraints from existing pruners, we improve ImageNet accuracy for post-training pruned models by 2.1 points on average -- benefiting DenseNet (+16.9), EfficientNetV2 (+7.9), and ResNet (+6.2). Furthermore, by reordering channels, UPSCALE improves inference speeds by up to 2x over a baseline export.
Compress, Then Prompt: Improving Accuracy-Efficiency Trade-off of LLM Inference with Transferable Prompt
While the numerous parameters in Large Language Models (LLMs) contribute to their superior performance, this massive scale makes them inefficient and memory-hungry. Thus, they are hard to deploy on commodity hardware, such as one single GPU. Given the memory and power constraints of such devices, model compression methods are widely employed to reduce both the model size and inference latency, which essentially trades off model quality in return for improved efficiency. Thus, optimizing this accuracy-efficiency trade-off is crucial for the LLM deployment on commodity hardware. In this paper, we introduce a new perspective to optimize this trade-off by prompting compressed models. Specifically, we first observe that for certain questions, the generation quality of a compressed LLM can be significantly improved by adding carefully designed hard prompts, though this isn't the case for all questions. Based on this observation, we propose a soft prompt learning method where we expose the compressed model to the prompt learning process, aiming to enhance the performance of prompts. Our experimental analysis suggests our soft prompt strategy greatly improves the performance of the 8x compressed LLaMA-7B model (with a joint 4-bit quantization and 50% weight pruning compression), allowing them to match their uncompressed counterparts on popular benchmarks. Also, we demonstrate that these learned prompts can be transferred across various datasets, tasks, and compression levels. Hence with this transferability, we can stitch the soft prompt to a newly compressed model to improve the test-time accuracy in an ``in-situ'' way.
Weight-dependent Gates for Network Pruning
In this paper, a simple yet effective network pruning framework is proposed to simultaneously address the problems of pruning indicator, pruning ratio, and efficiency constraint. This paper argues that the pruning decision should depend on the convolutional weights, and thus proposes novel weight-dependent gates (W-Gates) to learn the information from filter weights and obtain binary gates to prune or keep the filters automatically. To prune the network under efficiency constraints, a switchable Efficiency Module is constructed to predict the hardware latency or FLOPs of candidate pruned networks. Combined with the proposed Efficiency Module, W-Gates can perform filter pruning in an efficiency-aware manner and achieve a compact network with a better accuracy-efficiency trade-off. We have demonstrated the effectiveness of the proposed method on ResNet34, ResNet50, and MobileNet V2, respectively achieving up to 1.33/1.28/1.1 higher Top-1 accuracy with lower hardware latency on ImageNet. Compared with state-of-the-art methods, W-Gates also achieves superior performance.
Stateful Conformer with Cache-based Inference for Streaming Automatic Speech Recognition
In this paper, we propose an efficient and accurate streaming speech recognition model based on the FastConformer architecture. We adapted the FastConformer architecture for streaming applications through: (1) constraining both the look-ahead and past contexts in the encoder, and (2) introducing an activation caching mechanism to enable the non-autoregressive encoder to operate autoregressively during inference. The proposed model is thoughtfully designed in a way to eliminate the accuracy disparity between the train and inference time which is common for many streaming models. Furthermore, our proposed encoder works with various decoder configurations including Connectionist Temporal Classification (CTC) and RNN-Transducer (RNNT) decoders. Additionally, we introduced a hybrid CTC/RNNT architecture which utilizes a shared encoder with both a CTC and RNNT decoder to boost the accuracy and save computation. We evaluate the proposed model on LibriSpeech dataset and a multi-domain large scale dataset and demonstrate that it can achieve better accuracy with lower latency and inference time compared to a conventional buffered streaming model baseline. We also showed that training a model with multiple latencies can achieve better accuracy than single latency models while it enables us to support multiple latencies with a single model. Our experiments also showed the hybrid architecture would not only speedup the convergence of the CTC decoder but also improves the accuracy of streaming models compared to single decoder models.
Mobile-MMLU: A Mobile Intelligence Language Understanding Benchmark
Rapid advancements in large language models (LLMs) have increased interest in deploying them on mobile devices for on-device AI applications. Mobile users interact differently with LLMs compared to desktop users, creating unique expectations and data biases. Current benchmark datasets primarily target at server and desktop environments, and there is a notable lack of extensive datasets specifically designed for mobile contexts. Additionally, mobile devices face strict limitations in storage and computing resources, constraining model size and capabilities, thus requiring optimized efficiency and prioritized knowledge. To address these challenges, we introduce Mobile-MMLU, a large-scale benchmark dataset tailored for mobile intelligence. It consists of 16,186 questions across 80 mobile-related fields, designed to evaluate LLM performance in realistic mobile scenarios. A challenging subset, Mobile-MMLU-Pro, provides advanced evaluation similar in size to MMLU-Pro but significantly more difficult than our standard full set. Both benchmarks use multiple-choice, order-invariant questions focused on practical mobile interactions, such as recipe suggestions, travel planning, and essential daily tasks. The dataset emphasizes critical mobile-specific metrics like inference latency, energy consumption, memory usage, and response quality, offering comprehensive insights into model performance under mobile constraints. Moreover, it prioritizes privacy and adaptability, assessing models' ability to perform on-device processing, maintain user privacy, and adapt to personalized usage patterns. Mobile-MMLU family offers a standardized framework for developing and comparing mobile-optimized LLMs, enabling advancements in productivity and decision-making within mobile computing environments. Our code and data are available at: https://github.com/VILA-Lab/Mobile-MMLU.
AutoMoE: Heterogeneous Mixture-of-Experts with Adaptive Computation for Efficient Neural Machine Translation
Mixture-of-Expert (MoE) models have obtained state-of-the-art performance in Neural Machine Translation (NMT) tasks. Existing works in MoE mostly consider a homogeneous design where the same number of experts of the same size are placed uniformly throughout the network. Furthermore, existing MoE works do not consider computational constraints (e.g., FLOPs, latency) to guide their design. To this end, we develop AutoMoE -- a framework for designing heterogeneous MoE's under computational constraints. AutoMoE leverages Neural Architecture Search (NAS) to obtain efficient sparse MoE sub-transformers with 4x inference speedup (CPU) and FLOPs reduction over manually designed Transformers, with parity in BLEU score over dense Transformer and within 1 BLEU point of MoE SwitchTransformer, on aggregate over benchmark datasets for NMT. Heterogeneous search space with dense and sparsely activated Transformer modules (e.g., how many experts? where to place them? what should be their sizes?) allows for adaptive compute -- where different amounts of computations are used for different tokens in the input. Adaptivity comes naturally from routing decisions which send tokens to experts of different sizes. AutoMoE code, data, and trained models are available at https://aka.ms/AutoMoE.
Characterising Bias in Compressed Models
The popularity and widespread use of pruning and quantization is driven by the severe resource constraints of deploying deep neural networks to environments with strict latency, memory and energy requirements. These techniques achieve high levels of compression with negligible impact on top-line metrics (top-1 and top-5 accuracy). However, overall accuracy hides disproportionately high errors on a small subset of examples; we call this subset Compression Identified Exemplars (CIE). We further establish that for CIE examples, compression amplifies existing algorithmic bias. Pruning disproportionately impacts performance on underrepresented features, which often coincides with considerations of fairness. Given that CIE is a relatively small subset but a great contributor of error in the model, we propose its use as a human-in-the-loop auditing tool to surface a tractable subset of the dataset for further inspection or annotation by a domain expert. We provide qualitative and quantitative support that CIE surfaces the most challenging examples in the data distribution for human-in-the-loop auditing.
Towards Cross-Tokenizer Distillation: the Universal Logit Distillation Loss for LLMs
Deploying large language models (LLMs) of several billion parameters can be impractical in most industrial use cases due to constraints such as cost, latency limitations, and hardware accessibility. Knowledge distillation (KD) offers a solution by compressing knowledge from resource-intensive large models to smaller ones. Various strategies exist, some relying on the text generated by the teacher model and optionally utilizing his logits to enhance learning. However, these methods based on logits often require both teacher and student models to share the same tokenizer, limiting their applicability across different LLM families. In this paper, we introduce Universal Logit Distillation (ULD) loss, grounded in optimal transport, to address this limitation. Our experimental results demonstrate the effectiveness of ULD loss in enabling distillation across models with different architectures and tokenizers, paving the way to a more widespread use of distillation techniques.
Mem0: Building Production-Ready AI Agents with Scalable Long-Term Memory
Large Language Models (LLMs) have demonstrated remarkable prowess in generating contextually coherent responses, yet their fixed context windows pose fundamental challenges for maintaining consistency over prolonged multi-session dialogues. We introduce Mem0, a scalable memory-centric architecture that addresses this issue by dynamically extracting, consolidating, and retrieving salient information from ongoing conversations. Building on this foundation, we further propose an enhanced variant that leverages graph-based memory representations to capture complex relational structures among conversational elements. Through comprehensive evaluations on LOCOMO benchmark, we systematically compare our approaches against six baseline categories: (i) established memory-augmented systems, (ii) retrieval-augmented generation (RAG) with varying chunk sizes and k-values, (iii) a full-context approach that processes the entire conversation history, (iv) an open-source memory solution, (v) a proprietary model system, and (vi) a dedicated memory management platform. Empirical results show that our methods consistently outperform all existing memory systems across four question categories: single-hop, temporal, multi-hop, and open-domain. Notably, Mem0 achieves 26% relative improvements in the LLM-as-a-Judge metric over OpenAI, while Mem0 with graph memory achieves around 2% higher overall score than the base configuration. Beyond accuracy gains, we also markedly reduce computational overhead compared to full-context method. In particular, Mem0 attains a 91% lower p95 latency and saves more than 90% token cost, offering a compelling balance between advanced reasoning capabilities and practical deployment constraints. Our findings highlight critical role of structured, persistent memory mechanisms for long-term conversational coherence, paving the way for more reliable and efficient LLM-driven AI agents.
Single-Path NAS: Designing Hardware-Efficient ConvNets in less than 4 Hours
Can we automatically design a Convolutional Network (ConvNet) with the highest image classification accuracy under the runtime constraint of a mobile device? Neural architecture search (NAS) has revolutionized the design of hardware-efficient ConvNets by automating this process. However, the NAS problem remains challenging due to the combinatorially large design space, causing a significant searching time (at least 200 GPU-hours). To alleviate this complexity, we propose Single-Path NAS, a novel differentiable NAS method for designing hardware-efficient ConvNets in less than 4 hours. Our contributions are as follows: 1. Single-path search space: Compared to previous differentiable NAS methods, Single-Path NAS uses one single-path over-parameterized ConvNet to encode all architectural decisions with shared convolutional kernel parameters, hence drastically decreasing the number of trainable parameters and the search cost down to few epochs. 2. Hardware-efficient ImageNet classification: Single-Path NAS achieves 74.96% top-1 accuracy on ImageNet with 79ms latency on a Pixel 1 phone, which is state-of-the-art accuracy compared to NAS methods with similar constraints (<80ms). 3. NAS efficiency: Single-Path NAS search cost is only 8 epochs (30 TPU-hours), which is up to 5,000x faster compared to prior work. 4. Reproducibility: Unlike all recent mobile-efficient NAS methods which only release pretrained models, we open-source our entire codebase at: https://github.com/dstamoulis/single-path-nas.
An Efficiency Study for SPLADE Models
Latency and efficiency issues are often overlooked when evaluating IR models based on Pretrained Language Models (PLMs) in reason of multiple hardware and software testing scenarios. Nevertheless, efficiency is an important part of such systems and should not be overlooked. In this paper, we focus on improving the efficiency of the SPLADE model since it has achieved state-of-the-art zero-shot performance and competitive results on TREC collections. SPLADE efficiency can be controlled via a regularization factor, but solely controlling this regularization has been shown to not be efficient enough. In order to reduce the latency gap between SPLADE and traditional retrieval systems, we propose several techniques including L1 regularization for queries, a separation of document/query encoders, a FLOPS-regularized middle-training, and the use of faster query encoders. Our benchmark demonstrates that we can drastically improve the efficiency of these models while increasing the performance metrics on in-domain data. To our knowledge, {we propose the first neural models that, under the same computing constraints, achieve similar latency (less than 4ms difference) as traditional BM25, while having similar performance (less than 10\% MRR@10 reduction) as the state-of-the-art single-stage neural rankers on in-domain data}.
Fast Passage Re-ranking with Contextualized Exact Term Matching and Efficient Passage Expansion
BERT-based information retrieval models are expensive, in both time (query latency) and computational resources (energy, hardware cost), making many of these models impractical especially under resource constraints. The reliance on a query encoder that only performs tokenization and on the pre-processing of passage representations at indexing, has allowed the recently proposed TILDE method to overcome the high query latency issue typical of BERT-based models. This however is at the expense of a lower effectiveness compared to other BERT-based re-rankers and dense retrievers. In addition, the original TILDE method is characterised by indexes with a very high memory footprint, as it expands each passage into the size of the BERT vocabulary. In this paper, we propose TILDEv2, a new model that stems from the original TILDE but that addresses its limitations. TILDEv2 relies on contextualized exact term matching with expanded passages. This requires to only store in the index the score of tokens that appear in the expanded passages (rather than all the vocabulary), thus producing indexes that are 99% smaller than those of TILDE. This matching mechanism also improves ranking effectiveness by 24%, without adding to the query latency. This makes TILDEv2 the state-of-the-art passage re-ranking method for CPU-only environments, capable of maintaining query latency below 100ms on commodity hardware.
Towards a World-English Language Model for On-Device Virtual Assistants
Neural Network Language Models (NNLMs) for Virtual Assistants (VAs) are generally language-, region-, and in some cases, device-dependent, which increases the effort to scale and maintain them. Combining NNLMs for one or more of the categories is one way to improve scalability. In this work, we combine regional variants of English to build a ``World English'' NNLM for on-device VAs. In particular, we investigate the application of adapter bottlenecks to model dialect-specific characteristics in our existing production NNLMs {and enhance the multi-dialect baselines}. We find that adapter modules are more effective in modeling dialects than specializing entire sub-networks. Based on this insight and leveraging the design of our production models, we introduce a new architecture for World English NNLM that meets the accuracy, latency, and memory constraints of our single-dialect models.
Vision-Speech Models: Teaching Speech Models to Converse about Images
The recent successes of Vision-Language models raise the question of how to equivalently imbue a pretrained speech model with vision understanding, an important milestone towards building a multimodal speech model able to freely converse about images. Building such a conversational Vision-Speech model brings its unique challenges: (i) paired image-speech datasets are much scarcer than their image-text counterparts, (ii) ensuring real-time latency at inference is crucial thus bringing compute and memory constraints, and (iii) the model should preserve prosodic features (e.g., speaker tone) which cannot be inferred from text alone. In this work, we introduce MoshiVis, augmenting a recent dialogue speech LLM, Moshi, with visual inputs through lightweight adaptation modules. An additional dynamic gating mechanism enables the model to more easily switch between the visual inputs and unrelated conversation topics. To reduce training costs, we design a simple one-stage, parameter-efficient fine-tuning pipeline in which we leverage a mixture of image-text (i.e., "speechless") and image-speech samples. We evaluate the model on downstream visual understanding tasks with both audio and text prompts, and report qualitative samples of interactions with MoshiVis. Our inference code will be made available, as well as the image-speech data used for audio evaluation.
Single Path One-Shot Neural Architecture Search with Uniform Sampling
We revisit the one-shot Neural Architecture Search (NAS) paradigm and analyze its advantages over existing NAS approaches. Existing one-shot method, however, is hard to train and not yet effective on large scale datasets like ImageNet. This work propose a Single Path One-Shot model to address the challenge in the training. Our central idea is to construct a simplified supernet, where all architectures are single paths so that weight co-adaption problem is alleviated. Training is performed by uniform path sampling. All architectures (and their weights) are trained fully and equally. Comprehensive experiments verify that our approach is flexible and effective. It is easy to train and fast to search. It effortlessly supports complex search spaces (e.g., building blocks, channel, mixed-precision quantization) and different search constraints (e.g., FLOPs, latency). It is thus convenient to use for various needs. It achieves start-of-the-art performance on the large dataset ImageNet.
NeoRL-2: Near Real-World Benchmarks for Offline Reinforcement Learning with Extended Realistic Scenarios
Offline reinforcement learning (RL) aims to learn from historical data without requiring (costly) access to the environment. To facilitate offline RL research, we previously introduced NeoRL, which highlighted that datasets from real-world tasks are often conservative and limited. With years of experience applying offline RL to various domains, we have identified additional real-world challenges. These include extremely conservative data distributions produced by deployed control systems, delayed action effects caused by high-latency transitions, external factors arising from the uncontrollable variance of transitions, and global safety constraints that are difficult to evaluate during the decision-making process. These challenges are underrepresented in previous benchmarks but frequently occur in real-world tasks. To address this, we constructed the extended Near Real-World Offline RL Benchmark (NeoRL-2), which consists of 7 datasets from 7 simulated tasks along with their corresponding evaluation simulators. Benchmarking results from state-of-the-art offline RL approaches demonstrate that current methods often struggle to outperform the data-collection behavior policy, highlighting the need for more effective methods. We hope NeoRL-2 will accelerate the development of reinforcement learning algorithms for real-world applications. The benchmark project page is available at https://github.com/polixir/NeoRL2.
Enabling more efficient and cost-effective AI/ML systems with Collective Mind, virtualized MLOps, MLPerf, Collective Knowledge Playground and reproducible optimization tournaments
This white paper introduces my educational community initiative to learn how to run AI, ML and other emerging workloads in the most efficient and cost-effective way across diverse models, data sets, software and hardware. This project leverages Collective Mind (CM), virtualized MLOps and DevOps (CM4MLOps), MLPerf benchmarks, and the Collective Knowledge playground (CK), which I have developed in collaboration with the community and MLCommons. I created Collective Mind as a small and portable Python package with minimal dependencies, a unified CLI and Python API to help researchers and engineers automate repetitive, tedious, and time-consuming tasks. I also designed CM as a distributed framework, continuously enhanced by the community through the CM4* repositories, which function as the unified interface for organizing and managing various collections of automations and artifacts. For example, CM4MLOps repository includes many automations, also known as CM scripts, to streamline the process of building, running, benchmarking, and optimizing AI, ML, and other workflows across ever-evolving models, data, and systems. I donated CK, CM and CM4MLOps to MLCommons to foster collaboration between academia and industry to learn how to co-design more efficient and cost-effective AI systems while capturing and encoding knowledge within Collective Mind, protecting intellectual property, enabling portable skills, and accelerating the transition of the state-of-the-art research into production. My ultimate goal is to collaborate with the community to complete my two-decade journey toward creating self-optimizing software and hardware that can automatically learn how to run any workload in the most efficient and cost-effective manner based on user requirements and constraints such as cost, latency, throughput, accuracy, power consumption, size, and other critical factors.
DAMO-YOLO : A Report on Real-Time Object Detection Design
In this report, we present a fast and accurate object detection method dubbed DAMO-YOLO, which achieves higher performance than the state-of-the-art YOLO series. DAMO-YOLO is extended from YOLO with some new technologies, including Neural Architecture Search (NAS), efficient Reparameterized Generalized-FPN (RepGFPN), a lightweight head with AlignedOTA label assignment, and distillation enhancement. In particular, we use MAE-NAS, a method guided by the principle of maximum entropy, to search our detection backbone under the constraints of low latency and high performance, producing ResNet-like / CSP-like structures with spatial pyramid pooling and focus modules. In the design of necks and heads, we follow the rule of "large neck, small head". We import Generalized-FPN with accelerated queen-fusion to build the detector neck and upgrade its CSPNet with efficient layer aggregation networks (ELAN) and reparameterization. Then we investigate how detector head size affects detection performance and find that a heavy neck with only one task projection layer would yield better results. In addition, AlignedOTA is proposed to solve the misalignment problem in label assignment. And a distillation schema is introduced to improve performance to a higher level. Based on these new techs, we build a suite of models at various scales to meet the needs of different scenarios, i.e., DAMO-YOLO-Tiny/Small/Medium. They can achieve 43.0/46.8/50.0 mAPs on COCO with the latency of 2.78/3.83/5.62 ms on T4 GPUs respectively. The code is available at https://github.com/tinyvision/damo-yolo.
EnergonAI: An Inference System for 10-100 Billion Parameter Transformer Models
Large transformer models display promising performance on a wide range of natural language processing (NLP) tasks. Although the AI community has expanded the model scale to the trillion parameter level, the practical deployment of 10-100 billion parameter models is still uncertain due to the latency, throughput, and memory constraints. In this paper, we proposed EnergonAI to solve the challenges of the efficient deployment of 10-100 billion parameter transformer models on single- or multi-GPU systems. EnergonAI adopts a hierarchy-controller system architecture to coordinate multiple devices and efficiently support different parallel patterns. It delegates the execution of sub-models to multiple workers in the single-controller style and applies tensor parallelism and pipeline parallelism among the workers in a multi-controller style. Upon the novel architecture, we propose three techniques, i.e. non-blocking pipeline parallelism, distributed redundant computation elimination, and peer memory pooling. EnergonAI enables the users to program complex parallel code the same as a serial one. Compared with the FasterTransformer, we have proven that EnergonAI has superior performance on latency and throughput. In our experiments, EnergonAI can achieve 37% latency reduction in tensor parallelism, 10% scalability improvement in pipeline parallelism, and it improves the model scale inferred on a single GPU by using a larger heterogeneous memory space at cost of limited performance reduction.
HAWQV3: Dyadic Neural Network Quantization
Current low-precision quantization algorithms often have the hidden cost of conversion back and forth from floating point to quantized integer values. This hidden cost limits the latency improvement realized by quantizing Neural Networks. To address this, we present HAWQV3, a novel mixed-precision integer-only quantization framework. The contributions of HAWQV3 are the following: (i) An integer-only inference where the entire computational graph is performed only with integer multiplication, addition, and bit shifting, without any floating point operations or even integer division; (ii) A novel hardware-aware mixed-precision quantization method where the bit-precision is calculated by solving an integer linear programming problem that balances the trade-off between model perturbation and other constraints, e.g., memory footprint and latency; (iii) Direct hardware deployment and open source contribution for 4-bit uniform/mixed-precision quantization in TVM, achieving an average speed up of 1.45times for uniform 4-bit, as compared to uniform 8-bit for ResNet50 on T4 GPUs; and (iv) extensive evaluation of the proposed methods on ResNet18/50 and InceptionV3, for various model compression levels with/without mixed precision. For ResNet50, our INT8 quantization achieves an accuracy of 77.58%, which is 2.68% higher than prior integer-only work, and our mixed-precision INT4/8 quantization can reduce INT8 latency by 23% and still achieve 76.73% accuracy. Our framework and the TVM implementation have been open sourced.
Learning When to Speak: Latency and Quality Trade-offs for Simultaneous Speech-to-Speech Translation with Offline Models
Recent work in speech-to-speech translation (S2ST) has focused primarily on offline settings, where the full input utterance is available before any output is given. This, however, is not reasonable in many real-world scenarios. In latency-sensitive applications, rather than waiting for the full utterance, translations should be spoken as soon as the information in the input is present. In this work, we introduce a system for simultaneous S2ST targeting real-world use cases. Our system supports translation from 57 languages to English with tunable parameters for dynamically adjusting the latency of the output -- including four policies for determining when to speak an output sequence. We show that these policies achieve offline-level accuracy with minimal increases in latency over a Greedy (wait-k) baseline. We open-source our evaluation code and interactive test script to aid future SimulS2ST research and application development.
Faster and Better LLMs via Latency-Aware Test-Time Scaling
Test-Time Scaling (TTS) has proven effective in improving the performance of Large Language Models (LLMs) during inference. However, existing research has overlooked the efficiency of TTS from a latency-sensitive perspective. Through a latency-aware evaluation of representative TTS methods, we demonstrate that a compute-optimal TTS does not always result in the lowest latency in scenarios where latency is critical. To address this gap and achieve latency-optimal TTS, we propose two key approaches by optimizing the concurrency configurations: (1) branch-wise parallelism, which leverages multiple concurrent inference branches, and (2) sequence-wise parallelism, enabled by speculative decoding. By integrating these two approaches and allocating computational resources properly to each, our latency-optimal TTS enables a 32B model to reach 82.3% accuracy on MATH-500 within 1 minute and a smaller 3B model to achieve 72.4% within 10 seconds. Our work emphasizes the importance of latency-aware TTS and demonstrates its ability to deliver both speed and accuracy in latency-sensitive scenarios.
ScaleLLM: A Resource-Frugal LLM Serving Framework by Optimizing End-to-End Efficiency
Large language models (LLMs) have surged in popularity and are extensively used in commercial applications, where the efficiency of model serving is crucial for the user experience. Most current research focuses on optimizing individual sub-procedures, e.g. local inference and communication, however, there is no comprehensive framework that provides a holistic system view for optimizing LLM serving in an end-to-end manner. In this work, we conduct a detailed analysis to identify major bottlenecks that impact end-to-end latency in LLM serving systems. Our analysis reveals that a comprehensive LLM serving endpoint must address a series of efficiency bottlenecks that extend beyond LLM inference. We then propose ScaleLLM, an optimized system for resource-efficient LLM serving. Our extensive experiments reveal that with 64 concurrent requests, ScaleLLM achieves a 4.3x speed up over vLLM and outperforms state-of-the-arts with 1.5x higher throughput.
Intelligent Router for LLM Workloads: Improving Performance Through Workload-Aware Scheduling
Large Language Model (LLM) workloads have distinct prefill and decode phases with different compute and memory requirements which should ideally be accounted for when scheduling input queries across different LLM instances in a cluster. However existing scheduling algorithms treat LLM workloads as monolithic jobs without considering the distinct characteristics of the two phases in each workload. This leads to sub-optimal scheduling and increased response latency. In this work, we propose a heuristic-guided reinforcement learning-based intelligent router for data-driven and workload-aware scheduling. Our router leverages a trainable response-length predictor, and a novel formulation for estimating the impact of mixing different workloads to schedule queries across LLM instances and achieve over 11\% lower end-to-end latency than existing approaches.
HAT: Hardware-Aware Transformers for Efficient Natural Language Processing
Transformers are ubiquitous in Natural Language Processing (NLP) tasks, but they are difficult to be deployed on hardware due to the intensive computation. To enable low-latency inference on resource-constrained hardware platforms, we propose to design Hardware-Aware Transformers (HAT) with neural architecture search. We first construct a large design space with arbitrary encoder-decoder attention and heterogeneous layers. Then we train a SuperTransformer that covers all candidates in the design space, and efficiently produces many SubTransformers with weight sharing. Finally, we perform an evolutionary search with a hardware latency constraint to find a specialized SubTransformer dedicated to run fast on the target hardware. Extensive experiments on four machine translation tasks demonstrate that HAT can discover efficient models for different hardware (CPU, GPU, IoT device). When running WMT'14 translation task on Raspberry Pi-4, HAT can achieve 3times speedup, 3.7times smaller size over baseline Transformer; 2.7times speedup, 3.6times smaller size over Evolved Transformer with 12,041times less search cost and no performance loss. HAT code is https://github.com/mit-han-lab/hardware-aware-transformers.git
HyGen: Efficient LLM Serving via Elastic Online-Offline Request Co-location
Large language models (LLMs) have facilitated a wide range of applications with distinct service-level objectives (SLOs), from latency-sensitive online tasks like interactive chatbots to throughput-oriented offline workloads like document summarization. The existing deployment model, which dedicates machines to each workload, simplifies SLO management but often leads to poor resource utilization. This paper introduces HyGen, an interference-aware LLM serving system that enables efficient co-location of online and offline workloads while preserving latency requirements. HyGen incorporates two key innovations: (1) performance control mechanisms, including a latency predictor to estimate batch execution time and an SLO-aware profiler to quantify latency interference, and (2) SLO-aware offline scheduling policies that maximize serving throughput and prevent starvation, without compromising online serving latency. Our evaluation on production workloads shows that HyGen achieves up to 3.87x overall throughput and 5.84x offline throughput gains over online and hybrid serving baselines, respectively, while strictly satisfying latency SLOs.
Latency-Aware Differentiable Neural Architecture Search
Differentiable neural architecture search methods became popular in recent years, mainly due to their low search costs and flexibility in designing the search space. However, these methods suffer the difficulty in optimizing network, so that the searched network is often unfriendly to hardware. This paper deals with this problem by adding a differentiable latency loss term into optimization, so that the search process can tradeoff between accuracy and latency with a balancing coefficient. The core of latency prediction is to encode each network architecture and feed it into a multi-layer regressor, with the training data which can be easily collected from randomly sampling a number of architectures and evaluating them on the hardware. We evaluate our approach on NVIDIA Tesla-P100 GPUs. With 100K sampled architectures (requiring a few hours), the latency prediction module arrives at a relative error of lower than 10%. Equipped with this module, the search method can reduce the latency by 20% meanwhile preserving the accuracy. Our approach also enjoys the ability of being transplanted to a wide range of hardware platforms with very few efforts, or being used to optimizing other non-differentiable factors such as power consumption.
Conveyor: Efficient Tool-aware LLM Serving with Tool Partial Execution
The complexity of large language model (LLM) serving workloads has substantially increased due to the integration with external tool invocations, such as ChatGPT plugins. In this paper, we identify a new opportunity for efficient LLM serving for requests that trigger tools: tool partial execution alongside LLM decoding. To this end, we design Conveyor, an efficient LLM serving system optimized for handling requests involving external tools. We introduce a novel interface for tool developers to expose partial execution opportunities to the LLM serving system and a request scheduler that facilitates partial tool execution. Our results demonstrate that tool partial execution can improve request completion latency by up to 38.8%.
Demystifying and Enhancing the Efficiency of Large Language Model Based Search Agents
Large Language Model (LLM)-based search agents have shown remarkable capabilities in solving complex tasks by dynamically decomposing problems and addressing them through interleaved reasoning and retrieval. However, this interleaved paradigm introduces substantial efficiency bottlenecks. First, we observe that both highly accurate and overly approximate retrieval methods degrade system efficiency: exact search incurs significant retrieval overhead, while coarse retrieval requires additional reasoning steps during generation. Second, we identify inefficiencies in system design, including improper scheduling and frequent retrieval stalls, which lead to cascading latency -- where even minor delays in retrieval amplify end-to-end inference time. To address these challenges, we introduce SearchAgent-X, a high-efficiency inference framework for LLM-based search agents. SearchAgent-X leverages high-recall approximate retrieval and incorporates two key techniques: priority-aware scheduling and non-stall retrieval. Extensive experiments demonstrate that SearchAgent-X consistently outperforms state-of-the-art systems such as vLLM and HNSW-based retrieval across diverse tasks, achieving up to 3.4times higher throughput and 5times lower latency, without compromising generation quality. SearchAgent-X is available at https://github.com/tiannuo-yang/SearchAgent-X.
Learned Best-Effort LLM Serving
Many applications must provide low-latency LLM service to users or risk unacceptable user experience. However, over-provisioning resources to serve fluctuating request patterns is often prohibitively expensive. In this work, we present a best-effort serving system that employs deep reinforcement learning to adjust service quality based on the task distribution and system load. Our best-effort system can maintain availability with over 10x higher client request rates, serves above 96% of peak performance 4.1x more often, and serves above 98% of peak performance 2.3x more often than static serving on unpredictable workloads. Our learned router is robust to shifts in both the arrival and task distribution. Compared to static serving, learned best-effort serving allows for cost-efficient serving through increased hardware utility. Additionally, we argue that learned best-effort LLM serving is applicable in wide variety of settings and provides application developers great flexibility to meet their specific needs.
LiveMind: Low-latency Large Language Models with Simultaneous Inference
In this paper, we introduce a novel low-latency inference framework for large language models (LLMs) inference which enables LLMs to perform inferences with incomplete prompts. By reallocating computational processes to prompt input phase, we achieve a substantial reduction in latency, thereby significantly enhancing the interactive experience for users of LLMs. The framework adeptly manages the visibility of the streaming prompt to the model, allowing it to infer from incomplete prompts or await additional prompts. Compared with traditional inference methods that utilize complete prompts, our approach demonstrates an average reduction of 59% in response latency on the MMLU-Pro dataset, while maintaining comparable accuracy. Additionally, our framework facilitates collaborative inference and output across different models. By employing an LLM for inference and a small language model (SLM) for output, we achieve an average 68% reduction in response latency, alongside a 5.5% improvement in accuracy on the MMLU-Pro dataset compared with the SLM baseline. For long prompts exceeding 20 sentences, the response latency can be reduced by up to 93%.
On Optimal Caching and Model Multiplexing for Large Model Inference
Large Language Models (LLMs) and other large foundation models have achieved noteworthy success, but their size exacerbates existing resource consumption and latency challenges. In particular, the large-scale deployment of these models is hindered by the significant resource requirements during inference. In this paper, we study two approaches for mitigating these challenges: employing a cache to store previous queries and learning a model multiplexer to choose from an ensemble of models for query processing. Theoretically, we provide an optimal algorithm for jointly optimizing both approaches to reduce the inference cost in both offline and online tabular settings. By combining a caching algorithm, namely Greedy Dual Size with Frequency (GDSF) or Least Expected Cost (LEC), with a model multiplexer, we achieve optimal rates in both offline and online settings. Empirically, simulations show that the combination of our caching and model multiplexing algorithms greatly improves over the baselines, with up to 50times improvement over the baseline when the ratio between the maximum cost and minimum cost is 100. Experiments on real datasets show a 4.3times improvement in FLOPs over the baseline when the ratio for FLOPs is 10, and a 1.8times improvement in latency when the ratio for average latency is 1.85.
Moving Beyond Downstream Task Accuracy for Information Retrieval Benchmarking
Neural information retrieval (IR) systems have progressed rapidly in recent years, in large part due to the release of publicly available benchmarking tasks. Unfortunately, some dimensions of this progress are illusory: the majority of the popular IR benchmarks today focus exclusively on downstream task accuracy and thus conceal the costs incurred by systems that trade away efficiency for quality. Latency, hardware cost, and other efficiency considerations are paramount to the deployment of IR systems in user-facing settings. We propose that IR benchmarks structure their evaluation methodology to include not only metrics of accuracy, but also efficiency considerations such as a query latency and the corresponding cost budget for a reproducible hardware setting. For the popular IR benchmarks MS MARCO and XOR-TyDi, we show how the best choice of IR system varies according to how these efficiency considerations are chosen and weighed. We hope that future benchmarks will adopt these guidelines toward more holistic IR evaluation.
Llumnix: Dynamic Scheduling for Large Language Model Serving
Inference serving for large language models (LLMs) is the key to unleashing their potential in people's daily lives. However, efficient LLM serving remains challenging today because the requests are inherently heterogeneous and unpredictable in terms of resource and latency requirements, as a result of the diverse applications and the dynamic execution nature of LLMs. Existing systems are fundamentally limited in handling these characteristics and cause problems such as severe queuing delays, poor tail latencies, and SLO violations. We introduce Llumnix, an LLM serving system that reacts to such heterogeneous and unpredictable requests by runtime rescheduling across multiple model instances. Similar to context switching across CPU cores in modern operating systems, Llumnix reschedules requests to improve load balancing and isolation, mitigate resource fragmentation, and differentiate request priorities and SLOs. Llumnix implements the rescheduling with an efficient and scalable live migration mechanism for requests and their in-memory states, and exploits it in a dynamic scheduling policy that unifies the multiple rescheduling scenarios elegantly. Our evaluations show that Llumnix improves tail latencies by an order of magnitude, accelerates high-priority requests by up to 1.5x, and delivers up to 36% cost savings while achieving similar tail latencies, compared against state-of-the-art LLM serving systems. Llumnix is publicly available at https://github.com/AlibabaPAI/llumnix.
PLAID: An Efficient Engine for Late Interaction Retrieval
Pre-trained language models are increasingly important components across multiple information retrieval (IR) paradigms. Late interaction, introduced with the ColBERT model and recently refined in ColBERTv2, is a popular paradigm that holds state-of-the-art status across many benchmarks. To dramatically speed up the search latency of late interaction, we introduce the Performance-optimized Late Interaction Driver (PLAID). Without impacting quality, PLAID swiftly eliminates low-scoring passages using a novel centroid interaction mechanism that treats every passage as a lightweight bag of centroids. PLAID uses centroid interaction as well as centroid pruning, a mechanism for sparsifying the bag of centroids, within a highly-optimized engine to reduce late interaction search latency by up to 7times on a GPU and 45times on a CPU against vanilla ColBERTv2, while continuing to deliver state-of-the-art retrieval quality. This allows the PLAID engine with ColBERTv2 to achieve latency of tens of milliseconds on a GPU and tens or just few hundreds of milliseconds on a CPU at large scale, even at the largest scales we evaluate with 140M passages.
An Architecture for Meeting Quality-of-Service Requirements in Multi-User Quantum Networks
Quantum communication can enhance internet technology by enabling novel applications that are provably impossible classically. The successful execution of such applications relies on the generation of quantum entanglement between different users of the network which meets stringent performance requirements. Alongside traditional metrics such as throughput and jitter, one must ensure the generated entanglement is of sufficiently high quality. Meeting such performance requirements demands a careful orchestration of many devices in the network, giving rise to a fundamentally new scheduling problem. Furthermore, technological limitations of near-term quantum devices impose significant constraints on scheduling methods hoping to meet performance requirements. In this work, we propose the first end-to-end design of a centralized quantum network with multiple users that orchestrates the delivery of entanglement which meets quality-of-service (QoS) requirements of applications. We achieve this by using a centrally constructed schedule that manages usage of devices and ensures the coordinated execution of different quantum operations throughout the network. We use periodic task scheduling and resource-constrained project scheduling techniques, including a novel heuristic, to construct the schedules. Our simulations of four small networks using hardware-validated network parameters, and of a real-world fiber topology using futuristic parameters, illustrate trade-offs between traditional and quantum performance metrics.
RelayAttention for Efficient Large Language Model Serving with Long System Prompts
Practical large language model (LLM) services may involve a long system prompt, which specifies the instructions, examples, and knowledge documents of the task and is reused across numerous requests. However, the long system prompt causes throughput/latency bottlenecks as the cost of generating the next token grows w.r.t. the sequence length. This paper aims to improve the efficiency of LLM services that involve long system prompts. Our key observation is that handling these system prompts requires heavily redundant memory accesses in existing causal attention computation algorithms. Specifically, for batched requests, the cached hidden states (i.e., key-value pairs) of system prompts are transferred from off-chip DRAM to on-chip SRAM multiple times, each corresponding to an individual request. To eliminate such a redundancy, we propose RelayAttention, an attention algorithm that allows reading these hidden states from DRAM exactly once for a batch of input tokens. RelayAttention is a free lunch: it maintains the generation quality while requiring no model retraining, as it is based on a mathematical reformulation of causal attention.
Low-latency Real-time Voice Conversion on CPU
We adapt the architectures of previous audio manipulation and generation neural networks to the task of real-time any-to-one voice conversion. Our resulting model, LLVC (Low-latency Low-resource Voice Conversion), has a latency of under 20ms at a bitrate of 16kHz and runs nearly 2.8x faster than real-time on a consumer CPU. LLVC uses both a generative adversarial architecture as well as knowledge distillation in order to attain this performance. To our knowledge LLVC achieves both the lowest resource usage as well as the lowest latency of any open-source voice conversion model. We provide open-source samples, code, and pretrained model weights at https://github.com/KoeAI/LLVC.
Towards Greener LLMs: Bringing Energy-Efficiency to the Forefront of LLM Inference
With the ubiquitous use of modern large language models (LLMs) across industries, the inference serving for these models is ever expanding. Given the high compute and memory requirements of modern LLMs, more and more top-of-the-line GPUs are being deployed to serve these models. Energy availability has come to the forefront as the biggest challenge for data center expansion to serve these models. In this paper, we present the trade-offs brought up by making energy efficiency the primary goal of LLM serving under performance SLOs. We show that depending on the inputs, the model, and the service-level agreements, there are several knobs available to the LLM inference provider to use for being energy efficient. We characterize the impact of these knobs on the latency, throughput, as well as the energy. By exploring these trade-offs, we offer valuable insights into optimizing energy usage without compromising on performance, thereby paving the way for sustainable and cost-effective LLM deployment in data center environments.
CacheGen: Fast Context Loading for Language Model Applications
As large language models (LLMs) take on more complex tasks, their inputs incorporate longer contexts to respond to questions that require domain knowledge or user-specific conversational histories. Yet, using long contexts poses a challenge for responsive LLM systems, as nothing can be generated until all the contexts are fetched to and processed by the LLM. Existing systems optimize only the computation delay in context processing (e.g., by caching intermediate key-value features of the text context) but often cause longer network delays in context fetching (e.g., key-value features consume orders of magnitude larger bandwidth than the text context). This paper presents CacheGen to minimize the delays in fetching and processing contexts for LLMs. CacheGen reduces the bandwidth needed for transmitting long contexts' key-value (KV) features through a novel encoder that compresses KV features into more compact bitstream representations. The encoder combines adaptive quantization with a tailored arithmetic coder, taking advantage of the KV features' distributional properties, such as locality across tokens. Furthermore, CacheGen minimizes the total delay in fetching and processing a context by using a controller that determines when to load the context as compressed KV features or raw text and picks the appropriate compression level if loaded as KV features. We test CacheGen on three models of various sizes and three datasets of different context lengths. Compared to recent methods that handle long contexts, CacheGen reduces bandwidth usage by 3.7-4.3x and the total delay in fetching and processing contexts by 2.7-3x while maintaining similar LLM performance on various tasks as loading the text contexts.
Are We There Yet? A Measurement Study of Efficiency for LLM Applications on Mobile Devices
Recent advancements in large language models (LLMs) have prompted interest in deploying these models on mobile devices to enable new applications without relying on cloud connectivity. However, the efficiency constraints of deploying LLMs on resource-limited devices present significant challenges. In this paper, we conduct a comprehensive measurement study to evaluate the efficiency tradeoffs between mobile-based, edge-based, and cloud-based deployments for LLM applications. We implement AutoLife-Lite, a simplified LLM-based application that analyzes smartphone sensor data to infer user location and activity contexts. Our experiments reveal that: (1) Only small-size LLMs (<4B parameters) can run successfully on powerful mobile devices, though they exhibit quality limitations compared to larger models; (2) Model compression is effective in lower the hardware requirement, but may lead to significant performance degradation; (3) The latency to run LLMs on mobile devices with meaningful output is significant (>30 seconds), while cloud services demonstrate better time efficiency (<10 seconds); (4) Edge deployments offer intermediate tradeoffs between latency and model capabilities, with different results on CPU-based and GPU-based settings. These findings provide valuable insights for system designers on the current limitations and future directions for on-device LLM applications.
Chat with AI: The Surprising Turn of Real-time Video Communication from Human to AI
AI Video Chat emerges as a new paradigm for Real-time Communication (RTC), where one peer is not a human, but a Multimodal Large Language Model (MLLM). This makes interaction between humans and AI more intuitive, as if chatting face-to-face with a real person. However, this poses significant challenges to latency, because the MLLM inference takes up most of the response time, leaving very little time for video streaming. Due to network uncertainty and instability, transmission latency becomes a critical bottleneck preventing AI from being like a real person. To address this, we propose Artic, an AI-oriented Real-time Communication framework, exploring the network requirement shift from "humans watching video" to "AI understanding video". To reduce bitrate dramatically while maintaining MLLM accuracy, we propose Context-Aware Video Streaming that recognizes the importance of each video region for chat and allocates bitrate almost exclusively to chat-important regions. To avoid packet retransmission, we propose Loss-Resilient Adaptive Frame Rate that leverages previous frames to substitute for lost/delayed frames while avoiding bitrate waste. To evaluate the impact of video streaming quality on MLLM accuracy, we build the first benchmark, named Degraded Video Understanding Benchmark (DeViBench). Finally, we discuss some open questions and ongoing solutions for AI Video Chat.
InfiniSST: Simultaneous Translation of Unbounded Speech with Large Language Model
Simultaneous translation of unbounded streaming speech remains a challenging problem due to the need for effectively processing the history speech context and past translations so that quality and latency, including computation overhead, can be balanced. Most prior works assume pre-segmented speech, limiting their real-world applicability. In this paper, we propose InfiniSST, a novel approach that formulates SST as a multi-turn dialogue task, enabling seamless translation of unbounded speech. We construct translation trajectories and robust segments from MuST-C with multi-latency augmentation during training and develop a key-value (KV) cache management strategy to facilitate efficient inference. Experiments on MuST-C En-Es, En-De, and En-Zh demonstrate that InfiniSST reduces computation-aware latency by 0.5 to 1 second while maintaining the same translation quality compared to baselines. Ablation studies further validate the contributions of our data construction and cache management strategy. We release the code and demo at https://github.com/LeiLiLab/InfiniSST
Efficiently Serving LLM Reasoning Programs with Certaindex
The rapid evolution of large language models (LLMs) has unlocked their capabilities in advanced reasoning tasks like mathematical problem-solving, code generation, and legal analysis. Central to this progress are inference-time reasoning algorithms, which refine outputs by exploring multiple solution paths, at the cost of increasing compute demands and response latencies. Existing serving systems fail to adapt to the scaling behaviors of these algorithms or the varying difficulty of queries, leading to inefficient resource use and unmet latency targets. We present Dynasor, a system that optimizes inference-time compute for LLM reasoning queries. Unlike traditional engines, Dynasor tracks and schedules requests within reasoning queries and uses Certaindex, a proxy that measures statistical reasoning progress based on model certainty, to guide compute allocation dynamically. Dynasor co-adapts scheduling with reasoning progress: it allocates more compute to hard queries, reduces compute for simpler ones, and terminates unpromising queries early, balancing accuracy, latency, and cost. On diverse datasets and algorithms, Dynasor reduces compute by up to 50% in batch processing and sustaining 3.3x higher query rates or 4.7x tighter latency SLOs in online serving.
Priority-Aware Preemptive Scheduling for Mixed-Priority Workloads in MoE Inference
Large Language Models have revolutionized natural language processing, yet serving them efficiently in data centers remains challenging due to mixed workloads comprising latency-sensitive (LS) and best-effort (BE) jobs. Existing inference systems employ iteration-level first-come-first-served scheduling, causing head-of-line blocking when BE jobs delay LS jobs. We introduce QLLM, a novel inference system designed for Mixture of Experts (MoE) models, featuring a fine-grained, priority-aware preemptive scheduler. QLLM enables expert-level preemption, deferring BE job execution while minimizing LS time-to-first-token (TTFT). Our approach removes iteration-level scheduling constraints, enabling the scheduler to preempt jobs at any layer based on priority. Evaluations on an Nvidia A100 GPU show that QLLM significantly improves performance. It reduces LS TTFT by an average of 65.5times and meets the SLO at up to 7 requests/sec, whereas the baseline fails to do so under the tested workload. Additionally, it cuts LS turnaround time by up to 12.8times without impacting throughput. QLLM is modular, extensible, and seamlessly integrates with Hugging Face MoE models.
LongLLMLingua: Accelerating and Enhancing LLMs in Long Context Scenarios via Prompt Compression
In long context scenarios, large language models (LLMs) face three main challenges: higher computational/financial cost, longer latency, and inferior performance. Some studies reveal that the performance of LLMs depends on both the density and the position of the key information (question relevant) in the input prompt. Inspired by these findings, we propose LongLLMLingua for prompt compression towards improving LLMs' perception of the key information to simultaneously address the three challenges. We conduct evaluation on a wide range of long context scenarios including single-/multi-document QA, few-shot learning, summarization, synthetic tasks, and code completion. The experimental results show that LongLLMLingua compressed prompt can derive higher performance with much less cost. The latency of the end-to-end system is also reduced. For example, on NaturalQuestions benchmark, LongLLMLingua gains a performance boost of up to 17.1% over the original prompt with ~4x fewer tokens as input to GPT-3.5-Turbo. It can derive cost savings of \28.5 and 27.4 per 1,000 samples from the LongBench and ZeroScrolls benchmark, respectively. Additionally, when compressing prompts of ~10k tokens at a compression rate of 2x-10x, LongLLMLingua can speed up the end-to-end latency by 1.4x-3.8x. Our code is available at https://aka.ms/LLMLingua.
DeepSpeed-FastGen: High-throughput Text Generation for LLMs via MII and DeepSpeed-Inference
The deployment and scaling of large language models (LLMs) have become critical as they permeate various applications, demanding high-throughput and low-latency serving systems. Existing frameworks struggle to balance these requirements, especially for workloads with long prompts. This paper introduces DeepSpeed-FastGen, a system that employs Dynamic SplitFuse, a novel prompt and generation composition strategy, to deliver up to 2.3x higher effective throughput, 2x lower latency on average, and up to 3.7x lower (token-level) tail latency, compared to state-of-the-art systems like vLLM. We leverage a synergistic combination of DeepSpeed-MII and DeepSpeed-Inference to provide an efficient and easy-to-use serving system for LLMs. DeepSpeed-FastGen's advanced implementation supports a range of models and offers both non-persistent and persistent deployment options, catering to diverse user scenarios from interactive sessions to long-running applications. We present a detailed benchmarking methodology, analyze the performance through latency-throughput curves, and investigate scalability via load balancing. Our evaluations demonstrate substantial improvements in throughput and latency across various models and hardware configurations. We discuss our roadmap for future enhancements, including broader model support and new hardware backends. The DeepSpeed-FastGen code is readily available for community engagement and contribution.
MixLLM: Dynamic Routing in Mixed Large Language Models
Large Language Models (LLMs) exhibit potential artificial generic intelligence recently, however, their usage is costly with high response latency. Given mixed LLMs with their own strengths and weaknesses, LLM routing aims to identify the most suitable model for each query in the stream to maximize response quality and minimize cost and latency. However, the challenges involve: (1) dynamic trade-offs among quality, cost, and latency; (2) enabling continual learning in deployed systems; and (3) navigating a varying (e.g., new LLM addition or old LLM removal) set of LLM candidates over time. To bridge these gaps, we develop MixLLM, a dynamic contextual-bandit-based routing system for query-LLM assignment. Specifically, we first leverage query tags to enhance query embeddings for the routing task. Next, we design lightweight prediction models to estimate the response qualities and costs of queries over LLMs. We then devise a meta-decision maker to choose the query-LLM assignments to best tradeoff response quality, cost, and latency. Finally, the system benefits from continual training, allowing it to adapt to evolving queries and user feedback over time. Our extensive experiments show that MixLLM achieves the best trade-offs in response quality, cost, and latency (97.25% of GPT-4's quality at 24.18% of the cost under the time constraint).
Mixture of Attentions For Speculative Decoding
The growth in the number of parameters of Large Language Models (LLMs) has led to a significant surge in computational requirements, making them challenging and costly to deploy. Speculative decoding (SD) leverages smaller models to efficiently propose future tokens, which are then verified by the LLM in parallel. Small models that utilise activations from the LLM currently achieve the fastest decoding speeds. However, we identify several limitations of SD models including the lack of on-policyness during training and partial observability. To address these shortcomings, we propose a more grounded architecture for small models by introducing a Mixture of Attentions for SD. Our novel architecture can be applied in two scenarios: a conventional single device deployment and a novel client-server deployment where the small model is hosted on a consumer device and the LLM on a server. In a single-device scenario, we demonstrate state-of-the-art speedups improving EAGLE-2 by 9.5% and its acceptance length by 25%. In a client-server setting, our experiments demonstrate: 1) state-of-the-art latencies with minimal calls to the server for different network conditions, and 2) in the event of a complete disconnection, our approach can maintain higher accuracy compared to other SD methods and demonstrates advantages over API calls to LLMs, which would otherwise be unable to continue the generation process.
Locality-aware Fair Scheduling in LLM Serving
Large language model (LLM) inference workload dominates a wide variety of modern AI applications, ranging from multi-turn conversation to document analysis. Balancing fairness and efficiency is critical for managing diverse client workloads with varying prefix patterns. Unfortunately, existing fair scheduling algorithms for LLM serving, such as Virtual Token Counter (VTC), fail to take prefix locality into consideration and thus suffer from poor performance. On the other hand, locality-aware scheduling algorithms in existing LLM serving frameworks tend to maximize the prefix cache hit rate without considering fair sharing among clients. This paper introduces the first locality-aware fair scheduling algorithm, Deficit Longest Prefix Match (DLPM), which can maintain a high degree of prefix locality with a fairness guarantee. We also introduce a novel algorithm, Double Deficit LPM (D^2LPM), extending DLPM for the distributed setup that can find a balance point among fairness, locality, and load-balancing. Our extensive evaluation demonstrates the superior performance of DLPM and D^2LPM in ensuring fairness while maintaining high throughput (up to 2.87times higher than VTC) and low per-client (up to 7.18times lower than state-of-the-art distributed LLM serving system) latency.
Etalon: Holistic Performance Evaluation Framework for LLM Inference Systems
Serving large language models (LLMs) in production can incur substantial costs, which has prompted recent advances in inference system optimizations. Today, these systems are evaluated against conventional latency and throughput metrics (eg. TTFT, TBT, Normalised Latency and TPOT). However, these metrics fail to fully capture the nuances of LLM inference, leading to an incomplete assessment of user-facing performance crucial for real-time applications such as chat and translation. In this paper, we first identify the pitfalls of current performance metrics in evaluating LLM inference systems. We then propose Etalon, a comprehensive performance evaluation framework that includes fluidity-index -- a novel metric designed to reflect the intricacies of the LLM inference process and its impact on real-time user experience. Finally, we evaluate various existing open-source platforms and model-as-a-service offerings using Etalon, discussing their strengths and weaknesses. Etalon is available at https://github.com/project-etalon/etalon.
Streaming DiLoCo with overlapping communication: Towards a Distributed Free Lunch
Training of large language models (LLMs) is typically distributed across a large number of accelerators to reduce training time. Since internal states and parameter gradients need to be exchanged at each and every single gradient step, all devices need to be co-located using low-latency high-bandwidth communication links to support the required high volume of exchanged bits. Recently, distributed algorithms like DiLoCo have relaxed such co-location constraint: accelerators can be grouped into ``workers'', where synchronizations between workers only occur infrequently. This in turn means that workers can afford being connected by lower bandwidth communication links without affecting learning quality. However, in these methods, communication across workers still requires the same peak bandwidth as before, as the synchronizations require all parameters to be exchanged across all workers. In this paper, we improve DiLoCo in three ways. First, we synchronize only subsets of parameters in sequence, rather than all at once, which greatly reduces peak bandwidth. Second, we allow workers to continue training while synchronizing, which decreases wall clock time. Third, we quantize the data exchanged by workers, which further reduces bandwidth across workers. By properly combining these modifications, we show experimentally that we can distribute training of billion-scale parameters and reach similar quality as before, but reducing required bandwidth by two orders of magnitude.
Delay-penalized CTC implemented based on Finite State Transducer
Connectionist Temporal Classification (CTC) suffers from the latency problem when applied to streaming models. We argue that in CTC lattice, the alignments that can access more future context are preferred during training, thereby leading to higher symbol delay. In this work we propose the delay-penalized CTC which is augmented with latency penalty regularization. We devise a flexible and efficient implementation based on the differentiable Finite State Transducer (FST). Specifically, by attaching a binary attribute to CTC topology, we can locate the frames that firstly emit non-blank tokens on the resulting CTC lattice, and add the frame offsets to the log-probabilities. Experimental results demonstrate the effectiveness of our proposed delay-penalized CTC, which is able to balance the delay-accuracy trade-off. Furthermore, combining the delay-penalized transducer enables the CTC model to achieve better performance and lower latency. Our work is open-sourced and publicly available https://github.com/k2-fsa/k2.
RouterBench: A Benchmark for Multi-LLM Routing System
As the range of applications for Large Language Models (LLMs) continues to grow, the demand for effective serving solutions becomes increasingly critical. Despite the versatility of LLMs, no single model can optimally address all tasks and applications, particularly when balancing performance with cost. This limitation has led to the development of LLM routing systems, which combine the strengths of various models to overcome the constraints of individual LLMs. Yet, the absence of a standardized benchmark for evaluating the performance of LLM routers hinders progress in this area. To bridge this gap, we present RouterBench, a novel evaluation framework designed to systematically assess the efficacy of LLM routing systems, along with a comprehensive dataset comprising over 405k inference outcomes from representative LLMs to support the development of routing strategies. We further propose a theoretical framework for LLM routing, and deliver a comparative analysis of various routing approaches through RouterBench, highlighting their potentials and limitations within our evaluation framework. This work not only formalizes and advances the development of LLM routing systems but also sets a standard for their assessment, paving the way for more accessible and economically viable LLM deployments. The code and data are available at https://github.com/withmartian/routerbench.
"We Need Structured Output": Towards User-centered Constraints on Large Language Model Output
Large language models can produce creative and diverse responses. However, to integrate them into current developer workflows, it is essential to constrain their outputs to follow specific formats or standards. In this work, we surveyed 51 experienced industry professionals to understand the range of scenarios and motivations driving the need for output constraints from a user-centered perspective. We identified 134 concrete use cases for constraints at two levels: low-level, which ensures the output adhere to a structured format and an appropriate length, and high-level, which requires the output to follow semantic and stylistic guidelines without hallucination. Critically, applying output constraints could not only streamline the currently repetitive process of developing, testing, and integrating LLM prompts for developers, but also enhance the user experience of LLM-powered features and applications. We conclude with a discussion on user preferences and needs towards articulating intended constraints for LLMs, alongside an initial design for a constraint prototyping tool.
Over-Generation Cannot Be Rewarded: Length-Adaptive Average Lagging for Simultaneous Speech Translation
Simultaneous speech translation (SimulST) systems aim at generating their output with the lowest possible latency, which is normally computed in terms of Average Lagging (AL). In this paper we highlight that, despite its widespread adoption, AL provides underestimated scores for systems that generate longer predictions compared to the corresponding references. We also show that this problem has practical relevance, as recent SimulST systems have indeed a tendency to over-generate. As a solution, we propose LAAL (Length-Adaptive Average Lagging), a modified version of the metric that takes into account the over-generation phenomenon and allows for unbiased evaluation of both under-/over-generating systems.
BlendServe: Optimizing Offline Inference for Auto-regressive Large Models with Resource-aware Batching
Offline batch inference, which leverages the flexibility of request batching to achieve higher throughput and lower costs, is becoming more popular for latency-insensitive applications. Meanwhile, recent progress in model capability and modality makes requests more diverse in compute and memory demands, creating unique opportunities for throughput improvement by resource overlapping. However, a request schedule that maximizes resource overlapping can conflict with the schedule that maximizes prefix sharing, a widely-used performance optimization, causing sub-optimal inference throughput. We present BlendServe, a system that maximizes resource utilization of offline batch inference by combining the benefits of resource overlapping and prefix sharing using a resource-aware prefix tree. BlendServe exploits the relaxed latency requirements in offline batch inference to reorder and overlap requests with varied resource demands while ensuring high prefix sharing. We evaluate BlendServe on a variety of synthetic multi-modal workloads and show that it provides up to 1.44times throughput boost compared to widely-used industry standards, vLLM and SGLang.
Autellix: An Efficient Serving Engine for LLM Agents as General Programs
Large language model (LLM) applications are evolving beyond simple chatbots into dynamic, general-purpose agentic programs, which scale LLM calls and output tokens to help AI agents reason, explore, and solve complex tasks. However, existing LLM serving systems ignore dependencies between programs and calls, missing significant opportunities for optimization. Our analysis reveals that programs submitted to LLM serving engines experience long cumulative wait times, primarily due to head-of-line blocking at both the individual LLM request and the program. To address this, we introduce Autellix, an LLM serving system that treats programs as first-class citizens to minimize their end-to-end latencies. Autellix intercepts LLM calls submitted by programs, enriching schedulers with program-level context. We propose two scheduling algorithms-for single-threaded and distributed programs-that preempt and prioritize LLM calls based on their programs' previously completed calls. Our evaluation demonstrates that across diverse LLMs and agentic workloads, Autellix improves throughput of programs by 4-15x at the same latency compared to state-of-the-art systems, such as vLLM.
Towards Robust RTC in Sparse LEO Constellations
Google's congestion control (GCC) has become a cornerstone for real-time video and audio communication, yet its performance remains fragile in emerging Low Earth Orbit (LEO) networks. Sparse direct-to-device constellations offer longer duration links and reduced handover frequency compared to dense deployments, presenting a unique opportunity for high-quality real-time communication (RTC) in environments with limited terrestrial network infrastructure. In this paper, we study the behavior of videoconferencing systems in sparse LEO constellations. We observe that video quality degrades due to inherent delays and network instability introduced by the high altitude and rapid movement of LEO satellites, with these effects exacerbated by WebRTC's conventional ``one-size-fits-all'' sender-side pacing queue management. To boost RTC performance, we introduce a data-driven queue management mechanism that adapts the maximum pacing queue capacity based on predicted handover activity. Specifically, our approach employs shorter queue limits during stable, no-handover phases to prioritize low latency communication, and preemptively increases pacing queue capacity when entering periods of increased handover activity to absorb disruptions. Our method yields up to 3x improvements in video bitrate and reduces freeze rate by 62% compared to default WebRTC.
SparAMX: Accelerating Compressed LLMs Token Generation on AMX-powered CPUs
Large language models have high compute, latency, and memory requirements. While specialized accelerators such as GPUs and TPUs typically run these workloads, CPUs are more widely available and consume less energy. Accelerating LLMs with CPUs enables broader AI access at a lower cost and power consumption. This acceleration potential for CPUs is especially relevant during the memory-bound decoding stage of LLM inference, which processes one token at a time and is becoming increasingly utilized with reasoning models. We utilize Advanced Matrix Extensions (AMX) support on the latest Intel CPUs together with unstructured sparsity to achieve a 1.42 times reduction in end-to-end latency compared to the current PyTorch implementation by applying our technique in linear layers. We provide a set of open-source customized sparse kernels that can speed up any PyTorch model by automatically replacing all linear layers with our custom sparse implementation. Furthermore, we demonstrate for the first time the use of unstructured sparsity in the attention computation achieving a 1.14 times speedup over the current systems without compromising accuracy. Code: https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SparAMX
MinMo: A Multimodal Large Language Model for Seamless Voice Interaction
Recent advancements in large language models (LLMs) and multimodal speech-text models have laid the groundwork for seamless voice interactions, enabling real-time, natural, and human-like conversations. Previous models for voice interactions are categorized as native and aligned. Native models integrate speech and text processing in one framework but struggle with issues like differing sequence lengths and insufficient pre-training. Aligned models maintain text LLM capabilities but are often limited by small datasets and a narrow focus on speech tasks. In this work, we introduce MinMo, a Multimodal Large Language Model with approximately 8B parameters for seamless voice interaction. We address the main limitations of prior aligned multimodal models. We train MinMo through multiple stages of speech-to-text alignment, text-to-speech alignment, speech-to-speech alignment, and duplex interaction alignment, on 1.4 million hours of diverse speech data and a broad range of speech tasks. After the multi-stage training, MinMo achieves state-of-the-art performance across various benchmarks for voice comprehension and generation while maintaining the capabilities of text LLMs, and also facilitates full-duplex conversation, that is, simultaneous two-way communication between the user and the system. Moreover, we propose a novel and simple voice decoder that outperforms prior models in voice generation. The enhanced instruction-following capabilities of MinMo supports controlling speech generation based on user instructions, with various nuances including emotions, dialects, and speaking rates, and mimicking specific voices. For MinMo, the speech-to-text latency is approximately 100ms, full-duplex latency is approximately 600ms in theory and 800ms in practice. The MinMo project web page is https://funaudiollm.github.io/minmo, and the code and models will be released soon.
Quest: Query-Aware Sparsity for Efficient Long-Context LLM Inference
As the demand for long-context large language models (LLMs) increases, models with context windows of up to 128K or 1M tokens are becoming increasingly prevalent. However, long-context LLM inference is challenging since the inference speed decreases significantly as the sequence length grows. This slowdown is primarily caused by loading a large KV cache during self-attention. Previous works have shown that a small portion of critical tokens will dominate the attention outcomes. However, we observe the criticality of a token highly depends on the query. To this end, we propose Quest, a query-aware KV cache selection algorithm. Quest keeps track of the minimal and maximal Key values in KV cache pages and estimates the criticality of a given page using Query vectors. By only loading the Top-K critical KV cache pages for attention, Quest significantly speeds up self-attention without sacrificing accuracy. We show that Quest can achieve up to 2.23x self-attention speedup, which reduces inference latency by 7.03x while performing well on tasks with long dependencies with negligible accuracy loss. Code is available at http://github.com/mit-han-lab/Quest .
Cross-Layer Protocols for Multimedia Communications over Wireless Networks
In the last few years, the Internet throughput, usage and reliability have increased almost exponentially. The introduction of broadband wireless mobile ad hoc networks (MANETs) and cellular networks together with increased computational power have opened the door for a new breed of applications to be created, namely real-time multimedia applications. Delivering real-time multimedia traffic over a complex network like the Internet is a particularly challenging task since these applications have strict quality-of-service (QoS) requirements on bandwidth, delay, and delay jitter. Traditional Internet protocol (IP)-based best effort service is not able to meet these stringent requirements. The time-varying nature of wireless channels and resource constrained wireless devices make the problem even more difficult. To improve perceived media quality by end users over wireless Internet, QoS supports can be addressed in different layers, including application layer, transport layer and link layer. Cross layer design is a well-known approach to achieve this adaptation. In cross-layer design, the challenges from the physical wireless medium and the QoS-demands from the applications are taken into account so that the rate, power, and coding at the physical (PHY) layer can adapted to meet the requirements of the applications given the current channel and network conditions. A number of propositions for cross-layer designs exist in the literature. In this chapter, an extensive review has been made on these cross-layer architectures that combine the application-layer, transport layer and the link layer controls. Particularly, the issues like channel estimation techniques, adaptive controls at the application and link layers for energy efficiency, priority based scheduling, transmission rate control at the transport layer, and adaptive automatic repeat request (ARQ) are discussed in detail.
FastSwitch: Optimizing Context Switching Efficiency in Fairness-aware Large Language Model Serving
Serving numerous users and requests concurrently requires good fairness in Large Language Models (LLMs) serving system. This ensures that, at the same cost, the system can meet the Service Level Objectives (SLOs) of more users , such as time to first token (TTFT) and time between tokens (TBT), rather than allowing a few users to experience performance far exceeding the SLOs. To achieve better fairness, the preemption-based scheduling policy dynamically adjusts the priority of each request to maintain balance during runtime. However, existing systems tend to overly prioritize throughput, overlooking the overhead caused by preemption-induced context switching, which is crucial for maintaining fairness through priority adjustments. In this work, we identify three main challenges that result in this overhead. 1) Inadequate I/O utilization. 2) GPU idleness. 3) Unnecessary I/O transmission during multi-turn conversations. Our key insight is that the block-based KV cache memory policy in existing systems, while achieving near-zero memory waste, leads to discontinuity and insufficient granularity in the KV cache memory. To respond, we introduce FastSwitch, a fairness-aware serving system that not only aligns with existing KV cache memory allocation policy but also mitigates context switching overhead. Our evaluation shows that FastSwitch outperforms the state-of-the-art LLM serving system vLLM with speedups of 1.4-11.2x across different tail TTFT and TBT.
PARALLELPROMPT: Extracting Parallelism from Large Language Model Queries
LLM serving systems typically treat user prompts as monolithic inputs, optimizing inference through decoding tricks or inter-query batching. However, many real-world prompts contain latent semantic parallelism--decomposable structures where subtasks can be executed independently to reduce latency while preserving meaning. We introduce PARALLELPROMPT, the first benchmark for measuring intra-query parallelism in natural user prompts. Our dataset comprises over 37,000 real-world prompts from public LLM chat logs, each annotated with a structured schema capturing task templates, shared context, and iteration inputs. These schemas are extracted using LLM-assisted prompting with rule-based multilingual validation. To evaluate the benefits of decomposition, we provide an execution suite that benchmarks serial vs. parallel strategies, measuring latency, structural adherence, and semantic fidelity. Our results show that intra-query parallelism can be successfully parsed in over 75% of curated datasets, unlocking up to 5x speedups on tasks like translation, comprehension, and comparative analysis, with minimal quality degradation. By releasing this benchmark, curation pipeline, and evaluation suite, we provide the first standardized testbed for studying structure-aware execution in LLM serving pipelines.
Octopus v2: On-device language model for super agent
Language models have shown effectiveness in a variety of software applications, particularly in tasks related to automatic workflow. These models possess the crucial ability to call functions, which is essential in creating AI agents. Despite the high performance of large-scale language models in cloud environments, they are often associated with concerns over privacy and cost. Current on-device models for function calling face issues with latency and accuracy. Our research presents a new method that empowers an on-device model with 2 billion parameters to surpass the performance of GPT-4 in both accuracy and latency, and decrease the context length by 95\%. When compared to Llama-7B with a RAG-based function calling mechanism, our method enhances latency by 35-fold. This method reduces the latency to levels deemed suitable for deployment across a variety of edge devices in production environments, aligning with the performance requisites for real-world applications.
Learning to Inference Adaptively for Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have shown impressive capabilities in reasoning, yet come with substantial computational cost, limiting their deployment in resource-constrained settings. Despite recent efforts on improving the efficiency of MLLMs, prior solutions fall short in responding to varying runtime conditions, in particular changing resource availability (e.g., contention due to the execution of other programs on the device). To bridge this gap, we introduce AdaLLaVA, an adaptive inference framework that learns to dynamically reconfigure operations in an MLLM during inference, accounting for the input data and a latency budget. We conduct extensive experiments across benchmarks involving question-answering, reasoning, and hallucination. Our results show that AdaLLaVA effectively adheres to input latency budget, achieving varying accuracy and latency tradeoffs at runtime. Further, we demonstrate that AdaLLaVA adapts to both input latency and content, can be integrated with token selection for enhanced efficiency, and generalizes across MLLMs. Our project webpage with code release is at https://zhuoyan-xu.github.io/ada-llava/.
Latent Representation and Simulation of Markov Processes via Time-Lagged Information Bottleneck
Markov processes are widely used mathematical models for describing dynamic systems in various fields. However, accurately simulating large-scale systems at long time scales is computationally expensive due to the short time steps required for accurate integration. In this paper, we introduce an inference process that maps complex systems into a simplified representational space and models large jumps in time. To achieve this, we propose Time-lagged Information Bottleneck (T-IB), a principled objective rooted in information theory, which aims to capture relevant temporal features while discarding high-frequency information to simplify the simulation task and minimize the inference error. Our experiments demonstrate that T-IB learns information-optimal representations for accurately modeling the statistical properties and dynamics of the original process at a selected time lag, outperforming existing time-lagged dimensionality reduction methods.
Dynamic Sparse Learning: A Novel Paradigm for Efficient Recommendation
In the realm of deep learning-based recommendation systems, the increasing computational demands, driven by the growing number of users and items, pose a significant challenge to practical deployment. This challenge is primarily twofold: reducing the model size while effectively learning user and item representations for efficient recommendations. Despite considerable advancements in model compression and architecture search, prevalent approaches face notable constraints. These include substantial additional computational costs from pre-training/re-training in model compression and an extensive search space in architecture design. Additionally, managing complexity and adhering to memory constraints is problematic, especially in scenarios with strict time or space limitations. Addressing these issues, this paper introduces a novel learning paradigm, Dynamic Sparse Learning (DSL), tailored for recommendation models. DSL innovatively trains a lightweight sparse model from scratch, periodically evaluating and dynamically adjusting each weight's significance and the model's sparsity distribution during the training. This approach ensures a consistent and minimal parameter budget throughout the full learning lifecycle, paving the way for "end-to-end" efficiency from training to inference. Our extensive experimental results underline DSL's effectiveness, significantly reducing training and inference costs while delivering comparable recommendation performance.
GEB-1.3B: Open Lightweight Large Language Model
Recently developed large language models (LLMs) such as ChatGPT, Claude, and Llama have demonstrated impressive abilities, and even surpass human-level performance in several tasks. Despite their success, the resource-intensive demands of these models, requiring significant computational power for both training and inference, limit their deployment to high-performance servers. Additionally, the extensive calculation requirements of the models often lead to increased latency in response times. With the increasing need for LLMs to operate efficiently on CPUs, research about lightweight models that are optimized for CPU inference has emerged. In this work, we introduce GEB-1.3B, a lightweight LLM trained on 550 billion tokens in both Chinese and English languages. We employ novel training techniques, including ROPE, Group-Query-Attention, and FlashAttention-2, to accelerate training while maintaining model performance. Additionally, we fine-tune the model using 10 million samples of instruction data to enhance alignment. GEB-1.3B exhibits outstanding performance on general benchmarks such as MMLU, C-Eval, and CMMLU, outperforming comparative models such as MindLLM-1.3B and TinyLLaMA-1.1B. Notably, the FP32 version of GEB-1.3B achieves commendable inference times on CPUs, with ongoing efforts to further enhance speed through advanced quantization techniques. The release of GEB-1.3B as an open-source model marks a significant contribution to the development of lightweight LLMs, promising to foster further research and innovation in the field.
Real-time Low-latency Music Source Separation using Hybrid Spectrogram-TasNet
There have been significant advances in deep learning for music demixing in recent years. However, there has been little attention given to how these neural networks can be adapted for real-time low-latency applications, which could be helpful for hearing aids, remixing audio streams and live shows. In this paper, we investigate the various challenges involved in adapting current demixing models in the literature for this use case. Subsequently, inspired by the Hybrid Demucs architecture, we propose the Hybrid Spectrogram Time-domain Audio Separation Network HS-TasNet, which utilises the advantages of spectral and waveform domains. For a latency of 23 ms, the HS-TasNet obtains an overall signal-to-distortion ratio (SDR) of 4.65 on the MusDB test set, and increases to 5.55 with additional training data. These results demonstrate the potential of efficient demixing for real-time low-latency music applications.
Pause-Tuning for Long-Context Comprehension: A Lightweight Approach to LLM Attention Recalibration
LLMs have demonstrated remarkable proficiency in understanding tasks but continue to struggle with long-context comprehension, particularly with content located in the middle of extensive inputs. This limitation, known as the Lost-in-the-Middle (LITM) problem, hinders models from fully processing and utilizing information across lengthy contexts. To address this issue, we introduce pause-tuning, a technique that redistributes attention to enhance comprehension of long-context inputs. Our approach involves fine-tuning language models on datasets with artificially inserted pause tokens, which serve to segment the input into smaller, more manageable parts. We evaluate pause-tuning against alternative approaches using the Needle-in-a-Haystack benchmark, where models must retrieve information embedded within contexts of up to 128K tokens. Experimental results demonstrate significant performance gains, with the LLaMA 3.2 3B Instruct model and the LLaMA 3.1 8B Instruct model improving by 10.61% and 3.57% respectively on average, suggesting that pause-tuning successfully enhances attention redistribution and improves long-context retention. The code and data are available at https://anonymous.4open.science/r/LITM-PauseTokens-7357.
Re-Bottleneck: Latent Re-Structuring for Neural Audio Autoencoders
Neural audio codecs and autoencoders have emerged as versatile models for audio compression, transmission, feature-extraction, and latent-space generation. However, a key limitation is that most are trained to maximize reconstruction fidelity, often neglecting the specific latent structure necessary for optimal performance in diverse downstream applications. We propose a simple, post-hoc framework to address this by modifying the bottleneck of a pre-trained autoencoder. Our method introduces a "Re-Bottleneck", an inner bottleneck trained exclusively through latent space losses to instill user-defined structure. We demonstrate the framework's effectiveness in three experiments. First, we enforce an ordering on latent channels without sacrificing reconstruction quality. Second, we align latents with semantic embeddings, analyzing the impact on downstream diffusion modeling. Third, we introduce equivariance, ensuring that a filtering operation on the input waveform directly corresponds to a specific transformation in the latent space. Ultimately, our Re-Bottleneck framework offers a flexible and efficient way to tailor representations of neural audio models, enabling them to seamlessly meet the varied demands of different applications with minimal additional training.
Key, Value, Compress: A Systematic Exploration of KV Cache Compression Techniques
Large language models (LLMs) have demonstrated exceptional capabilities in generating text, images, and video content. However, as context length grows, the computational cost of attention increases quadratically with the number of tokens, presenting significant efficiency challenges. This paper presents an analysis of various Key-Value (KV) cache compression strategies, offering a comprehensive taxonomy that categorizes these methods by their underlying principles and implementation techniques. Furthermore, we evaluate their impact on performance and inference latency, providing critical insights into their effectiveness. Our findings highlight the trade-offs involved in KV cache compression and its influence on handling long-context scenarios, paving the way for more efficient LLM implementations.
A Review on Edge Large Language Models: Design, Execution, and Applications
Large language models (LLMs) have revolutionized natural language processing with their exceptional capabilities. However, deploying LLMs on resource-constrained edge devices presents significant challenges due to computational limitations, memory constraints, and edge hardware heterogeneity. This survey summarizes recent developments in edge LLMs across their lifecycle, examining resource-efficient designs from pre-deployment techniques to runtime optimizations. Additionally, it explores on-device LLM applications in personal, enterprise, and industrial scenarios. By synthesizing advancements and identifying future directions, this survey aims to provide a comprehensive understanding of state-of-the-art methods for deploying LLMs on edge devices, bridging the gap between their immense potential and edge computing limitations.
The Architectural Implications of Facebook's DNN-based Personalized Recommendation
The widespread application of deep learning has changed the landscape of computation in the data center. In particular, personalized recommendation for content ranking is now largely accomplished leveraging deep neural networks. However, despite the importance of these models and the amount of compute cycles they consume, relatively little research attention has been devoted to systems for recommendation. To facilitate research and to advance the understanding of these workloads, this paper presents a set of real-world, production-scale DNNs for personalized recommendation coupled with relevant performance metrics for evaluation. In addition to releasing a set of open-source workloads, we conduct in-depth analysis that underpins future system design and optimization for at-scale recommendation: Inference latency varies by 60% across three Intel server generations, batching and co-location of inferences can drastically improve latency-bounded throughput, and the diverse composition of recommendation models leads to different optimization strategies.
SampleAttention: Near-Lossless Acceleration of Long Context LLM Inference with Adaptive Structured Sparse Attention
Large language models (LLMs) now support extremely long context windows, but the quadratic complexity of vanilla attention results in significantly long Time-to-First-Token (TTFT) latency. Existing approaches to address this complexity require additional pretraining or finetuning, and often sacrifice model accuracy. In this paper, we first provide both theoretical and empirical foundations for near-lossless sparse attention. We find dynamically capturing head-specific sparse patterns at runtime with low overhead is crucial. To address this, we propose SampleAttention, an adaptive structured and near-lossless sparse attention. Leveraging observed significant sparse patterns, SampleAttention attends to a fixed percentage of adjacent tokens to capture local window patterns, and employs a two-stage query-guided key-value filtering approach, which adaptively select a minimum set of key-values with low overhead, to capture column stripe patterns. Comprehensive evaluations show that SampleAttention can seamlessly replace vanilla attention in off-the-shelf LLMs with nearly no accuracy loss, and reduces TTFT by up to 2.42times compared with FlashAttention.
Characterizing and Optimizing LLM Inference Workloads on CPU-GPU Coupled Architectures
Large language model (LLM)-based inference workloads increasingly dominate data center costs and resource utilization. Therefore, understanding the inference workload characteristics on evolving CPU-GPU coupled architectures is crucial for optimization. This paper presents an in-depth analysis of LLM inference behavior on loosely-coupled (PCIe A100/H100) and closely-coupled (GH200) systems. We analyze performance dynamics using fine-grained operator-to-kernel trace analysis, facilitated by our novel profiler SKIP and metrics like Total Kernel Launch and Queuing Time (TKLQT). Results show that closely-coupled (CC) GH200 significantly outperforms loosely-coupled (LC) systems at large batch sizes, achieving 1.9x-2.7x faster prefill latency for Llama 3.2-1B. However, our analysis also reveals that GH200 remains CPU-bound up to 4x larger batch sizes than LC systems. In this extended CPU-bound region, we identify the performance characteristics of the Grace CPU as a key factor contributing to higher inference latency at low batch sizes on GH200. We demonstrate that TKLQT accurately identifies this CPU/GPU-bound transition point. Based on this analysis, we further show that kernel fusion offers significant potential to mitigate GH200's low-batch latency bottleneck by reducing kernel launch overhead. This detailed kernel-level characterization provides critical insights for optimizing diverse CPU-GPU coupling strategies. This work is an initial effort, and we plan to explore other major AI/DL workloads that demand different degrees of CPU-GPU heterogeneous architectures.
FFSplit: Split Feed-Forward Network For Optimizing Accuracy-Efficiency Trade-off in Language Model Inference
The large number of parameters in Pretrained Language Models enhance their performance, but also make them resource-intensive, making it challenging to deploy them on commodity hardware like a single GPU. Due to the memory and power limitations of these devices, model compression techniques are often used to decrease both the model's size and its inference latency. This usually results in a trade-off between model accuracy and efficiency. Therefore, optimizing this balance is essential for effectively deploying LLMs on commodity hardware. A significant portion of the efficiency challenge is the Feed-forward network (FFN) component, which accounts for roughly 2{3} total parameters and inference latency. In this paper, we first observe that only a few neurons of FFN module have large output norm for any input tokens, a.k.a. heavy hitters, while the others are sparsely triggered by different tokens. Based on this observation, we explicitly split the FFN into two parts according to the heavy hitters. We improve the efficiency-accuracy trade-off of existing compression methods by allocating more resource to FFN parts with heavy hitters. In practice, our method can reduce model size by 43.1\% and bring 1.25sim1.56times wall clock time speedup on different hardware with negligible accuracy drop.
Lookahead When It Matters: Adaptive Non-causal Transformers for Streaming Neural Transducers
Streaming speech recognition architectures are employed for low-latency, real-time applications. Such architectures are often characterized by their causality. Causal architectures emit tokens at each frame, relying only on current and past signal, while non-causal models are exposed to a window of future frames at each step to increase predictive accuracy. This dichotomy amounts to a trade-off for real-time Automatic Speech Recognition (ASR) system design: profit from the low-latency benefit of strictly-causal architectures while accepting predictive performance limitations, or realize the modeling benefits of future-context models accompanied by their higher latency penalty. In this work, we relax the constraints of this choice and present the Adaptive Non-Causal Attention Transducer (ANCAT). Our architecture is non-causal in the traditional sense, but executes in a low-latency, streaming manner by dynamically choosing when to rely on future context and to what degree within the audio stream. The resulting mechanism, when coupled with our novel regularization algorithms, delivers comparable accuracy to non-causal configurations while improving significantly upon latency, closing the gap with their causal counterparts. We showcase our design experimentally by reporting comparative ASR task results with measures of accuracy and latency on both publicly accessible and production-scale, voice-assistant datasets.
Serverless Cold Starts and Where to Find Them
This paper releases and analyzes a month-long trace of 85 billion user requests and 11.9 million cold starts from Huawei's serverless cloud platform. Our analysis spans workloads from five data centers. We focus on cold starts and provide a comprehensive examination of the underlying factors influencing the number and duration of cold starts. These factors include trigger types, request synchronicity, runtime languages, and function resource allocations. We investigate components of cold starts, including pod allocation time, code and dependency deployment time, and scheduling delays, and examine their relationships with runtime languages, trigger types, and resource allocation. We introduce pod utility ratio to measure the pod's useful lifetime relative to its cold start time, giving a more complete picture of cold starts, and see that some pods with long cold start times have longer useful lifetimes. Our findings reveal the complexity and multifaceted origins of the number, duration, and characteristics of cold starts, driven by differences in trigger types, runtime languages, and function resource allocations. For example, cold starts in Region 1 take up to 7 seconds, dominated by dependency deployment time and scheduling. In Region 2, cold starts take up to 3 seconds and are dominated by pod allocation time. Based on this, we identify opportunities to reduce the number and duration of cold starts using strategies for multi-region scheduling. Finally, we suggest directions for future research to address these challenges and enhance the performance of serverless cloud platforms. Our datasets and code are available here https://github.com/sir-lab/data-release
Wacky Weights in Learned Sparse Representations and the Revenge of Score-at-a-Time Query Evaluation
Recent advances in retrieval models based on learned sparse representations generated by transformers have led us to, once again, consider score-at-a-time query evaluation techniques for the top-k retrieval problem. Previous studies comparing document-at-a-time and score-at-a-time approaches have consistently found that the former approach yields lower mean query latency, although the latter approach has more predictable query latency. In our experiments with four different retrieval models that exploit representational learning with bags of words, we find that transformers generate "wacky weights" that appear to greatly reduce the opportunities for skipping and early exiting optimizations that lie at the core of standard document-at-a-time techniques. As a result, score-at-a-time approaches appear to be more competitive in terms of query evaluation latency than in previous studies. We find that, if an effectiveness loss of up to three percent can be tolerated, a score-at-a-time approach can yield substantial gains in mean query latency while at the same time dramatically reducing tail latency.
ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware
Neural architecture search (NAS) has a great impact by automatically designing effective neural network architectures. However, the prohibitive computational demand of conventional NAS algorithms (e.g. 10^4 GPU hours) makes it difficult to directly search the architectures on large-scale tasks (e.g. ImageNet). Differentiable NAS can reduce the cost of GPU hours via a continuous representation of network architecture but suffers from the high GPU memory consumption issue (grow linearly w.r.t. candidate set size). As a result, they need to utilize~proxy tasks, such as training on a smaller dataset, or learning with only a few blocks, or training just for a few epochs. These architectures optimized on proxy tasks are not guaranteed to be optimal on the target task. In this paper, we present ProxylessNAS that can directly learn the architectures for large-scale target tasks and target hardware platforms. We address the high memory consumption issue of differentiable NAS and reduce the computational cost (GPU hours and GPU memory) to the same level of regular training while still allowing a large candidate set. Experiments on CIFAR-10 and ImageNet demonstrate the effectiveness of directness and specialization. On CIFAR-10, our model achieves 2.08\% test error with only 5.7M parameters, better than the previous state-of-the-art architecture AmoebaNet-B, while using 6times fewer parameters. On ImageNet, our model achieves 3.1\% better top-1 accuracy than MobileNetV2, while being 1.2times faster with measured GPU latency. We also apply ProxylessNAS to specialize neural architectures for hardware with direct hardware metrics (e.g. latency) and provide insights for efficient CNN architecture design.
Adaptive Orchestration for Large-Scale Inference on Heterogeneous Accelerator Systems Balancing Cost, Performance, and Resilience
The surge in generative AI workloads has created a need for scalable inference systems that can flexibly harness both GPUs and specialized accelerators while containing operational costs. This paper proposes a hardware-agnostic control loop that adaptively allocates requests across heterogeneous accelerators based on real-time cost and capacity signals. The approach sustains low latency and high throughput by dynamically shifting between cost-optimized and capacity-optimized modes, ensuring the most efficient use of expensive compute resources under fluctuating availability. Evaluated using the Stable Diffusion model, the framework consistently meets latency targets, automatically redirects traffic during capacity shortfalls, and capitalizes on lower-cost accelerators when possible. These results highlight how a feedback-driven deployment strategy, spanning the entire software and hardware stack, can help organizations efficiently scale generative AI workloads while maintaining resilience in the face of limited accelerator capacity.
CFSP: An Efficient Structured Pruning Framework for LLMs with Coarse-to-Fine Activation Information
The colossal parameters and computational overhead of Large Language Models (LLMs) challenge their real-world applications. Network pruning, which targets unstructured or structured sparsity by removing redundant parameters, has recently been explored for LLM acceleration. Existing LLM pruning works focus on unstructured pruning, which typically requires special hardware support for a practical speed-up. In contrast, structured pruning can reduce latency on general devices. However, it remains a challenge to perform structured pruning efficiently and maintain performance, especially at high sparsity ratios. To this end, we introduce an efficient structured pruning framework named CFSP, which leverages both Coarse (interblock) and Fine-grained (intrablock) activation information as an importance criterion to guide pruning. The pruning is highly efficient, as it only requires one forward pass to compute feature activations. Specifically, we first allocate the sparsity budget across blocks based on their importance and then retain important weights within each block. In addition, we introduce a recovery fine-tuning strategy that adaptively allocates training overhead based on coarse-grained importance to further improve performance. Experimental results demonstrate that CFSP outperforms existing methods on diverse models across various sparsity budgets. Our code will be available at https://github.com/wyxscir/CFSP.
The CAP Principle for LLM Serving: A Survey of Long-Context Large Language Model Serving
We survey the large language model (LLM) serving area to understand the intricate dynamics between cost-efficiency and accuracy, which is magnified by the growing need for longer contextual understanding when deploying models at a massive scale. Our findings reveal that works in this space optimize along three distinct but conflicting goals: improving serving context length (C), improving serving accuracy (A), and improving serving performance (P). Drawing inspiration from the CAP theorem in databases, we propose a CAP principle for LLM serving, which suggests that any optimization can improve at most two of these three goals simultaneously. Our survey categorizes existing works within this framework. We find the definition and continuity of user-perceived measurement metrics are crucial in determining whether a goal has been met, akin to prior CAP databases in the wild. We recognize the CAP principle for LLM serving as a guiding principle, rather than a formal theorem, to inform designers of the inherent and dynamic trade-offs in serving models. As serving accuracy and performance have been extensively studied, this survey focuses on works that extend serving context length and address the resulting challenges.
HeteGen: Heterogeneous Parallel Inference for Large Language Models on Resource-Constrained Devices
In recent times, the emergence of Large Language Models (LLMs) has resulted in increasingly larger model size, posing challenges for inference on low-resource devices. Prior approaches have explored offloading to facilitate low-memory inference but often suffer from efficiency due to I/O bottlenecks. To achieve low-latency LLMs inference on resource-constrained devices, we introduce HeteGen, a novel approach that presents a principled framework for heterogeneous parallel computing using CPUs and GPUs. Based on this framework, HeteGen further employs heterogeneous parallel computing and asynchronous overlap for LLMs to mitigate I/O bottlenecks. Our experiments demonstrate a substantial improvement in inference speed, surpassing state-of-the-art methods by over 317% at most.
FPGA Deployment of LFADS for Real-time Neuroscience Experiments
Large-scale recordings of neural activity are providing new opportunities to study neural population dynamics. A powerful method for analyzing such high-dimensional measurements is to deploy an algorithm to learn the low-dimensional latent dynamics. LFADS (Latent Factor Analysis via Dynamical Systems) is a deep learning method for inferring latent dynamics from high-dimensional neural spiking data recorded simultaneously in single trials. This method has shown a remarkable performance in modeling complex brain signals with an average inference latency in milliseconds. As our capacity of simultaneously recording many neurons is increasing exponentially, it is becoming crucial to build capacity for deploying low-latency inference of the computing algorithms. To improve the real-time processing ability of LFADS, we introduce an efficient implementation of the LFADS models onto Field Programmable Gate Arrays (FPGA). Our implementation shows an inference latency of 41.97 mus for processing the data in a single trial on a Xilinx U55C.
Ultra Fast Transformers on FPGAs for Particle Physics Experiments
This work introduces a highly efficient implementation of the transformer architecture on a Field-Programmable Gate Array (FPGA) by using the hls4ml tool. Given the demonstrated effectiveness of transformer models in addressing a wide range of problems, their application in experimental triggers within particle physics becomes a subject of significant interest. In this work, we have implemented critical components of a transformer model, such as multi-head attention and softmax layers. To evaluate the effectiveness of our implementation, we have focused on a particle physics jet flavor tagging problem, employing a public dataset. We recorded latency under 2 mus on the Xilinx UltraScale+ FPGA, which is compatible with hardware trigger requirements at the CERN Large Hadron Collider experiments.
Selecting Large Language Model to Fine-tune via Rectified Scaling Law
The ever-growing ecosystem of LLMs has posed a challenge in selecting the most appropriate pre-trained model to fine-tune amidst a sea of options. Given constrained resources, fine-tuning all models and making selections afterward is unrealistic. In this work, we formulate this resource-constrained selection task into predicting fine-tuning performance and illustrate its natural connection with scaling laws. Unlike pre-training, We find that the fine-tuning scaling curve includes not just the well-known "power phase" but also the previously unobserved "pre-power phase". We also explain why existing scaling laws fail to capture this phase transition phenomenon both theoretically and empirically. To address this, we introduce the concept of "pre-learned data size" into our rectified scaling law, which overcomes theoretical limitations and fits experimental results much better. By leveraging our law, we propose a novel LLM selection algorithm that selects the near-optimal model with hundreds of times less resource consumption, while other methods may provide negatively correlated selection.
CE-CoLLM: Efficient and Adaptive Large Language Models Through Cloud-Edge Collaboration
Large Language Models (LLMs) have achieved remarkable success in serving end-users with human-like intelligence. However, LLMs demand high computational resources, making it challenging to deploy them to satisfy various performance objectives, such as meeting the resource constraints on edge devices close to end-users or achieving high accuracy with ample resources. In this paper, we introduce CE-CoLLM, a novel cloud-edge collaboration framework that supports efficient and adaptive LLM inference for end-users at the edge with two modes, (1) low-latency edge standalone inference and (2) highly accurate cloud-edge collaborative inference. First, we show that the inherent high communication costs for transmitting LLM contextual information between the edge and cloud dominate the overall latency, making it inefficient and costly to deploy LLMs using cloud-edge collaboration. Second, we propose several critical techniques to address this challenge, including early-exit mechanism, cloud context manager, and quantization in cloud-edge collaboration to enable not only low-latency standalone edge inference but also efficient and adaptive cloud-edge collaborative inference for LLMs. Third, we perform comprehensive experimental analysis, which demonstrates that CE-CoLLM significantly reduces inference time by up to 13.81% and cloud computation costs by up to 84.55% compared to the popular cloud-based LLM deployment, while maintaining comparable model accuracy. The proposed approach effectively shifts the computational load to the edge, reduces the communication overhead, scales efficiently with multiple edge clients, and provides reliable LLM deployment using cloud-edge collaboration.
UELLM: A Unified and Efficient Approach for LLM Inference Serving
In the context of Machine Learning as a Service (MLaaS) clouds, the extensive use of Large Language Models (LLMs) often requires efficient management of significant query loads. When providing real-time inference services, several challenges arise. Firstly, increasing the number of GPUs may lead to a decrease in inference speed due to heightened communication overhead, while an inadequate number of GPUs can lead to out-of-memory errors. Secondly, different deployment strategies need to be evaluated to guarantee optimal utilization and minimal inference latency. Lastly, inefficient orchestration of inference queries can easily lead to significant Service Level Objective (SLO) violations. Lastly, inefficient orchestration of inference queries can easily lead to significant Service Level Objective (SLO) violations. To address these challenges, we propose a Unified and Efficient approach for Large Language Model inference serving (UELLM), which consists of three main components: 1) resource profiler, 2) batch scheduler, and 3) LLM deployer. UELLM minimizes resource overhead, reduces inference latency, and lowers SLO violation rates. Compared with state-of-the-art (SOTA) techniques, UELLM reduces the inference latency by 72.3% to 90.3%, enhances GPU utilization by 1.2X to 4.1X, and increases throughput by 1.92X to 4.98X, it can also serve without violating the inference latency SLO.
TPI-LLM: Serving 70B-scale LLMs Efficiently on Low-resource Edge Devices
Large model inference is shifting from cloud to edge due to concerns about the privacy of user interaction data. However, edge devices often struggle with limited computing power, memory, and bandwidth, requiring collaboration across multiple devices to run and speed up LLM inference. Pipeline parallelism, the mainstream solution, is inefficient for single-user scenarios, while tensor parallelism struggles with frequent communications. In this paper, we argue that tensor parallelism can be more effective than pipeline on low-resource devices, and present a compute- and memory-efficient tensor parallel inference system, named TPI-LLM, to serve 70B-scale models. TPI-LLM keeps sensitive raw data local in the users' devices and introduces a sliding window memory scheduler to dynamically manage layer weights during inference, with disk I/O latency overlapped with the computation and communication. This allows larger models to run smoothly on memory-limited devices. We analyze the communication bottleneck and find that link latency, not bandwidth, emerges as the main issue, so a star-based allreduce algorithm is implemented. Through extensive experiments on both emulated and real testbeds, TPI-LLM demonstrated over 80% less time-to-first-token and token latency compared to Accelerate, and over 90% compared to Transformers and Galaxy, while cutting the peak memory footprint of Llama 2-70B by 90%, requiring only 3.1 GB of memory for 70B-scale models.
Characterizing and Efficiently Accelerating Multimodal Generation Model Inference
Generative artificial intelligence (AI) technology is revolutionizing the computing industry. Not only its applications have broadened to various sectors but also poses new system design and optimization opportunities. The technology is capable of understanding and responding in multiple modalities. However, the advanced capability currently comes with significant system resource demands. To sustainably scale generative AI capabilities to billions of users in the world, inference must be fast and efficient. This paper pinpoints key system design and optimization opportunities by characterizing a family of emerging multi-modal generation models on real systems. Auto-regressive token generation is a critical latency performance bottleneck, typically dominated by GPU idle time. In addition to memory-intensive attention across the generative AI models, linear operations constitute significant inference latency due to the feed forward networks in Transformer-based models. We demonstrate that state-of-the-art optimization levers, spanning from applications to system software and hardware, set a 3.88x better baseline.
Is Consensus Acceleration Possible in Decentralized Optimization over Slowly Time-Varying Networks?
We consider decentralized optimization problems where one aims to minimize a sum of convex smooth objective functions distributed between nodes in the network. The links in the network can change from time to time. For the setting when the amount of changes is arbitrary, lower complexity bounds and corresponding optimal algorithms are known, and the consensus acceleration is not possible. However, in practice the magnitude of network changes may be limited. We derive lower communication complexity bounds for several regimes of velocity of networks changes. Moreover, we show how to obtain accelerated communication rates for a certain class of time-varying graphs using a specific consensus algorithm.
Inducing High Energy-Latency of Large Vision-Language Models with Verbose Images
Large vision-language models (VLMs) such as GPT-4 have achieved exceptional performance across various multi-modal tasks. However, the deployment of VLMs necessitates substantial energy consumption and computational resources. Once attackers maliciously induce high energy consumption and latency time (energy-latency cost) during inference of VLMs, it will exhaust computational resources. In this paper, we explore this attack surface about availability of VLMs and aim to induce high energy-latency cost during inference of VLMs. We find that high energy-latency cost during inference of VLMs can be manipulated by maximizing the length of generated sequences. To this end, we propose verbose images, with the goal of crafting an imperceptible perturbation to induce VLMs to generate long sentences during inference. Concretely, we design three loss objectives. First, a loss is proposed to delay the occurrence of end-of-sequence (EOS) token, where EOS token is a signal for VLMs to stop generating further tokens. Moreover, an uncertainty loss and a token diversity loss are proposed to increase the uncertainty over each generated token and the diversity among all tokens of the whole generated sequence, respectively, which can break output dependency at token-level and sequence-level. Furthermore, a temporal weight adjustment algorithm is proposed, which can effectively balance these losses. Extensive experiments demonstrate that our verbose images can increase the length of generated sequences by 7.87 times and 8.56 times compared to original images on MS-COCO and ImageNet datasets, which presents potential challenges for various applications. Our code is available at https://github.com/KuofengGao/Verbose_Images.
Exploring the Promise and Limits of Real-Time Recurrent Learning
Real-time recurrent learning (RTRL) for sequence-processing recurrent neural networks (RNNs) offers certain conceptual advantages over backpropagation through time (BPTT). RTRL requires neither caching past activations nor truncating context, and enables online learning. However, RTRL's time and space complexity make it impractical. To overcome this problem, most recent work on RTRL focuses on approximation theories, while experiments are often limited to diagnostic settings. Here we explore the practical promise of RTRL in more realistic settings. We study actor-critic methods that combine RTRL and policy gradients, and test them in several subsets of DMLab-30, ProcGen, and Atari-2600 environments. On DMLab memory tasks, our system trained on fewer than 1.2 B environmental frames is competitive with or outperforms well-known IMPALA and R2D2 baselines trained on 10 B frames. To scale to such challenging tasks, we focus on certain well-known neural architectures with element-wise recurrence, allowing for tractable RTRL without approximation. Importantly, we also discuss rarely addressed limitations of RTRL in real-world applications, such as its complexity in the multi-layer case.
DRew: Dynamically Rewired Message Passing with Delay
Message passing neural networks (MPNNs) have been shown to suffer from the phenomenon of over-squashing that causes poor performance for tasks relying on long-range interactions. This can be largely attributed to message passing only occurring locally, over a node's immediate neighbours. Rewiring approaches attempting to make graphs 'more connected', and supposedly better suited to long-range tasks, often lose the inductive bias provided by distance on the graph since they make distant nodes communicate instantly at every layer. In this paper we propose a framework, applicable to any MPNN architecture, that performs a layer-dependent rewiring to ensure gradual densification of the graph. We also propose a delay mechanism that permits skip connections between nodes depending on the layer and their mutual distance. We validate our approach on several long-range tasks and show that it outperforms graph Transformers and multi-hop MPNNs.
Data-Centric and Heterogeneity-Adaptive Sequence Parallelism for Efficient LLM Training
Extending the context length (i.e., the maximum supported sequence length) of LLMs is of paramount significance. To facilitate long context training of LLMs, sequence parallelism has emerged as an essential technique, which scatters each input sequence across multiple devices and necessitates communication to process the sequence. In essence, existing sequence parallelism methods assume homogeneous sequence lengths (i.e., all input sequences are equal in length) and therefore leverages a single, static scattering strategy for all input sequences. However, in reality, the sequence lengths in LLM training corpora exhibit substantial variability, often following a long-tail distribution, which leads to workload heterogeneity. In this paper, we show that employing a single, static strategy results in inefficiency and resource under-utilization, highlighting the need for adaptive approaches to handle the heterogeneous workloads across sequences. To address this, we propose a heterogeneity-adaptive sequence parallelism method. For each training step, our approach captures the variability in sequence lengths and assigns the optimal combination of scattering strategies based on workload characteristics. We model this problem as a linear programming optimization and design an efficient and effective solver to find the optimal solution. Furthermore, we implement our method in a high-performance system that supports adaptive parallelization in distributed LLM training. Experimental results demonstrate that our system outperforms state-of-the-art training frameworks by up to 1.98x.
Doing More with Less -- Implementing Routing Strategies in Large Language Model-Based Systems: An Extended Survey
Large Language Models (LLM)-based systems, i.e. interconnected elements that include an LLM as a central component (e.g., conversational agents), are typically monolithic static architectures that rely on a single LLM for all user queries. However, they often require different preprocessing strategies, levels of reasoning, or knowledge. Generalist LLMs (i.e. GPT-4), trained on very large multi-topic corpora, can perform well in a variety of tasks. However, they require significant financial, energy, and hardware resources that may not be justified for basic tasks. This implies potentially investing in unnecessary costs for a given query. To overcome this problem, a routing mechanism routes user queries to the most suitable components, such as smaller LLMs or experts in specific topics. This approach may improve response quality while minimising costs. Routing can be expanded to other components of the conversational agent architecture, such as the selection of optimal embedding strategies. This paper explores key considerations for integrating routing into LLM-based systems, focusing on resource management, cost definition, and strategy selection. Our main contributions include a formalisation of the problem, a novel taxonomy of existing approaches emphasising relevance and resource efficiency, and a comparative analysis of these strategies in relation to industry practices. Finally, we identify critical challenges and directions for future research.
EfficientLLM: Efficiency in Large Language Models
Large Language Models (LLMs) have driven significant progress, yet their growing parameter counts and context windows incur prohibitive compute, energy, and monetary costs. We introduce EfficientLLM, a novel benchmark and the first comprehensive empirical study evaluating efficiency techniques for LLMs at scale. Conducted on a production-class cluster (48xGH200, 8xH200 GPUs), our study systematically explores three key axes: (1) architecture pretraining (efficient attention variants: MQA, GQA, MLA, NSA; sparse Mixture-of-Experts (MoE)), (2) fine-tuning (parameter-efficient methods: LoRA, RSLoRA, DoRA), and (3) inference (quantization methods: int4, float16). We define six fine-grained metrics (Memory Utilization, Compute Utilization, Latency, Throughput, Energy Consumption, Compression Rate) to capture hardware saturation, latency-throughput balance, and carbon cost. Evaluating over 100 model-technique pairs (0.5B-72B parameters), we derive three core insights: (i) Efficiency involves quantifiable trade-offs: no single method is universally optimal; e.g., MoE reduces FLOPs and improves accuracy but increases VRAM by 40%, while int4 quantization cuts memory/energy by up to 3.9x at a 3-5% accuracy drop. (ii) Optima are task- and scale-dependent: MQA offers optimal memory-latency trade-offs for constrained devices, MLA achieves lowest perplexity for quality-critical tasks, and RSLoRA surpasses LoRA efficiency only beyond 14B parameters. (iii) Techniques generalize across modalities: we extend evaluations to Large Vision Models (Stable Diffusion 3.5, Wan 2.1) and Vision-Language Models (Qwen2.5-VL), confirming effective transferability. By open-sourcing datasets, evaluation pipelines, and leaderboards, EfficientLLM provides essential guidance for researchers and engineers navigating the efficiency-performance landscape of next-generation foundation models.
Speculative Ad-hoc Querying
Analyzing large datasets requires responsive query execution, but executing SQL queries on massive datasets can be slow. This paper explores whether query execution can begin even before the user has finished typing, allowing results to appear almost instantly. We propose SpeQL, a system that leverages Large Language Models (LLMs) to predict likely queries based on the database schema, the user's past queries, and their incomplete query. Since exact query prediction is infeasible, SpeQL speculates on partial queries in two ways: 1) it predicts the query structure to compile and plan queries in advance, and 2) it precomputes smaller temporary tables that are much smaller than the original database, but are still predicted to contain all information necessary to answer the user's final query. Additionally, SpeQL continuously displays results for speculated queries and subqueries in real time, aiding exploratory analysis. A utility/user study showed that SpeQL improved task completion time, and participants reported that its speculative display of results helped them discover patterns in the data more quickly. In the study, SpeQL improves user's query latency by up to 289times and kept the overhead reasonable, at 4$ per hour.
CO2: Efficient Distributed Training with Full Communication-Computation Overlap
The fundamental success of large language models hinges upon the efficacious implementation of large-scale distributed training techniques. Nevertheless, building a vast, high-performance cluster featuring high-speed communication interconnectivity is prohibitively costly, and accessible only to prominent entities. In this work, we aim to lower this barrier and democratize large-scale training with limited bandwidth clusters. We propose a new approach called CO2 that introduces local-updating and asynchronous communication to the distributed data-parallel training, thereby facilitating the full overlap of COmunication with COmputation. CO2 is able to attain a high scalability even on extensive multi-node clusters constrained by very limited communication bandwidth. We further propose the staleness gap penalty and outer momentum clipping techniques together with CO2 to bolster its convergence and training stability. Besides, CO2 exhibits seamless integration with well-established ZeRO-series optimizers which mitigate memory consumption of model states with large model training. We also provide a mathematical proof of convergence, accompanied by the establishment of a stringent upper bound. Furthermore, we validate our findings through an extensive set of practical experiments encompassing a wide range of tasks in the fields of computer vision and natural language processing. These experiments serve to demonstrate the capabilities of CO2 in terms of convergence, generalization, and scalability when deployed across configurations comprising up to 128 A100 GPUs. The outcomes emphasize the outstanding capacity of CO2 to hugely improve scalability, no matter on clusters with 800Gbps RDMA or 80Gbps TCP/IP inter-node connections.
Efficient LLM Scheduling by Learning to Rank
In Large Language Model (LLM) inference, the output length of an LLM request is typically regarded as not known a priori. Consequently, most LLM serving systems employ a simple First-come-first-serve (FCFS) scheduling strategy, leading to Head-Of-Line (HOL) blocking and reduced throughput and service quality. In this paper, we reexamine this assumption -- we show that, although predicting the exact generation length of each request is infeasible, it is possible to predict the relative ranks of output lengths in a batch of requests, using learning to rank. The ranking information offers valuable guidance for scheduling requests. Building on this insight, we develop a novel scheduler for LLM inference and serving that can approximate the shortest-job-first (SJF) schedule better than existing approaches. We integrate this scheduler with the state-of-the-art LLM serving system and show significant performance improvement in several important applications: 2.8x lower latency in chatbot serving and 6.5x higher throughput in synthetic data generation. Our code is available at https://github.com/hao-ai-lab/vllm-ltr.git
Order Matters: Investigate the Position Bias in Multi-constraint Instruction Following
Real-world instructions with multiple constraints pose a significant challenge to existing large language models (LLMs). An observation is that the LLMs exhibit dramatic performance fluctuation when disturbing the order of the incorporated constraints. Yet, none of the existing works has systematically investigated this position bias problem in the field of multi-constraint instruction following. To bridge this gap, we design a probing task where we quantitatively measure the difficulty distribution of the constraints by a novel Difficulty Distribution Index (CDDI). Through the experimental results, we find that LLMs are more performant when presented with the constraints in a ``hard-to-easy'' order. This preference can be generalized to LLMs with different architecture or different sizes of parameters. Additionally, we conduct an explanation study, providing an intuitive insight into the correlation between the LLM's attention and constraint orders. Our code and dataset are publicly available at https://github.com/meowpass/PBIF.
ScalingNote: Scaling up Retrievers with Large Language Models for Real-World Dense Retrieval
Dense retrieval in most industries employs dual-tower architectures to retrieve query-relevant documents. Due to online deployment requirements, existing real-world dense retrieval systems mainly enhance performance by designing negative sampling strategies, overlooking the advantages of scaling up. Recently, Large Language Models (LLMs) have exhibited superior performance that can be leveraged for scaling up dense retrieval. However, scaling up retrieval models significantly increases online query latency. To address this challenge, we propose ScalingNote, a two-stage method to exploit the scaling potential of LLMs for retrieval while maintaining online query latency. The first stage is training dual towers, both initialized from the same LLM, to unlock the potential of LLMs for dense retrieval. Then, we distill only the query tower using mean squared error loss and cosine similarity to reduce online costs. Through theoretical analysis and comprehensive offline and online experiments, we show the effectiveness and efficiency of ScalingNote. Our two-stage scaling method outperforms end-to-end models and verifies the scaling law of dense retrieval with LLMs in industrial scenarios, enabling cost-effective scaling of dense retrieval systems. Our online method incorporating ScalingNote significantly enhances the relevance between retrieved documents and queries.
LLM Compression with Neural Architecture Search
Large language models (LLMs) exhibit remarkable reasoning abilities, allowing them to generalize across a wide range of downstream tasks, such as commonsense reasoning or instruction following. However, as LLMs scale, inference costs become increasingly prohibitive, accumulating significantly over their life cycle. This poses the question: Can we compress pre-trained LLMs to meet diverse size and latency requirements? We leverage Neural Architecture Search (NAS) to compress LLMs by pruning structural components, such as attention heads, neurons, and layers, aiming to achieve a Pareto-optimal balance between performance and efficiency. While NAS already achieved promising results on small language models in previous work, in this paper we propose various extensions that allow us to scale to LLMs. Compared to structural pruning baselines, we show that NAS improves performance up to 3.4% on MMLU with an on-device latency speedup.
Efficiently Scaling Transformer Inference
We study the problem of efficient generative inference for Transformer models, in one of its most challenging settings: large deep models, with tight latency targets and long sequence lengths. Better understanding of the engineering tradeoffs for inference for large Transformer-based models is important as use cases of these models are growing rapidly throughout application areas. We develop a simple analytical model for inference efficiency to select the best multi-dimensional partitioning techniques optimized for TPU v4 slices based on the application requirements. We combine these with a suite of low-level optimizations to achieve a new Pareto frontier on the latency and model FLOPS utilization (MFU) tradeoffs on 500B+ parameter models that outperforms the FasterTransformer suite of benchmarks. We further show that with appropriate partitioning, the lower memory requirements of multiquery attention (i.e. multiple query heads share single key/value head) enables scaling up to 32x larger context lengths. Finally, we achieve a low-batch-size latency of 29ms per token during generation (using int8 weight quantization) and a 76% MFU during large-batch-size processing of input tokens, while supporting a long 2048-token context length on the PaLM 540B parameter model.
AcceLLM: Accelerating LLM Inference using Redundancy for Load Balancing and Data Locality
Large Language Model (LLM) inference on large-scale systems is expected to dominate future cloud infrastructures. Efficient LLM inference in cloud environments with numerous AI accelerators is challenging, necessitating extensive optimizations for optimal performance. Current systems batch prefill and decoding to boost throughput but encounter latency issues, while others disaggregate these phases, leading to resource underutilization. We propose AcceLLM, a novel method addressing latency and load balancing, inspired by the cache data management. It strategically utilizes redundant data to enhance inference via load balancing and optimal hardware use. Simulated evaluations on Nvidia H100 GPU and Huawei Ascend 910B2 show AcceLLM surpasses state-of-the-art systems up to 30% in latency and efficiency, handling diverse workloads effectively.
Endor: Hardware-Friendly Sparse Format for Offloaded LLM Inference
The increasing size of large language models (LLMs) challenges their usage on resource-constrained platforms. For example, memory on modern GPUs is insufficient to hold LLMs that are hundreds of Gigabytes in size. Offloading is a popular method to escape this constraint by storing weights of an LLM model to host CPU memory and SSD, then loading each weight to GPU before every use. In our case study of offloaded inference, we found that due to the low bandwidth between storage devices and GPU, the latency of transferring large model weights from its offloaded location to GPU memory becomes the critical bottleneck with actual compute taking nearly 0% of runtime. To effectively reduce the weight transfer latency, we propose a novel sparse format that compresses the unstructured sparse pattern of pruned LLM weights to non-zero values with high compression ratio and low decompression overhead. Endor achieves this by expressing the positions of non-zero elements with a bitmap. Compared to offloaded inference using the popular Huggingface Accelerate, applying Endor accelerates OPT-66B by 1.70x and Llama2-70B by 1.78x. When direct weight transfer from SSD to GPU is leveraged, Endor achieves 2.25x speedup on OPT-66B and 2.37x speedup on Llama2-70B.
Efficient and Economic Large Language Model Inference with Attention Offloading
Transformer-based large language models (LLMs) exhibit impressive performance in generative tasks but introduce significant challenges in real-world serving due to inefficient use of the expensive, computation-optimized accelerators. This mismatch arises from the autoregressive nature of LLMs, where the generation phase comprises operators with varying resource demands. Specifically, the attention operator is memory-intensive, exhibiting a memory access pattern that clashes with the strengths of modern accelerators, especially as context length increases. To enhance the efficiency and cost-effectiveness of LLM serving, we introduce the concept of attention offloading. This approach leverages a collection of cheap, memory-optimized devices for the attention operator while still utilizing high-end accelerators for other parts of the model. This heterogeneous setup ensures that each component is tailored to its specific workload, maximizing overall performance and cost efficiency. Our comprehensive analysis and experiments confirm the viability of splitting the attention computation over multiple devices. Also, the communication bandwidth required between heterogeneous devices proves to be manageable with prevalent networking technologies. To further validate our theory, we develop Lamina, an LLM inference system that incorporates attention offloading. Experimental results indicate that Lamina can provide 1.48x-12.1x higher estimated throughput per dollar than homogeneous solutions.
Dynamic backup workers for parallel machine learning
The most popular framework for distributed training of machine learning models is the (synchronous) parameter server (PS). This paradigm consists of n workers, which iteratively compute updates of the model parameters, and a stateful PS, which waits and aggregates all updates to generate a new estimate of model parameters and sends it back to the workers for a new iteration. Transient computation slowdowns or transmission delays can intolerably lengthen the time of each iteration. An efficient way to mitigate this problem is to let the PS wait only for the fastest n-b updates, before generating the new parameters. The slowest b workers are called backup workers. The optimal number b of backup workers depends on the cluster configuration and workload, but also (as we show in this paper) on the hyper-parameters of the learning algorithm and the current stage of the training. We propose DBW, an algorithm that dynamically decides the number of backup workers during the training process to maximize the convergence speed at each iteration. Our experiments show that DBW 1) removes the necessity to tune b by preliminary time-consuming experiments, and 2) makes the training up to a factor 3 faster than the optimal static configuration.
ShadowLLM: Predictor-based Contextual Sparsity for Large Language Models
The high power consumption and latency-sensitive deployments of large language models (LLMs) have motivated techniques like quantization and sparsity. Contextual sparsity, where the sparsity pattern is input-dependent, is crucial in LLMs because the permanent removal of attention heads or neurons from LLMs can significantly degrade accuracy. Prior work has attempted to model contextual sparsity using neural networks trained to predict activation magnitudes, which can be used to dynamically prune structures with low predicted activation magnitude. In this paper, we look beyond magnitude-based pruning criteria to assess attention head and neuron importance in LLMs. We developed a novel predictor called ShadowLLM, which can shadow the LLM behavior and enforce better sparsity patterns, resulting in over 15% improvement in end-to-end accuracy without increasing latency compared to previous methods. ShadowLLM achieves up to a 20\% speed-up over the state-of-the-art DejaVu framework. These enhancements are validated on models with up to 30 billion parameters. Our code is available at https://github.com/abdelfattah-lab/shadow_llm/{ShadowLLM}.
Root Cause Analysis In Microservice Using Neural Granger Causal Discovery
In recent years, microservices have gained widespread adoption in IT operations due to their scalability, maintenance, and flexibility. However, it becomes challenging for site reliability engineers (SREs) to pinpoint the root cause due to the complex relationships in microservices when facing system malfunctions. Previous research employed structured learning methods (e.g., PC-algorithm) to establish causal relationships and derive root causes from causal graphs. Nevertheless, they ignored the temporal order of time series data and failed to leverage the rich information inherent in the temporal relationships. For instance, in cases where there is a sudden spike in CPU utilization, it can lead to an increase in latency for other microservices. However, in this scenario, the anomaly in CPU utilization occurs before the latency increase, rather than simultaneously. As a result, the PC-algorithm fails to capture such characteristics. To address these challenges, we propose RUN, a novel approach for root cause analysis using neural Granger causal discovery with contrastive learning. RUN enhances the backbone encoder by integrating contextual information from time series, and leverages a time series forecasting model to conduct neural Granger causal discovery. In addition, RUN incorporates Pagerank with a personalization vector to efficiently recommend the top-k root causes. Extensive experiments conducted on the synthetic and real-world microservice-based datasets demonstrate that RUN noticeably outperforms the state-of-the-art root cause analysis methods. Moreover, we provide an analysis scenario for the sock-shop case to showcase the practicality and efficacy of RUN in microservice-based applications. Our code is publicly available at https://github.com/zmlin1998/RUN.
CryptoNite: Revealing the Pitfalls of End-to-End Private Inference at Scale
The privacy concerns of providing deep learning inference as a service have underscored the need for private inference (PI) protocols that protect users' data and the service provider's model using cryptographic methods. Recently proposed PI protocols have achieved significant reductions in PI latency by moving the computationally heavy homomorphic encryption (HE) parts to an offline/pre-compute phase. Paired with recent optimizations that tailor networks for PI, these protocols have achieved performance levels that are tantalizingly close to being practical. In this paper, we conduct a rigorous end-to-end characterization of PI protocols and optimization techniques and find that the current understanding of PI performance is overly optimistic. Specifically, we find that offline storage costs of garbled circuits (GC), a key cryptographic protocol used in PI, on user/client devices are prohibitively high and force much of the expensive offline HE computation to the online phase, resulting in a 10-1000times increase to PI latency. We propose a modified PI protocol that significantly reduces client-side storage costs for a small increase in online latency. Evaluated end-to-end, the modified protocol outperforms current protocols by reducing the mean PI latency by 4times for ResNet18 on TinyImageNet. We conclude with a discussion of several recently proposed PI optimizations in light of the findings and note many actually increase PI latency when evaluated from an end-to-end perspective.
One Timestep is All You Need: Training Spiking Neural Networks with Ultra Low Latency
Spiking Neural Networks (SNNs) are energy efficient alternatives to commonly used deep neural networks (DNNs). Through event-driven information processing, SNNs can reduce the expensive compute requirements of DNNs considerably, while achieving comparable performance. However, high inference latency is a significant hindrance to the edge deployment of deep SNNs. Computation over multiple timesteps not only increases latency as well as overall energy budget due to higher number of operations, but also incurs memory access overhead of fetching membrane potentials, both of which lessen the energy benefits of SNNs. To overcome this bottleneck and leverage the full potential of SNNs, we propose an Iterative Initialization and Retraining method for SNNs (IIR-SNN) to perform single shot inference in the temporal axis. The method starts with an SNN trained with T timesteps (T>1). Then at each stage of latency reduction, the network trained at previous stage with higher timestep is utilized as initialization for subsequent training with lower timestep. This acts as a compression method, as the network is gradually shrunk in the temporal domain. In this paper, we use direct input encoding and choose T=5, since as per literature, it is the minimum required latency to achieve satisfactory performance on ImageNet. The proposed scheme allows us to obtain SNNs with up to unit latency, requiring a single forward pass during inference. We achieve top-1 accuracy of 93.05%, 70.15% and 67.71% on CIFAR-10, CIFAR-100 and ImageNet, respectively using VGG16, with just 1 timestep. In addition, IIR-SNNs perform inference with 5-2500X reduced latency compared to other state-of-the-art SNNs, maintaining comparable or even better accuracy. Furthermore, in comparison with standard DNNs, the proposed IIR-SNNs provide25-33X higher energy efficiency, while being comparable to them in classification performance.
An LLM Compiler for Parallel Function Calling
Large Language Models (LLMs) have shown remarkable results on various complex reasoning benchmarks. The reasoning capabilities of LLMs enable them to execute function calls, using user-provided functions to overcome their inherent limitations, such as knowledge cutoffs, poor arithmetic skills, or lack of access to private data. This development has expanded LLMs' scope to include multi-function calling, where LLMs are equipped with a variety of functions and select the proper functions based on the context. Multi-function calling abilities of LLMs have catalyzed LLM-based software development, allowing them to tackle more complex problems. However, current methods for multi-function calling often require sequential reasoning and acting for each function which can result in high latency, cost, and sometimes inaccurate behavior. To address this, we introduce LLMCompiler, which executes functions in parallel to efficiently orchestrate multi-function calling. Drawing from the principles of classical compilers, LLMCompiler streamlines parallel function calling with three components: (i) an LLM Planner, formulating execution strategies and dependencies; (ii) a Task Fetching Unit, dispatching function calling tasks; and (iii) an Executor, executing these tasks in parallel. LLMCompiler automatically computes an optimized orchestration for the function calls and can be used with open-source models such as LLaMA-2. We have benchmarked LLMCompiler on a range of tasks including cases with non-trivial inter-dependency between function calls, as well as cases that require dynamic replanning based on intermediate results. We observe consistent latency speedup of up to 3.7x, cost savings of up to 6.7x, and accuracy improvement of up to ~9% as compared to ReAct. Additionally, LLMCompiler achieves up to 1.35x latency gain over OpenAI's recent parallel function calling, while achieving similar accuracy.
Efficient Memory Management for Large Language Model Serving with PagedAttention
High throughput serving of large language models (LLMs) requires batching sufficiently many requests at a time. However, existing systems struggle because the key-value cache (KV cache) memory for each request is huge and grows and shrinks dynamically. When managed inefficiently, this memory can be significantly wasted by fragmentation and redundant duplication, limiting the batch size. To address this problem, we propose PagedAttention, an attention algorithm inspired by the classical virtual memory and paging techniques in operating systems. On top of it, we build vLLM, an LLM serving system that achieves (1) near-zero waste in KV cache memory and (2) flexible sharing of KV cache within and across requests to further reduce memory usage. Our evaluations show that vLLM improves the throughput of popular LLMs by 2-4times with the same level of latency compared to the state-of-the-art systems, such as FasterTransformer and Orca. The improvement is more pronounced with longer sequences, larger models, and more complex decoding algorithms. vLLM's source code is publicly available at https://github.com/vllm-project/vllm
Sleep-time Compute: Beyond Inference Scaling at Test-time
Scaling test-time compute has emerged as a key ingredient for enabling large language models (LLMs) to solve difficult problems, but comes with high latency and inference cost. We introduce sleep-time compute, which allows models to "think" offline about contexts before queries are presented: by anticipating what queries users might ask and pre-computing useful quantities, we can significantly reduce the compute requirements at test-time. To demonstrate the efficacy of our method, we create modified versions of two reasoning tasks - Stateful GSM-Symbolic and Stateful AIME. We find that sleep-time compute can reduce the amount of test-time compute needed to achieve the same accuracy by ~ 5x on Stateful GSM-Symbolic and Stateful AIME and that by scaling sleep-time compute we can further increase accuracy by up to 13% on Stateful GSM-Symbolic and 18% on Stateful AIME. Furthermore, we introduce Multi-Query GSM-Symbolic, which extends GSM-Symbolic by including multiple related queries per context. By amortizing sleep-time compute across related queries about the same context using Multi-Query GSM-Symbolic, we can decrease the average cost per query by 2.5x. We then conduct additional analysis to understand when sleep-time compute is most effective, finding the predictability of the user query to be well correlated with the efficacy of sleep-time compute. Finally, we conduct a case-study of applying sleep-time compute to a realistic agentic SWE task.
TCP: a Benchmark for Temporal Constraint-Based Planning
Temporal reasoning and planning are essential capabilities for large language models (LLMs), yet most existing benchmarks evaluate them in isolation and under limited forms of complexity. To address this gap, we introduce the Temporal Constraint-based Planning (TCP) benchmark, that jointly assesses both capabilities. Each instance in TCP features a naturalistic dialogue around a collaborative project, where diverse and interdependent temporal constraints are explicitly or implicitly expressed, and models must infer an optimal schedule that satisfies all constraints. To construct TCP, we first generate abstract problem prototypes that are paired with realistic scenarios from various domains and enriched into dialogues using an LLM. A human quality check is performed on a sampled subset to confirm the reliability of our benchmark. We evaluate state-of-the-art LLMs and find that even the strongest models struggle with TCP, highlighting its difficulty and revealing limitations in LLMs' temporal constraint-based planning abilities. We analyze underlying failure cases, open source our benchmark, and hope our findings can inspire future research.
Asynchronous LLM Function Calling
Large language models (LLMs) use function calls to interface with external tools and data source. However, the current approach to LLM function calling is inherently synchronous, where each call blocks LLM inference, limiting LLM operation and concurrent function execution. In this work, we propose AsyncLM, a system for asynchronous LLM function calling. AsyncLM improves LLM's operational efficiency by enabling LLMs to generate and execute function calls concurrently. Instead of waiting for each call's completion, AsyncLM introduces an interrupt mechanism to asynchronously notify the LLM in-flight when function calls return. We design an in-context protocol for function calls and interrupts, provide fine-tuning strategy to adapt LLMs to the interrupt semantics, and implement these mechanisms efficiently on LLM inference process. We demonstrate that AsyncLM can reduce end-to-end task completion latency from 1.6x-5.4x compared to synchronous function calling on a set of benchmark tasks in the Berkeley function calling leaderboard (BFCL). Furthermore, we discuss how interrupt mechanisms can be extended to enable novel human-LLM or LLM-LLM interactions.
Minions: Cost-efficient Collaboration Between On-device and Cloud Language Models
We investigate an emerging setup in which a small, on-device language model (LM) with access to local data communicates with a frontier, cloud-hosted LM to solve real-world tasks involving financial, medical, and scientific reasoning over long documents. Can a local-remote collaboration reduce cloud inference costs while preserving quality? First, we consider a naive collaboration protocol where the local and remote models simply chat back and forth. Because only the local model reads the full context, this protocol achieves a 30.4x reduction in remote costs, but recovers only 87% of the performance of the frontier model. We identify two key limitations of this protocol: the local model struggles to (1) follow the remote model's multi-step instructions and (2) reason over long contexts. Motivated by these observations, we study an extension of this protocol, coined MinionS, in which the remote model decomposes the task into easier subtasks over shorter chunks of the document, that are executed locally in parallel. MinionS reduces costs by 5.7x on average while recovering 97.9% of the performance of the remote model alone. Our analysis reveals several key design choices that influence the trade-off between cost and performance in local-remote systems.
OSWorld-Human: Benchmarking the Efficiency of Computer-Use Agents
Generative AI is being leveraged to solve a variety of computer-use tasks involving desktop applications. State-of-the-art systems have focused solely on improving accuracy on leading benchmarks. However, these systems are practically unusable due to extremely high end-to-end latency (e.g., tens of minutes) for tasks that typically take humans just a few minutes to complete. To understand the cause behind this and to guide future developments of computer agents, we conduct the first study on the temporal performance of computer-use agents on OSWorld, the flagship benchmark in computer-use AI. We find that large model calls for planning and reflection account for the majority of the overall latency, and as an agent uses more steps to complete a task, each successive step can take 3x longer than steps at the beginning of a task. We then construct OSWorld-Human, a manually annotated version of the original OSWorld dataset that contains a human-determined trajectory for each task. We evaluate 16 agents on their efficiency using OSWorld-Human and found that even the highest-scoring agents on OSWorld take 1.4-2.7x more steps than necessary.
MoonCast: High-Quality Zero-Shot Podcast Generation
Recent advances in text-to-speech synthesis have achieved notable success in generating high-quality short utterances for individual speakers. However, these systems still face challenges when extending their capabilities to long, multi-speaker, and spontaneous dialogues, typical of real-world scenarios such as podcasts. These limitations arise from two primary challenges: 1) long speech: podcasts typically span several minutes, exceeding the upper limit of most existing work; 2) spontaneity: podcasts are marked by their spontaneous, oral nature, which sharply contrasts with formal, written contexts; existing works often fall short in capturing this spontaneity. In this paper, we propose MoonCast, a solution for high-quality zero-shot podcast generation, aiming to synthesize natural podcast-style speech from text-only sources (e.g., stories, technical reports, news in TXT, PDF, or Web URL formats) using the voices of unseen speakers. To generate long audio, we adopt a long-context language model-based audio modeling approach utilizing large-scale long-context speech data. To enhance spontaneity, we utilize a podcast generation module to generate scripts with spontaneous details, which have been empirically shown to be as crucial as the text-to-speech modeling itself. Experiments demonstrate that MoonCast outperforms baselines, with particularly notable improvements in spontaneity and coherence.
Hybrid LLM: Cost-Efficient and Quality-Aware Query Routing
Large language models (LLMs) excel in most NLP tasks but also require expensive cloud servers for deployment due to their size, while smaller models that can be deployed on lower cost (e.g., edge) devices, tend to lag behind in terms of response quality. Therefore in this work we propose a hybrid inference approach which combines their respective strengths to save cost and maintain quality. Our approach uses a router that assigns queries to the small or large model based on the predicted query difficulty and the desired quality level. The desired quality level can be tuned dynamically at test time to seamlessly trade quality for cost as per the scenario requirements. In experiments our approach allows us to make up to 40% fewer calls to the large model, with no drop in response quality.
MMFactory: A Universal Solution Search Engine for Vision-Language Tasks
With advances in foundational and vision-language models, and effective fine-tuning techniques, a large number of both general and special-purpose models have been developed for a variety of visual tasks. Despite the flexibility and accessibility of these models, no single model is able to handle all tasks and/or applications that may be envisioned by potential users. Recent approaches, such as visual programming and multimodal LLMs with integrated tools aim to tackle complex visual tasks, by way of program synthesis. However, such approaches overlook user constraints (e.g., performance / computational needs), produce test-time sample-specific solutions that are difficult to deploy, and, sometimes, require low-level instructions that maybe beyond the abilities of a naive user. To address these limitations, we introduce MMFactory, a universal framework that includes model and metrics routing components, acting like a solution search engine across various available models. Based on a task description and few sample input-output pairs and (optionally) resource and/or performance constraints, MMFactory can suggest a diverse pool of programmatic solutions by instantiating and combining visio-lingual tools from its model repository. In addition to synthesizing these solutions, MMFactory also proposes metrics and benchmarks performance / resource characteristics, allowing users to pick a solution that meets their unique design constraints. From the technical perspective, we also introduced a committee-based solution proposer that leverages multi-agent LLM conversation to generate executable, diverse, universal, and robust solutions for the user. Experimental results show that MMFactory outperforms existing methods by delivering state-of-the-art solutions tailored to user problem specifications. Project page is available at https://davidhalladay.github.io/mmfactory_demo.
How Many Instructions Can LLMs Follow at Once?
Production-grade LLM systems require robust adherence to dozens or even hundreds of instructions simultaneously. However, the instruction-following capabilities of LLMs at high instruction densities have not yet been characterized, as existing benchmarks only evaluate models on tasks with a single or few instructions. We introduce IFScale, a simple benchmark of 500 keyword-inclusion instructions for a business report writing task to measure how instruction-following performance degrades as instruction density increases. We evaluate 20 state-of-the-art models across seven major providers and find that even the best frontier models only achieve 68% accuracy at the max density of 500 instructions. Our analysis reveals model size and reasoning capability to correlate with 3 distinct performance degradation patterns, bias towards earlier instructions, and distinct categories of instruction-following errors. Our insights can help inform design of instruction-dense prompts in real-world applications and highlight important performance-latency tradeoffs. We open-source the benchmark and all results for further analysis at https://distylai.github.io/IFScale.
Challenges in Deploying Long-Context Transformers: A Theoretical Peak Performance Analysis
Transformer-based long context generative models power emerging AI applications like hour-long video understanding and project-level coding agent. Deploying long context transformers (e.g., 100K to 10M tokens) is prohibitively expensive compared to short context (e.g., 4K tokens) model variants. Reducing the cost of long-context transformers is becoming a pressing research and engineering challenge starting from the year of 2024. This work describes a concurrent programming framework for quantitatively analyzing the efficiency challenges in serving multiple long-context requests under limited size of GPU high-bandwidth memory (HBM) regime. We give a detailed analysis of how all additional computational costs, compared to 4K context, trace back to one single source: the large size of the KV cache. We use a 34B GPT-3.5 level model of 50K context on A100 NVLink as a running example, and describe how its large KV cache causes four types of deployment challenges: (1) prefilling long inputs takes much longer compute time and GPU memory than short inputs; (2) after prefilling, the large KV cache residing on the GPU HBM substantially restricts the number of concurrent users being served; (3) during decoding, repeatedly reading the KV cache from HBM to SM largely increases latency; (4) when KV cache memory overflows, swapping it from HBM to DDR causes significant context switching latency. We use this framework to analyze existing works and identify possibilities of combining them to build end-to-end systems. Overall, this work offers a foundational framework for analyzing long context transformer deployment and identifies directions towards reducing the inference cost of 1M context to be as cheap as 4K.
LLM-ABR: Designing Adaptive Bitrate Algorithms via Large Language Models
We present LLM-ABR, the first system that utilizes the generative capabilities of large language models (LLMs) to autonomously design adaptive bitrate (ABR) algorithms tailored for diverse network characteristics. Operating within a reinforcement learning framework, LLM-ABR empowers LLMs to design key components such as states and neural network architectures. We evaluate LLM-ABR across diverse network settings, including broadband, satellite, 4G, and 5G. LLM-ABR consistently outperforms default ABR algorithms.
Large Language Model Adaptation for Networking
Many networking tasks now employ deep learning (DL) to solve complex prediction and system optimization problems. However, current design philosophy of DL-based algorithms entails intensive engineering overhead due to the manual design of deep neural networks (DNNs) for different networking tasks. Besides, DNNs tend to achieve poor generalization performance on unseen data distributions/environments. Motivated by the recent success of large language models (LLMs), for the first time, this work studies the LLM adaptation for networking to explore a more sustainable design philosophy. With the massive pre-trained knowledge and powerful inference ability, LLM can serve as the foundation model, and is expected to achieve "one model for all" with even better performance and stronger generalization for various tasks. In this paper, we present NetLLM, the first LLM adaptation framework that efficiently adapts LLMs to solve networking problems. NetLLM addresses many practical challenges in LLM adaptation, from how to process task-specific information with LLMs, to how to improve the efficiency of answer generation and acquiring domain knowledge for networking. Across three networking-related use cases - viewport prediction (VP), adaptive bitrate streaming (ABR) and cluster job scheduling (CJS), we showcase the effectiveness of NetLLM in LLM adaptation for networking. Results show that the adapted LLM surpasses state-of-the-art algorithms by 10.1-36.6% for VP, 14.5-36.6% for ABR, 6.8-41.3% for CJS, and also achieves superior generalization performance.
Exploring Zero and Few-shot Techniques for Intent Classification
Conversational NLU providers often need to scale to thousands of intent-classification models where new customers often face the cold-start problem. Scaling to so many customers puts a constraint on storage space as well. In this paper, we explore four different zero and few-shot intent classification approaches with this low-resource constraint: 1) domain adaptation, 2) data augmentation, 3) zero-shot intent classification using descriptions large language models (LLMs), and 4) parameter-efficient fine-tuning of instruction-finetuned language models. Our results show that all these approaches are effective to different degrees in low-resource settings. Parameter-efficient fine-tuning using T-few recipe (Liu et al., 2022) on Flan-T5 (Chang et al., 2022) yields the best performance even with just one sample per intent. We also show that the zero-shot method of prompting LLMs using intent descriptions
Minimalistic Predictions to Schedule Jobs with Online Precedence Constraints
We consider non-clairvoyant scheduling with online precedence constraints, where an algorithm is oblivious to any job dependencies and learns about a job only if all of its predecessors have been completed. Given strong impossibility results in classical competitive analysis, we investigate the problem in a learning-augmented setting, where an algorithm has access to predictions without any quality guarantee. We discuss different prediction models: novel problem-specific models as well as general ones, which have been proposed in previous works. We present lower bounds and algorithmic upper bounds for different precedence topologies, and thereby give a structured overview on which and how additional (possibly erroneous) information helps for designing better algorithms. Along the way, we also improve bounds on traditional competitive ratios for existing algorithms.
A Multi-Dimensional Constraint Framework for Evaluating and Improving Instruction Following in Large Language Models
Instruction following evaluates large language models (LLMs) on their ability to generate outputs that adhere to user-defined constraints. However, existing benchmarks often rely on templated constraint prompts, which lack the diversity of real-world usage and limit fine-grained performance assessment. To fill this gap, we propose a multi-dimensional constraint framework encompassing three constraint patterns, four constraint categories, and four difficulty levels. Building on this framework, we develop an automated instruction generation pipeline that performs constraint expansion, conflict detection, and instruction rewriting, yielding 1,200 code-verifiable instruction-following test samples. We evaluate 19 LLMs across seven model families and uncover substantial variation in performance across constraint forms. For instance, average performance drops from 77.67% at Level I to 32.96% at Level IV. Furthermore, we demonstrate the utility of our approach by using it to generate data for reinforcement learning, achieving substantial gains in instruction following without degrading general performance. In-depth analysis indicates that these gains stem primarily from modifications in the model's attention modules parameters, which enhance constraint recognition and adherence. Code and data are available in https://github.com/Junjie-Ye/MulDimIF.
Squeezed Attention: Accelerating Long Context Length LLM Inference
Emerging Large Language Model (LLM) applications require long input prompts to perform complex downstream tasks like document analysis and code generation. For these long context length applications, the length of the input prompt poses a significant challenge in terms of inference efficiency since the inference costs increase linearly with sequence length. However, for many of these applications, much of the context in the prompt is fixed across different user inputs, thereby providing the opportunity to perform offline optimizations to process user inputs quickly, as they are received. In this work, we propose Squeezed Attention as a mechanism to accelerate LLM applications where a large portion of the input prompt is fixed. We first leverage K-means clustering offline to group the keys for the fixed context based on semantic similarity and represent each cluster with a single centroid value. During inference, we compare query tokens from the user input with the centroids to predict which of the keys from the fixed context are semantically relevant and need to be loaded during inference. We then compute exact attention using only these important keys from the fixed context, thereby reducing bandwidth and computational costs. We also extend our method to use a hierarchical centroid lookup to identify important keys, which can reduce the complexity of attention from linear to logarithmic with respect to the context length. We implement optimized Triton kernels for centroid comparison and sparse FlashAttention with important keys, achieving more than 4x speedups during both the prefill and generation phases for long-context inference. Furthermore, we have extensively evaluated our method on various long-context benchmarks including LongBench, where it achieves a 3x reduction in KV cache budget without accuracy loss and up to an 8x reduction with <0.5 point accuracy gap for various models.
Seek in the Dark: Reasoning via Test-Time Instance-Level Policy Gradient in Latent Space
Reasoning ability, a core component of human intelligence, continues to pose a significant challenge for Large Language Models (LLMs) in the pursuit of AGI. Although model performance has improved under the training scaling law, significant challenges remain, particularly with respect to training algorithms, such as catastrophic forgetting, and the limited availability of novel training data. As an alternative, test-time scaling enhances reasoning performance by increasing test-time computation without parameter updating. Unlike prior methods in this paradigm focused on token space, we propose leveraging latent space for more effective reasoning and better adherence to the test-time scaling law. We introduce LatentSeek, a novel framework that enhances LLM reasoning through Test-Time Instance-level Adaptation (TTIA) within the model's latent space. Specifically, LatentSeek leverages policy gradient to iteratively update latent representations, guided by self-generated reward signals. LatentSeek is evaluated on a range of reasoning benchmarks, including GSM8K, MATH-500, and AIME2024, across multiple LLM architectures. Results show that LatentSeek consistently outperforms strong baselines, such as Chain-of-Thought prompting and fine-tuning-based methods. Furthermore, our analysis demonstrates that LatentSeek is highly efficient, typically converging within a few iterations for problems of average complexity, while also benefiting from additional iterations, thereby highlighting the potential of test-time scaling in the latent space. These findings position LatentSeek as a lightweight, scalable, and effective solution for enhancing the reasoning capabilities of LLMs.
Boosting Large-scale Parallel Training Efficiency with C4: A Communication-Driven Approach
The emergence of Large Language Models (LLMs) has necessitated the adoption of parallel training techniques, involving the deployment of thousands of GPUs to train a single model. Unfortunately, we have found that the efficiency of current parallel training is often suboptimal, largely due to the following two main issues. Firstly, hardware failures are inevitable, leading to interruptions in the training tasks. The inability to quickly identify the faulty components results in a substantial waste of GPU resources. Secondly, since GPUs must wait for parameter synchronization to complete before proceeding to the next round of computation, network congestions can greatly increase the waiting time for GPUs. To address these challenges, this paper introduces a communication-driven solution, namely the C4. The key insights of C4 are two folds. First, in parallel training, collective communication exhibits periodic and homogeneous characteristics, so any anomalies are certainly due to some form of hardware malfunction. By leveraging this feature, C4 can rapidly identify the faulty components, swiftly isolate the anomaly, and restart the task, thereby avoiding resource wastage caused by delays in anomaly detection. Second, the predictable communication model of collective communication, involving few large flows, allows C4 to efficiently execute traffic planning, substantially reducing network congestion. C4 has been extensively implemented across our production systems, cutting error-induced overhead by roughly 30% and enhancing runtime performance by about 15% for certain applications with moderate communication costs.
Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time
Large language models (LLMs) with hundreds of billions of parameters have sparked a new wave of exciting AI applications. However, they are computationally expensive at inference time. Sparsity is a natural approach to reduce this cost, but existing methods either require costly retraining, have to forgo LLM's in-context learning ability, or do not yield wall-clock time speedup on modern hardware. We hypothesize that contextual sparsity, which are small, input-dependent sets of attention heads and MLP parameters that yield approximately the same output as the dense model for a given input, can address these issues. We show that contextual sparsity exists, that it can be accurately predicted, and that we can exploit it to speed up LLM inference in wall-clock time without compromising LLM's quality or in-context learning ability. Based on these insights, we propose DejaVu, a system that uses a low-cost algorithm to predict contextual sparsity on the fly given inputs to each layer, along with an asynchronous and hardware-aware implementation that speeds up LLM inference. We validate that DejaVu can reduce the inference latency of OPT-175B by over 2X compared to the state-of-the-art FasterTransformer, and over 6X compared to the widely used Hugging Face implementation, without compromising model quality. The code is available at https://github.com/FMInference/DejaVu.
CARROT: A Cost Aware Rate Optimal Router
With the rapid growth in the number of Large Language Models (LLMs), there has been a recent interest in LLM routing, or directing queries to the cheapest LLM that can deliver a suitable response. Following this line of work, we introduce CARROT, a Cost AwaRe Rate Optimal rouTer that can select models based on any desired trade-off between performance and cost. Given a query, CARROT selects a model based on estimates of models' cost and performance. Its simplicity lends CARROT computational efficiency, while our theoretical analysis demonstrates minimax rate-optimality in its routing performance. Alongside CARROT, we also introduce the Smart Price-aware Routing (SPROUT) dataset to facilitate routing on a wide spectrum of queries with the latest state-of-the-art LLMs. Using SPROUT and prior benchmarks such as Routerbench and open-LLM-leaderboard-v2 we empirically validate CARROT's performance against several alternative routers.
Prompt Cache: Modular Attention Reuse for Low-Latency Inference
We present Prompt Cache, an approach for accelerating inference for large language models (LLM) by reusing attention states across different LLM prompts. Many input prompts have overlapping text segments, such as system messages, prompt templates, and documents provided for context. Our key insight is that by precomputing and storing the attention states of these frequently occurring text segments on the inference server, we can efficiently reuse them when these segments appear in user prompts. Prompt Cache employs a schema to explicitly define such reusable text segments, called prompt modules. The schema ensures positional accuracy during attention state reuse and provides users with an interface to access cached states in their prompt. Using a prototype implementation, we evaluate Prompt Cache across several LLMs. We show that Prompt Cache significantly reduce latency in time-to-first-token, especially for longer prompts such as document-based question answering and recommendations. The improvements range from 8x for GPU-based inference to 60x for CPU-based inference, all while maintaining output accuracy and without the need for model parameter modifications.
WildIFEval: Instruction Following in the Wild
Recent LLMs have shown remarkable success in following user instructions, yet handling instructions with multiple constraints remains a significant challenge. In this work, we introduce WildIFEval - a large-scale dataset of 12K real user instructions with diverse, multi-constraint conditions. Unlike prior datasets, our collection spans a broad lexical and topical spectrum of constraints, in natural user prompts. We categorize these constraints into eight high-level classes to capture their distribution and dynamics in real-world scenarios. Leveraging WildIFEval, we conduct extensive experiments to benchmark the instruction-following capabilities of leading LLMs. Our findings reveal that all evaluated models experience performance degradation with an increasing number of constraints. Thus, we show that all models have a large room for improvement on such tasks. Moreover, we observe that the specific type of constraint plays a critical role in model performance. We release our dataset to promote further research on instruction-following under complex, realistic conditions.
Application-Agnostic Language Modeling for On-Device ASR
On-device automatic speech recognition systems face several challenges compared to server-based systems. They have to meet stricter constraints in terms of speed, disk size and memory while maintaining the same accuracy. Often they have to serve several applications with different distributions at once, such as communicating with a virtual assistant and speech-to-text. The simplest solution to serve multiple applications is to build application-specific (language) models, but this leads to an increase in memory. Therefore, we explore different data- and architecture-driven language modeling approaches to build a single application-agnostic model. We propose two novel feed-forward architectures that find an optimal trade off between different on-device constraints. In comparison to the application-specific solution, one of our novel approaches reduces the disk size by half, while maintaining speed and accuracy of the original model.
FlashRNN: Optimizing Traditional RNNs on Modern Hardware
While Transformers and other sequence-parallelizable neural network architectures seem like the current state of the art in sequence modeling, they specifically lack state-tracking capabilities. These are important for time-series tasks and logical reasoning. Traditional RNNs like LSTMs and GRUs, as well as modern variants like sLSTM do have these capabilities at the cost of strictly sequential processing. While this is often seen as a strong limitation, we show how fast these networks can get with our hardware-optimization FlashRNN in Triton and CUDA, optimizing kernels to the register level on modern GPUs. We extend traditional RNNs with a parallelization variant that processes multiple RNNs of smaller hidden state in parallel, similar to the head-wise processing in Transformers. To enable flexibility on different GPU variants, we introduce a new optimization framework for hardware-internal cache sizes, memory and compute handling. It models the hardware in a setting using polyhedral-like constraints, including the notion of divisibility. This speeds up the solution process in our ConstrINT library for general integer constraint satisfaction problems (integer CSPs). We show that our kernels can achieve 50x speed-ups over a vanilla PyTorch implementation and allow 40x larger hidden sizes compared to our Triton implementation. Our open-source kernels and the optimization library are released here to boost research in the direction of state-tracking enabled RNNs and sequence modeling: https://github.com/NX-AI/flashrnn
DroidSpeak: Enhancing Cross-LLM Communication
In multi-agent systems utilizing Large Language Models (LLMs), communication between agents traditionally relies on natural language. This communication often includes the full context of the query so far, which can introduce significant prefill-phase latency, especially with long contexts. We introduce DroidSpeak, a novel framework to target this cross-LLM communication by leveraging the reuse of intermediate data, such as input embeddings (E-cache) and key-value caches (KV-cache). We efficiently bypass the need to reprocess entire contexts for fine-tuned versions of the same foundational model. This approach allows faster context integration while maintaining the quality of task performance. Experimental evaluations demonstrate DroidSpeak's ability to significantly accelerate inter-agent communication, achieving up to a 2.78x speedup in prefill latency with negligible loss in accuracy. Our findings underscore the potential to create more efficient and scalable multi-agent systems.
Marconi: Prefix Caching for the Era of Hybrid LLMs
Hybrid models that combine the language modeling capabilities of Attention layers with the efficiency of Recurrent layers (e.g., State Space Models) have gained traction in practically supporting long contexts in Large Language Model serving. Yet, the unique properties of these models complicate the usage of complementary efficiency optimizations such as prefix caching that skip redundant computations across requests. Most notably, their use of in-place state updates for recurrent layers precludes rolling back cache entries for partial sequence overlaps, and instead mandates only exact-match cache hits; the effect is a deluge of (large) cache entries per sequence, most of which yield minimal reuse opportunities. We present Marconi, the first system that supports efficient prefix caching with Hybrid LLMs. Key to Marconi are its novel admission and eviction policies that more judiciously assess potential cache entries based not only on recency, but also on (1) forecasts of their reuse likelihood across a taxonomy of different hit scenarios, and (2) the compute savings that hits deliver relative to memory footprints. Across diverse workloads and Hybrid models, Marconi achieves up to 34.4times higher token hit rates (71.1% or 617 ms lower TTFT) compared to state-of-the-art prefix caching systems.
TP-Aware Dequantization
In this paper, we present a novel method that reduces model inference latency during distributed deployment of Large Language Models (LLMs). Our contribution is an optimized inference deployment scheme that address the current limitations of state-of-the-art quantization kernels when used in conjunction with Tensor Parallel (TP). Our method preserves data locality in GPU memory access patterns and exploits a priori knowledge of TP to reduce global communication. We demonstrate an up to 1.81x speedup over existing methods for Llama-70B and up to 1.78x speedup for IBM WatsonX's Granite-20B MLP layer problem sizes on A100 and H100 NVIDIA DGX Systems for a variety of TP settings.
Musical Form Generation
While recent generative models can produce engaging music, their utility is limited. The variation in the music is often left to chance, resulting in compositions that lack structure. Pieces extending beyond a minute can become incoherent or repetitive. This paper introduces an approach for generating structured, arbitrarily long musical pieces. Central to this approach is the creation of musical segments using a conditional generative model, with transitions between these segments. The generation of prompts that determine the high-level composition is distinct from the creation of finer, lower-level details. A large language model is then used to suggest the musical form.
Parameters vs FLOPs: Scaling Laws for Optimal Sparsity for Mixture-of-Experts Language Models
Scaling the capacity of language models has consistently proven to be a reliable approach for improving performance and unlocking new capabilities. Capacity can be primarily defined by two dimensions: the number of model parameters and the compute per example. While scaling typically involves increasing both, the precise interplay between these factors and their combined contribution to overall capacity remains not fully understood. We explore this relationship in the context of sparse Mixture-of-Experts (MoEs), which allow scaling the number of parameters without proportionally increasing the FLOPs per example. We investigate how varying the sparsity level, i.e., the fraction of inactive parameters, impacts model's performance during pretraining and downstream few-shot evaluation. We find that under different constraints (e.g., parameter size and total training compute), there is an optimal level of sparsity that improves both training efficiency and model performance. These results provide a better understanding of the impact of sparsity in scaling laws for MoEs and complement existing works in this area, offering insights for designing more efficient architectures.
PipeInfer: Accelerating LLM Inference using Asynchronous Pipelined Speculation
Inference of Large Language Models (LLMs) across computer clusters has become a focal point of research in recent times, with many acceleration techniques taking inspiration from CPU speculative execution. These techniques reduce bottlenecks associated with memory bandwidth, but also increase end-to-end latency per inference run, requiring high speculation acceptance rates to improve performance. Combined with a variable rate of acceptance across tasks, speculative inference techniques can result in reduced performance. Additionally, pipeline-parallel designs require many user requests to maintain maximum utilization. As a remedy, we propose PipeInfer, a pipelined speculative acceleration technique to reduce inter-token latency and improve system utilization for single-request scenarios while also improving tolerance to low speculation acceptance rates and low-bandwidth interconnects. PipeInfer exhibits up to a 2.15times improvement in generation speed over standard speculative inference. PipeInfer achieves its improvement through Continuous Asynchronous Speculation and Early Inference Cancellation, the former improving latency and generation speed by running single-token inference simultaneously with several speculative runs, while the latter improves speed and latency by skipping the computation of invalidated runs, even in the middle of inference.
Speculative Decoding with Big Little Decoder
The recent emergence of Large Language Models based on the Transformer architecture has enabled dramatic advancements in the field of Natural Language Processing. However, these models have long inference latency, which limits their deployment and makes them prohibitively expensive for various real-time applications. The inference latency is further exacerbated by autoregressive generative tasks, as models need to run iteratively to generate tokens sequentially without leveraging token-level parallelization. To address this, we propose Big Little Decoder (BiLD), a framework that can improve inference efficiency and latency for a wide range of text generation applications. The BiLD framework contains two models with different sizes that collaboratively generate text. The small model runs autoregressively to generate text with a low inference cost, and the large model is only invoked occasionally to refine the small model's inaccurate predictions in a non-autoregressive manner. To coordinate the small and large models, BiLD introduces two simple yet effective policies: (1) the fallback policy that determines when to hand control over to the large model; and (2) the rollback policy that determines when the large model needs to correct the small model's inaccurate predictions. To evaluate our framework across different tasks and models, we apply BiLD to various text generation scenarios encompassing machine translation on IWSLT 2017 De-En and WMT 2014 De-En, and summarization on XSUM and CNN/DailyMail. On an NVIDIA T4 GPU, our framework achieves a speedup of up to 2.12x speedup with minimal generation quality degradation. Furthermore, our framework is fully plug-and-play and can be applied without any modifications in the training process or model architecture. Our code is open-sourced
Petals: Collaborative Inference and Fine-tuning of Large Models
Many NLP tasks benefit from using large language models (LLMs) that often have more than 100 billion parameters. With the release of BLOOM-176B and OPT-175B, everyone can download pretrained models of this scale. Still, using these models requires high-end hardware unavailable to many researchers. In some cases, LLMs can be used more affordably via RAM offloading or hosted APIs. However, these techniques have innate limitations: offloading is too slow for interactive inference, while APIs are not flexible enough for research that requires access to weights, attention or logits. In this work, we propose Petals - a system for inference and fine-tuning of large models collaboratively by joining the resources of multiple parties. We demonstrate that this strategy outperforms offloading for very large models, running inference of BLOOM-176B on consumer GPUs with approx 1 step per second, which is enough for many interactive LLM applications. Unlike most inference APIs, Petals also natively exposes hidden states of served models, allowing to train and share custom model extensions based on efficient fine-tuning methods.
Split Computing and Early Exiting for Deep Learning Applications: Survey and Research Challenges
Mobile devices such as smartphones and autonomous vehicles increasingly rely on deep neural networks (DNNs) to execute complex inference tasks such as image classification and speech recognition, among others. However, continuously executing the entire DNN on mobile devices can quickly deplete their battery. Although task offloading to cloud/edge servers may decrease the mobile device's computational burden, erratic patterns in channel quality, network, and edge server load can lead to a significant delay in task execution. Recently, approaches based on split computing (SC) have been proposed, where the DNN is split into a head and a tail model, executed respectively on the mobile device and on the edge server. Ultimately, this may reduce bandwidth usage as well as energy consumption. Another approach, called early exiting (EE), trains models to embed multiple "exits" earlier in the architecture, each providing increasingly higher target accuracy. Therefore, the trade-off between accuracy and delay can be tuned according to the current conditions or application demands. In this paper, we provide a comprehensive survey of the state of the art in SC and EE strategies by presenting a comparison of the most relevant approaches. We conclude the paper by providing a set of compelling research challenges.
Kinetics: Rethinking Test-Time Scaling Laws
We rethink test-time scaling laws from a practical efficiency perspective, revealing that the effectiveness of smaller models is significantly overestimated. Prior work, grounded in compute-optimality, overlooks critical memory access bottlenecks introduced by inference-time strategies (e.g., Best-of-N, long CoTs). Our holistic analysis, spanning models from 0.6B to 32B parameters, reveals a new Kinetics Scaling Law that better guides resource allocation by incorporating both computation and memory access costs. Kinetics Scaling Law suggests that test-time compute is more effective when used on models above a threshold than smaller ones. A key reason is that in TTS, attention, rather than parameter count, emerges as the dominant cost factor. Motivated by this, we propose a new scaling paradigm centered on sparse attention, which lowers per-token cost and enables longer generations and more parallel samples within the same resource budget. Empirically, we show that sparse attention models consistently outperform dense counterparts, achieving over 60 points gains in low-cost regimes and over 5 points gains in high-cost regimes for problem-solving accuracy on AIME, encompassing evaluations on state-of-the-art MoEs. These results suggest that sparse attention is essential for realizing the full potential of test-time scaling because, unlike training, where parameter scaling saturates, test-time accuracy continues to improve through increased generation. The code is available at https://github.com/Infini-AI-Lab/Kinetics.
Performance Modeling of Data Storage Systems using Generative Models
High-precision modeling of systems is one of the main areas of industrial data analysis. Models of systems, their digital twins, are used to predict their behavior under various conditions. We have developed several models of a storage system using machine learning-based generative models. The system consists of several components: hard disk drive (HDD) and solid-state drive (SSD) storage pools with different RAID schemes and cache. Each storage component is represented by a probabilistic model that describes the probability distribution of the component performance in terms of IOPS and latency, depending on their configuration and external data load parameters. The results of the experiments demonstrate the errors of 4-10 % for IOPS and 3-16 % for latency predictions depending on the components and models of the system. The predictions show up to 0.99 Pearson correlation with Little's law, which can be used for unsupervised reliability checks of the models. In addition, we present novel data sets that can be used for benchmarking regression algorithms, conditional generative models, and uncertainty estimation methods in machine learning.
RAGServe: Fast Quality-Aware RAG Systems with Configuration Adaptation
RAG (Retrieval Augmented Generation) allows LLMs (large language models) to generate better responses with external knowledge, but using more external knowledge often improves generation quality at the expense of response delay. Prior work either reduces the response delay (through better scheduling of RAG queries) or strives to maximize quality (which involves tuning the RAG workflow), but they fall short in optimizing the tradeoff between the delay and quality of RAG responses. This paper presents RAGServe, the first RAG system that jointly schedules queries and adapts the key RAG configurations of each query, such as the number of retrieved text chunks and synthesis methods, in order to balance quality optimization and response delay reduction. Using 4 popular RAG-QA datasets, we show that compared with the state-of-the-art RAG optimization schemes, RAGServe reduces the generation latency by 1.64-2.54times without sacrificing generation quality.
RouteLLM: Learning to Route LLMs with Preference Data
Large language models (LLMs) exhibit impressive capabilities across a wide range of tasks, yet the choice of which model to use often involves a trade-off between performance and cost. More powerful models, though effective, come with higher expenses, while less capable models are more cost-effective. To address this dilemma, we propose several efficient router models that dynamically select between a stronger and a weaker LLM during inference, aiming to optimize the balance between cost and response quality. We develop a training framework for these routers leveraging human preference data and data augmentation techniques to enhance performance. Our evaluation on widely-recognized benchmarks shows that our approach significantly reduces costs-by over 2 times in certain cases-without compromising the quality of responses. Interestingly, our router models also demonstrate significant transfer learning capabilities, maintaining their performance even when the strong and weak models are changed at test time. This highlights the potential of these routers to provide a cost-effective yet high-performance solution for deploying LLMs.
Exploring Scaling Laws for Local SGD in Large Language Model Training
This paper investigates scaling laws for local SGD in LLM training, a distributed optimization algorithm that facilitates training on loosely connected devices. Through extensive experiments, we show that local SGD achieves competitive results compared to conventional methods, given equivalent model parameters, datasets, and computational resources. Furthermore, we explore the application of local SGD in various practical scenarios, including multi-cluster setups and edge computing environments. Our findings elucidate the necessary conditions for effective multi-cluster LLM training and examine the potential and limitations of leveraging edge computing resources in the LLM training process. This demonstrates its viability as an alternative to single large-cluster training.
EVA-GAN: Enhanced Various Audio Generation via Scalable Generative Adversarial Networks
The advent of Large Models marks a new era in machine learning, significantly outperforming smaller models by leveraging vast datasets to capture and synthesize complex patterns. Despite these advancements, the exploration into scaling, especially in the audio generation domain, remains limited, with previous efforts didn't extend into the high-fidelity (HiFi) 44.1kHz domain and suffering from both spectral discontinuities and blurriness in the high-frequency domain, alongside a lack of robustness against out-of-domain data. These limitations restrict the applicability of models to diverse use cases, including music and singing generation. Our work introduces Enhanced Various Audio Generation via Scalable Generative Adversarial Networks (EVA-GAN), yields significant improvements over previous state-of-the-art in spectral and high-frequency reconstruction and robustness in out-of-domain data performance, enabling the generation of HiFi audios by employing an extensive dataset of 36,000 hours of 44.1kHz audio, a context-aware module, a Human-In-The-Loop artifact measurement toolkit, and expands the model to approximately 200 million parameters. Demonstrations of our work are available at https://double-blind-eva-gan.cc.
Skeleton-of-Thought: Large Language Models Can Do Parallel Decoding
This work aims at decreasing the end-to-end generation latency of large language models (LLMs). One of the major causes of the high generation latency is the sequential decoding approach adopted by almost all state-of-the-art LLMs. In this work, motivated by the thinking and writing process of humans, we propose "Skeleton-of-Thought" (SoT), which guides LLMs to first generate the skeleton of the answer, and then conducts parallel API calls or batched decoding to complete the contents of each skeleton point in parallel. Not only does SoT provide considerable speed-up (up to 2.39x across 11 different LLMs), but it can also potentially improve the answer quality on several question categories in terms of diversity and relevance. SoT is an initial attempt at data-centric optimization for efficiency, and reveal the potential of pushing LLMs to think more like a human for answer quality.
Profiling Neural Blocks and Design Spaces for Mobile Neural Architecture Search
Neural architecture search automates neural network design and has achieved state-of-the-art results in many deep learning applications. While recent literature has focused on designing networks to maximize accuracy, little work has been conducted to understand the compatibility of architecture design spaces to varying hardware. In this paper, we analyze the neural blocks used to build Once-for-All (MobileNetV3), ProxylessNAS and ResNet families, in order to understand their predictive power and inference latency on various devices, including Huawei Kirin 9000 NPU, RTX 2080 Ti, AMD Threadripper 2990WX, and Samsung Note10. We introduce a methodology to quantify the friendliness of neural blocks to hardware and the impact of their placement in a macro network on overall network performance via only end-to-end measurements. Based on extensive profiling results, we derive design insights and apply them to hardware-specific search space reduction. We show that searching in the reduced search space generates better accuracy-latency Pareto frontiers than searching in the original search spaces, customizing architecture search according to the hardware. Moreover, insights derived from measurements lead to notably higher ImageNet top-1 scores on all search spaces investigated.
Farewell to Length Extrapolation, a Training-Free Infinite Context with Finite Attention Scope
The maximum supported context length is a critical bottleneck limiting the practical application of the Large Language Model (LLM). Although existing length extrapolation methods can extend the context of LLMs to millions of tokens, these methods all have an explicit upper bound. In this work, we propose LongCache, a training-free approach that enables LLM to support an infinite context with finite context scope, through full-context cache selection and training-free integration. This effectively frees LLMs from the length extrapolation issue. We validate LongCache on the LongBench and L-Eval and demonstrate its performance is on par with traditional full-attention mechanisms. Furthermore, we have applied LongCache on mainstream LLMs, including LLaMA3 and Mistral-v0.3, enabling them to support context lengths of at least 400K in Needle-In-A-Haystack tests. We will improve the efficiency of LongCache by GPU-aware optimization soon.
Universal Model Routing for Efficient LLM Inference
Large language models' significant advances in capabilities are accompanied by significant increases in inference costs. Model routing is a simple technique for reducing inference cost, wherein one maintains a pool of candidate LLMs, and learns to route each prompt to the smallest feasible LLM. Existing works focus on learning a router for a fixed pool of LLMs. In this paper, we consider the problem of dynamic routing, where new, previously unobserved LLMs are available at test time. We propose a new approach to this problem that relies on representing each LLM as a feature vector, derived based on predictions on a set of representative prompts. Based on this, we detail two effective strategies, relying on cluster-based routing and a learned cluster map respectively. We prove that these strategies are estimates of a theoretically optimal routing rule, and provide an excess risk bound to quantify their errors. Experiments on a range of public benchmarks show the effectiveness of the proposed strategies in routing amongst more than 30 unseen LLMs.
A Multi-task Supervised Compression Model for Split Computing
Split computing (neq split learning) is a promising approach to deep learning models for resource-constrained edge computing systems, where weak sensor (mobile) devices are wirelessly connected to stronger edge servers through channels with limited communication capacity. State-of-theart work on split computing presents methods for single tasks such as image classification, object detection, or semantic segmentation. The application of existing methods to multitask problems degrades model accuracy and/or significantly increase runtime latency. In this study, we propose Ladon, the first multi-task-head supervised compression model for multi-task split computing. Experimental results show that the multi-task supervised compression model either outperformed or rivaled strong lightweight baseline models in terms of predictive performance for ILSVRC 2012, COCO 2017, and PASCAL VOC 2012 datasets while learning compressed representations at its early layers. Furthermore, our models reduced end-to-end latency (by up to 95.4%) and energy consumption of mobile devices (by up to 88.2%) in multi-task split computing scenarios.
Taming Throughput-Latency Tradeoff in LLM Inference with Sarathi-Serve
Each LLM serving request goes through two phases. The first is prefill which processes the entire input prompt to produce one output token and the second is decode which generates the rest of output tokens, one-at-a-time. Prefill iterations have high latency but saturate GPU compute due to parallel processing of the input prompt. In contrast, decode iterations have low latency but also low compute utilization because a decode iteration processes only a single token per request. This makes batching highly effective for decodes and consequently for overall throughput. However, batching multiple requests leads to an interleaving of prefill and decode iterations which makes it challenging to achieve both high throughput and low latency. We introduce an efficient LLM inference scheduler Sarathi-Serve inspired by the techniques we originally proposed for optimizing throughput in Sarathi. Sarathi-Serve leverages chunked-prefills from Sarathi to create stall-free schedules that can add new requests in a batch without pausing ongoing decodes. Stall-free scheduling unlocks the opportunity to improve throughput with large batch sizes while minimizing the effect of batching on latency. Our evaluation shows that Sarathi-Serve improves serving throughput within desired latency SLOs of Mistral-7B by up to 2.6x on a single A100 GPU and up to 6.9x for Falcon-180B on 8 A100 GPUs over Orca and vLLM.
MInference 1.0: Accelerating Pre-filling for Long-Context LLMs via Dynamic Sparse Attention
The computational challenges of Large Language Model (LLM) inference remain a significant barrier to their widespread deployment, especially as prompt lengths continue to increase. Due to the quadratic complexity of the attention computation, it takes 30 minutes for an 8B LLM to process a prompt of 1M tokens (i.e., the pre-filling stage) on a single A100 GPU. Existing methods for speeding up prefilling often fail to maintain acceptable accuracy or efficiency when applied to long-context LLMs. To address this gap, we introduce MInference (Milliontokens Inference), a sparse calculation method designed to accelerate pre-filling of long-sequence processing. Specifically, we identify three unique patterns in long-context attention matrices-the A-shape, Vertical-Slash, and Block-Sparsethat can be leveraged for efficient sparse computation on GPUs. We determine the optimal pattern for each attention head offline and dynamically build sparse indices based on the assigned pattern during inference. With the pattern and sparse indices, we perform efficient sparse attention calculations via our optimized GPU kernels to significantly reduce the latency in the pre-filling stage of long-context LLMs. Our proposed technique can be directly applied to existing LLMs without any modifications to the pre-training setup or additional fine-tuning. By evaluating on a wide range of downstream tasks, including InfiniteBench, RULER, PG-19, and Needle In A Haystack, and models including LLaMA-3-1M, GLM4-1M, Yi-200K, Phi-3-128K, and Qwen2-128K, we demonstrate that MInference effectively reduces inference latency by up to 10x for pre-filling on an A100, while maintaining accuracy. Our code is available at https://aka.ms/MInference.
Current Limitations of Language Models: What You Need is Retrieval
We classify and re-examine some of the current approaches to improve the performance-computes trade-off of language models, including (1) non-causal models (such as masked language models), (2) extension of batch length with efficient attention, (3) recurrence, (4) conditional computation and (5) retrieval. We identify some limitations (1) - (4) suffer from. For example, (1) currently struggles with open-ended text generation with the output loosely constrained by the input as well as performing general textual tasks like GPT-2/3 due to its need for a specific fine-tuning dataset. (2) and (3) do not improve the prediction of the first sim 10^3 tokens. Scaling up a model size (e.g. efficiently with (4)) still results in poor performance scaling for some tasks. We argue (5) would resolve many of these limitations, and it can (a) reduce the amount of supervision and (b) efficiently extend the context over the entire training dataset and the entire past of the current sample. We speculate how to modify MARGE to perform unsupervised causal modeling that achieves (b) with the retriever jointly trained.
Constrained Language Generation with Discrete Diffusion Models
Constraints are critical in text generation as LLM outputs are often unreliable when it comes to ensuring generated outputs adhere to user defined instruction or general safety guidelines. To address this gap, we present Constrained Discrete Diffusion (CDD), a novel method for enforcing constraints on natural language by integrating discrete diffusion models with differentiable optimization. Unlike conventional text generators, which often rely on post-hoc filtering or model retraining for controllable generation, we propose imposing constraints directly into the discrete diffusion sampling process. We illustrate how this technique can be applied to satisfy a variety of natural language constraints, including (i) toxicity mitigation by preventing harmful content from emerging, (ii) character and sequence level lexical constraints, and (iii) novel molecule sequence generation with specific property adherence. Experimental results show that our constraint-aware procedure achieves high fidelity in meeting these requirements while preserving fluency and semantic coherence, outperforming auto-regressive and existing discrete diffusion approaches.
Locret: Enhancing Eviction in Long-Context LLM Inference with Trained Retaining Heads
Large language models (LLMs) have shown remarkable advances in supporting long-context comprehension and processing tasks. However, scaling the generation inference of LLMs to such long contexts incurs significant additional computation load, and demands a substantial GPU memory footprint to maintain the key-value (KV) cache of transformer-based LLMs. Existing KV cache compression methods, such as quantization, face memory bottlenecks as context length increases, while static-sized caches, such as eviction, suffer from inefficient policies. These limitations restrict deployment on consumer-grade devices like a single Nvidia 4090 GPU. To overcome this, we propose Locret, a framework for long-context LLM inference that introduces retaining heads to evaluate the causal importance of KV cache units, allowing for more accurate eviction within a fixed cache size. Locret is fine-tuned on top of the frozen backbone LLM using a minimal amount of data from standard long-context SFT datasets. During inference, we evict low-importance cache units along with a chunked prefill pattern, significantly reducing peak GPU memory usage. We conduct an extensive empirical study to evaluate Locret, where the experimental results show that Locret outperforms the recent competitive approaches, including InfLLM, Quantization, SirLLM, and MInference, in terms of memory efficiency and the quality of generated contents -- Locret achieves over a 20x and 8x KV cache compression ratio compared to the full KV cache for Phi-3-mini-128K and Llama-3.1-8B-instruct. Additionally, Locret can be combined with other methods, such as quantization and token merging. To our knowledge, Locret is the first framework capable of deploying Llama-3.1-8B or similar models on a single Nvidia 4090 GPU, enabling 128K long-context inference without compromising generation quality, and requiring little additional system optimizations.
Challenging the Need for Packet Spraying in Large-Scale Distributed Training
Large-scale distributed training in production datacenters constitutes a challenging workload bottlenecked by network communication. In response, both major industry players (e.g., Ultra Ethernet Consortium) and parts of academia have surprisingly, and almost unanimously, agreed that packet spraying is necessary to improve the performance of large-scale distributed training workloads. In this paper, we challenge this prevailing belief and pose the question: How close can a singlepath transport approach an optimal multipath transport? We demonstrate that singlepath transport (from a NIC's perspective) is sufficient and can perform nearly as well as an ideal multipath transport with packet spraying, particularly in the context of distributed training in leaf-spine topologies. Our assertion is based on four key observations about workloads driven by collective communication patterns: (i) flows within a collective start almost simultaneously, (ii) flow sizes are nearly equal, (iii) the completion time of a collective is more crucial than individual flow completion times, and (iv) flows can be split upon arrival. We analytically prove that singlepath transport, using minimal flow splitting (at the application layer), is equivalent to an ideal multipath transport with packet spraying in terms of maximum congestion. Our preliminary evaluations support our claims. This paper suggests an alternative agenda for developing next-generation transport protocols tailored for large-scale distributed training.
Prompto: An open source library for asynchronous querying of LLM endpoints
Recent surge in Large Language Model (LLM) availability has opened exciting avenues for research. However, efficiently interacting with these models presents a significant hurdle since LLMs often reside on proprietary or self-hosted API endpoints, each requiring custom code for interaction. Conducting comparative studies between different models can therefore be time-consuming and necessitate significant engineering effort, hindering research efficiency and reproducibility. To address these challenges, we present prompto, an open source Python library which facilitates asynchronous querying of LLM endpoints enabling researchers to interact with multiple LLMs concurrently, while maximising efficiency and utilising individual rate limits. Our library empowers researchers and developers to interact with LLMs more effectively and enabling faster experimentation and evaluation. prompto is released with an introductory video (https://youtu.be/-eZAmlV4ypk) under MIT License and is available via GitHub (https://github.com/alan-turing-institute/prompto).
PP-LCNet: A Lightweight CPU Convolutional Neural Network
We propose a lightweight CPU network based on the MKLDNN acceleration strategy, named PP-LCNet, which improves the performance of lightweight models on multiple tasks. This paper lists technologies which can improve network accuracy while the latency is almost constant. With these improvements, the accuracy of PP-LCNet can greatly surpass the previous network structure with the same inference time for classification. As shown in Figure 1, it outperforms the most state-of-the-art models. And for downstream tasks of computer vision, it also performs very well, such as object detection, semantic segmentation, etc. All our experiments are implemented based on PaddlePaddle. Code and pretrained models are available at PaddleClas.
Inference without Interference: Disaggregate LLM Inference for Mixed Downstream Workloads
Transformer-based large language model (LLM) inference serving is now the backbone of many cloud services. LLM inference consists of a prefill phase and a decode phase. However, existing LLM deployment practices often overlook the distinct characteristics of these phases, leading to significant interference. To mitigate interference, our insight is to carefully schedule and group inference requests based on their characteristics. We realize this idea in TetriInfer through three pillars. First, it partitions prompts into fixed-size chunks so that the accelerator always runs close to its computationsaturated limit. Second, it disaggregates prefill and decode instances so each can run independently. Finally, it uses a smart two-level scheduling algorithm augmented with predicted resource usage to avoid decode scheduling hotspots. Results show that TetriInfer improves time-to-first-token (TTFT), job completion time (JCT), and inference efficiency in turns of performance per dollar by a large margin, e.g., it uses 38% less resources all the while lowering average TTFT and average JCT by 97% and 47%, respectively.
Flover: A Temporal Fusion Framework for Efficient Autoregressive Model Parallel Inference
Autoregressive models, despite their commendable performance in a myriad of generative tasks, face challenges stemming from their inherently sequential structure. Inference on these models, by design, harnesses a temporal dependency, where the current token's probability distribution is conditioned on preceding tokens. This inherent characteristic severely impedes computational efficiency during inference as a typical inference request can require more than thousands of tokens, where generating each token requires a load of entire model weights, making the inference more memory-bound. The large overhead becomes profound in real deployment where requests arrive randomly, necessitating various generation lengths. Existing solutions, such as dynamic batching and concurrent instances, introduce significant response delays and bandwidth contention, falling short of achieving optimal latency and throughput. To address these shortcomings, we propose Flover -- a temporal fusion framework for efficiently inferring multiple requests in parallel. We deconstruct the general generation pipeline into pre-processing and token generation, and equip the framework with a dedicated work scheduler for fusing the generation process temporally across all requests. By orchestrating the token-level parallelism, Flover exhibits optimal hardware efficiency and significantly spares the system resources. By further employing a fast buffer reordering algorithm that allows memory eviction of finished tasks, it brings over 11x inference speedup on GPT and 16x on LLAMA compared to the cutting-edge solutions provided by NVIDIA FasterTransformer. Crucially, by leveraging the advanced tensor parallel technique, Flover proves efficacious across diverse computational landscapes, from single-GPU setups to distributed scenarios, thereby offering robust performance optimization that adapts to variable use cases.
HiP Attention: Sparse Sub-Quadratic Attention with Hierarchical Attention Pruning
In modern large language models (LLMs), increasing sequence lengths is a crucial challenge for enhancing their comprehension and coherence in handling complex tasks such as multi-modal question answering. However, handling long context sequences with LLMs is prohibitively costly due to the conventional attention mechanism's quadratic time and space complexity, and the context window size is limited by the GPU memory. Although recent works have proposed linear and sparse attention mechanisms to address this issue, their real-world applicability is often limited by the need to re-train pre-trained models. In response, we propose a novel approach, Hierarchically Pruned Attention (HiP), which simultaneously reduces the training and inference time complexity from O(T^2) to O(T log T) and the space complexity from O(T^2) to O(T). To this end, we devise a dynamic sparse attention mechanism that generates an attention mask through a novel tree-search-like algorithm for a given query on the fly. HiP is training-free as it only utilizes the pre-trained attention scores to spot the positions of the top-k most significant elements for each query. Moreover, it ensures that no token is overlooked, unlike the sliding window-based sub-quadratic attention methods, such as StreamingLLM. Extensive experiments on diverse real-world benchmarks demonstrate that HiP significantly reduces prompt (i.e., prefill) and decoding latency and memory usage while maintaining high generation performance with little or no degradation. As HiP allows pretrained LLMs to scale to millions of tokens on commodity GPUs with no additional engineering due to its easy plug-and-play deployment, we believe that our work will have a large practical impact, opening up the possibility to many long-context LLM applications previously infeasible.
Examining User-Friendly and Open-Sourced Large GPT Models: A Survey on Language, Multimodal, and Scientific GPT Models
Generative pre-trained transformer (GPT) models have revolutionized the field of natural language processing (NLP) with remarkable performance in various tasks and also extend their power to multimodal domains. Despite their success, large GPT models like GPT-4 face inherent limitations such as considerable size, high computational requirements, complex deployment processes, and closed development loops. These constraints restrict their widespread adoption and raise concerns regarding their responsible development and usage. The need for user-friendly, relatively small, and open-sourced alternative GPT models arises from the desire to overcome these limitations while retaining high performance. In this survey paper, we provide an examination of alternative open-sourced models of large GPTs, focusing on user-friendly and relatively small models that facilitate easier deployment and accessibility. Through this extensive survey, we aim to equip researchers, practitioners, and enthusiasts with a thorough understanding of user-friendly and relatively small open-sourced models of large GPTs, their current state, challenges, and future research directions, inspiring the development of more efficient, accessible, and versatile GPT models that cater to the broader scientific community and advance the field of general artificial intelligence. The source contents are continuously updating in https://github.com/GPT-Alternatives/gpt_alternatives.
vTrain: A Simulation Framework for Evaluating Cost-effective and Compute-optimal Large Language Model Training
As large language models (LLMs) become widespread in various application domains, a critical challenge the AI community is facing is how to train these large AI models in a cost-effective manner. Existing LLM training plans typically employ a heuristic based parallel training strategy which is based on empirical observations rather than grounded upon a thorough examination of the search space of LLM parallelization. Such limitation renders existing systems to leave significant performance left on the table, wasting millions of dollars worth of training cost. This paper presents our profiling-driven simulator called vTrain, providing AI practitioners a fast yet accurate software framework to determine an efficient and cost-effective LLM training system configuration. We demonstrate vTrain's practicality through several case studies, e.g., effectively evaluating optimal training parallelization strategies that balances training time and its associated training cost, efficient multi-tenant GPU cluster schedulers targeting multiple LLM training jobs, and determining a compute-optimal LLM model architecture given a fixed compute budget.
Hyper-multi-step: The Truth Behind Difficult Long-context Tasks
Long-context language models (LCLM), characterized by their extensive context window, is becoming increasingly popular. Meanwhile, many long-context benchmarks present challenging tasks that even the most advanced LCLMs struggle to complete. However, the underlying sources of various challenging long-context tasks have seldom been studied. To bridge this gap, we conduct experiments to indicate their difficulty stems primarily from two basic issues: "multi-matching retrieval," which requires the simultaneous retrieval of multiple items, and "logic-based retrieval," which necessitates logical judgment within retrieval criteria. These two problems, while seemingly straightforward, actually exceed the capabilities of LCLMs because they are proven to be hyper-multi-step (demanding numerous steps to solve) in nature. This finding could explain why LLMs struggle with more advanced long-context tasks, providing a more accurate perspective for rethinking solutions for them.
LongCodeBench: Evaluating Coding LLMs at 1M Context Windows
Context lengths for models have grown rapidly, from thousands to millions of tokens in just a few years. The extreme context sizes of modern long-context models have made it difficult to construct realistic long-context benchmarks -- not only due to the cost of collecting million-context tasks but also in identifying realistic scenarios that require significant contexts. We identify code comprehension and repair as a natural testbed and challenge task for long-context models and introduce LongCodeBench (LCB), a benchmark to test LLM coding abilities in long-context scenarios. Our benchmark tests both the comprehension and repair capabilities of LCLMs in realistic and important settings by drawing from real-world GitHub issues and constructing QA (LongCodeQA) and bug fixing (LongSWE-Bench) tasks. We carefully stratify the complexity of our benchmark, enabling us to evaluate models across different scales -- ranging from Qwen2.5 14B Instruct to Google's flagship Gemini model. We find that long-context remains a weakness for all models, with performance drops such as from 29% to 3% for Claude 3.5 Sonnet, or from 70.2% to 40% for Qwen2.5.
Needle Threading: Can LLMs Follow Threads through Near-Million-Scale Haystacks?
As the context limits of Large Language Models (LLMs) increase, the range of possible applications and downstream functions broadens. In many real-world tasks, decisions depend on details scattered across collections of often disparate documents containing mostly irrelevant information. Long-context LLMs appear well-suited to this form of complex information retrieval and reasoning, which has traditionally proven costly and time-consuming. However, although the development of longer context models has seen rapid gains in recent years, our understanding of how effectively LLMs use their context has not kept pace. To address this, we conduct a set of retrieval experiments designed to evaluate the capabilities of 17 leading LLMs, such as their ability to follow threads of information through the context window. Strikingly, we find that many models are remarkably threadsafe: capable of simultaneously following multiple threads without significant loss in performance. Still, for many models, we find the effective context limit is significantly shorter than the supported context length, with accuracy decreasing as the context window grows. Our study also highlights the important point that token counts from different tokenizers should not be directly compared -- they often correspond to substantially different numbers of written characters. We release our code and long-context experimental data.
Beyond Fixed: Variable-Length Denoising for Diffusion Large Language Models
Diffusion Large Language Models (DLLMs) are emerging as a powerful alternative to the dominant Autoregressive Large Language Models, offering efficient parallel generation and capable global context modeling. However, the practical application of DLLMs is hindered by a critical architectural constraint: the need for a statically predefined generation length. This static length allocation leads to a problematic trade-off: insufficient lengths cripple performance on complex tasks, while excessive lengths incur significant computational overhead and sometimes result in performance degradation. While the inference framework is rigid, we observe that the model itself possesses internal signals that correlate with the optimal response length for a given task. To bridge this gap, we leverage these latent signals and introduce DAEDAL, a novel training-free denoising strategy that enables Dynamic Adaptive Length Expansion for Diffusion Large Language Models. DAEDAL operates in two phases: 1) Before the denoising process, DAEDAL starts from a short initial length and iteratively expands it to a coarse task-appropriate length, guided by a sequence completion metric. 2) During the denoising process, DAEDAL dynamically intervenes by pinpointing and expanding insufficient generation regions through mask token insertion, ensuring the final output is fully developed. Extensive experiments on DLLMs demonstrate that DAEDAL achieves performance comparable, and in some cases superior, to meticulously tuned fixed-length baselines, while simultaneously enhancing computational efficiency by achieving a higher effective token ratio. By resolving the static length constraint, DAEDAL unlocks new potential for DLLMs, bridging a critical gap with their Autoregressive counterparts and paving the way for more efficient and capable generation.
SparQ Attention: Bandwidth-Efficient LLM Inference
Generative large language models (LLMs) have opened up numerous novel possibilities, but due to their significant computational requirements their ubiquitous use remains challenging. Some of the most useful applications require processing large numbers of samples at a time and using long contexts, both significantly increasing the memory communication load of the models. We introduce SparQ Attention, a technique for increasing the inference throughput of LLMs by reducing the memory bandwidth requirements within the attention blocks through selective fetching of the cached history. Our proposed technique can be applied directly to off-the-shelf LLMs during inference, without requiring any modification to the pre-training setup or additional fine-tuning. We show how SparQ Attention can decrease the attention memory bandwidth requirements up to eight times without any loss in accuracy by evaluating Llama 2 and Pythia models on a wide range of downstream tasks.
S^{3}: Increasing GPU Utilization during Generative Inference for Higher Throughput
Generating texts with a large language model (LLM) consumes massive amounts of memory. Apart from the already-large model parameters, the key/value (KV) cache that holds information about previous tokens in a sequence can grow to be even larger than the model itself. This problem is exacerbated in one of the current LLM serving frameworks which reserves the maximum sequence length of memory for the KV cache to guarantee generating a complete sequence as they do not know the output sequence length. This restricts us to use a smaller batch size leading to lower GPU utilization and above all, lower throughput. We argue that designing a system with a priori knowledge of the output sequence can mitigate this problem. To this end, we propose S^{3}, which predicts the output sequence length, schedules generation queries based on the prediction to increase device resource utilization and throughput, and handle mispredictions. Our proposed method achieves 6.49times throughput over those systems that assume the worst case for the output sequence length.
Infinite-LLM: Efficient LLM Service for Long Context with DistAttention and Distributed KVCache
The rapid proliferation of Large Language Models (LLMs) has been a driving force in the growth of cloud-based LLM services, which are now integral to advancing AI applications. However, the dynamic auto-regressive nature of LLM service, along with the need to support exceptionally long context lengths, demands the flexible allocation and release of substantial resources. This presents considerable challenges in designing cloud-based LLM service systems, where inefficient management can lead to performance degradation or resource wastage. In response to these challenges, this work introduces DistAttention, a novel distributed attention algorithm that segments the KV Cache into smaller, manageable units, enabling distributed processing and storage of the attention module. Based on that, we propose DistKV-LLM, a distributed LLM serving system that dynamically manages KV Cache and effectively orchestrates all accessible GPU and CPU memories spanning across the data center. This ensures a high-performance LLM service on the cloud, adaptable to a broad range of context lengths. Validated in a cloud environment with 32 NVIDIA A100 GPUs in configurations from 2 to 32 instances, our system exhibited 1.03-2.4x end-to-end throughput improvements and supported context lengths 2-19x longer than current state-of-the-art LLM service systems, as evidenced by extensive testing across 18 datasets with context lengths up to 1,900K.
WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit
In this paper, we propose an open source, production first, and production ready speech recognition toolkit called WeNet in which a new two-pass approach is implemented to unify streaming and non-streaming end-to-end (E2E) speech recognition in a single model. The main motivation of WeNet is to close the gap between the research and the production of E2E speechrecognition models. WeNet provides an efficient way to ship ASR applications in several real-world scenarios, which is the main difference and advantage to other open source E2E speech recognition toolkits. In our toolkit, a new two-pass method is implemented. Our method propose a dynamic chunk-based attention strategy of the the transformer layers to allow arbitrary right context length modifies in hybrid CTC/attention architecture. The inference latency could be easily controlled by only changing the chunk size. The CTC hypotheses are then rescored by the attention decoder to get the final result. Our experiments on the AISHELL-1 dataset using WeNet show that, our model achieves 5.03\% relative character error rate (CER) reduction in non-streaming ASR compared to a standard non-streaming transformer. After model quantification, our model perform reasonable RTF and latency.
PICE: A Semantic-Driven Progressive Inference System for LLM Serving in Cloud-Edge Networks
Large language models (LLMs), while driving a new wave of interactive AI applications across numerous domains, suffer from high inference costs and heavy cloud dependency. Motivated by the redundancy phenomenon in linguistics, we propose a progressive inference paradigm over cloud and edge, i.e., firstly generating the sketch of the answer by LLMs at cloud, and then conducting parallel extension to fill in details by small models (SLMs) at edge. Progressive inference offers potential benefits to improve throughput and reduce inference latency while facing key implementation challenges, including decreased response quality from SLMs, a tradeoff between the brevity and comprehensiveness of sketches, as well as increased latency caused by network transmission and edge inference. In this work, we propose and implement PICE, an LLM serving system with semantic-level cloud-edge collaboration, enhancing inference throughput and quality through dynamic inference task scheduling, ensemble learning, and parallel edge inference. Extensive testbed experiments illustrate that our approach achieves 1.5-2times throughput enhancement and up to 43% latency reduction, while also potentially enhancing the quality compared to SOTA systems.
NoLiMa: Long-Context Evaluation Beyond Literal Matching
Recent large language models (LLMs) support long contexts ranging from 128K to 1M tokens. A popular method for evaluating these capabilities is the needle-in-a-haystack (NIAH) test, which involves retrieving a "needle" (relevant information) from a "haystack" (long irrelevant context). Extensions of this approach include increasing distractors, fact chaining, and in-context reasoning. However, in these benchmarks, models can exploit existing literal matches between the needle and haystack to simplify the task. To address this, we introduce NoLiMa, a benchmark extending NIAH with a carefully designed needle set, where questions and needles have minimal lexical overlap, requiring models to infer latent associations to locate the needle within the haystack. We evaluate 12 popular LLMs that claim to support contexts of at least 128K tokens. While they perform well in short contexts (<1K), performance degrades significantly as context length increases. At 32K, for instance, 10 models drop below 50% of their strong short-length baselines. Even GPT-4o, one of the top-performing exceptions, experiences a reduction from an almost-perfect baseline of 99.3% to 69.7%. Our analysis suggests these declines stem from the increased difficulty the attention mechanism faces in longer contexts when literal matches are absent, making it harder to retrieve relevant information.
ResourceSync: Leveraging Sitemaps for Resource Synchronization
Many applications need up-to-date copies of collections of changing Web resources. Such synchronization is currently achieved using ad-hoc or proprietary solutions. We propose ResourceSync, a general Web resource synchronization protocol that leverages XML Sitemaps. It provides a set of capabilities that can be combined in a modular manner to meet local or community requirements. We report on work to implement this protocol for arXiv.org and also provide an experimental prototype for the English Wikipedia as well as a client API.
Autoregressive Large Language Models are Computationally Universal
We show that autoregressive decoding of a transformer-based language model can realize universal computation, without external intervention or modification of the model's weights. Establishing this result requires understanding how a language model can process arbitrarily long inputs using a bounded context. For this purpose, we consider a generalization of autoregressive decoding where, given a long input, emitted tokens are appended to the end of the sequence as the context window advances. We first show that the resulting system corresponds to a classical model of computation, a Lag system, that has long been known to be computationally universal. By leveraging a new proof, we show that a universal Turing machine can be simulated by a Lag system with 2027 production rules. We then investigate whether an existing large language model can simulate the behaviour of such a universal Lag system. We give an affirmative answer by showing that a single system-prompt can be developed for gemini-1.5-pro-001 that drives the model, under deterministic (greedy) decoding, to correctly apply each of the 2027 production rules. We conclude that, by the Church-Turing thesis, prompted gemini-1.5-pro-001 with extended autoregressive (greedy) decoding is a general purpose computer.
dKV-Cache: The Cache for Diffusion Language Models
Diffusion Language Models (DLMs) have been seen as a promising competitor for autoregressive language models. However, diffusion language models have long been constrained by slow inference. A core challenge is that their non-autoregressive architecture and bidirectional attention preclude the key-value cache that accelerates decoding. We address this bottleneck by proposing a KV-cache-like mechanism, delayed KV-Cache, for the denoising process of DLMs. Our approach is motivated by the observation that different tokens have distinct representation dynamics throughout the diffusion process. Accordingly, we propose a delayed and conditioned caching strategy for key and value states. We design two complementary variants to cache key and value step-by-step: (1) dKV-Cache-Decode, which provides almost lossless acceleration, and even improves performance on long sequences, suggesting that existing DLMs may under-utilise contextual information during inference. (2) dKV-Cache-Greedy, which has aggressive caching with reduced lifespan, achieving higher speed-ups with quadratic time complexity at the cost of some performance degradation. dKV-Cache, in final, achieves from 2-10x speedup in inference, largely narrowing the gap between ARs and DLMs. We evaluate our dKV-Cache on several benchmarks, delivering acceleration across general language understanding, mathematical, and code-generation benchmarks. Experiments demonstrate that cache can also be used in DLMs, even in a training-free manner from current DLMs.
LLMtimesMapReduce-V2: Entropy-Driven Convolutional Test-Time Scaling for Generating Long-Form Articles from Extremely Long Resources
Long-form generation is crucial for a wide range of practical applications, typically categorized into short-to-long and long-to-long generation. While short-to-long generations have received considerable attention, generating long texts from extremely long resources remains relatively underexplored. The primary challenge in long-to-long generation lies in effectively integrating and analyzing relevant information from extensive inputs, which remains difficult for current large language models (LLMs). In this paper, we propose LLMtimesMapReduce-V2, a novel test-time scaling strategy designed to enhance the ability of LLMs to process extremely long inputs. Drawing inspiration from convolutional neural networks, which iteratively integrate local features into higher-level global representations, LLMtimesMapReduce-V2 utilizes stacked convolutional scaling layers to progressively expand the understanding of input materials. Both quantitative and qualitative experimental results demonstrate that our approach substantially enhances the ability of LLMs to process long inputs and generate coherent, informative long-form articles, outperforming several representative baselines.