new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Aug 13

Exploring Synaptic Resonance in Large Language Models: A Novel Approach to Contextual Memory Integration

Contextual memory integration remains a high challenge in the development of language models, particularly in tasks that require maintaining coherence over extended sequences. Traditional approaches, such as self-attention mechanisms and memory-augmented architectures, often prioritize short-term dependencies, leading to fragmentation and inconsistency in long-range contextual understanding. Inspired by principles of synaptic plasticity observed in biological neural systems, a novel mechanism, Synaptic Resonance, is introduced to dynamically reinforce relevant memory pathways during training and inference. Unlike static memory representations, this mechanism continuously adjusts synaptic weight matrices based on contextual relevance, allowing for improved information retention without excessive computational overhead. Evaluations conducted on an open-source language model demonstrate reductions in perplexity, enhancements in contextual coherence, and increased robustness against input noise, highlighting the effectiveness of reinforcement-driven memory modulation. Comparative analysis against baseline models further reveals that the proposed approach achieves higher memory retention efficiency while maintaining computational feasibility. The architectural modifications integrate seamlessly into existing transformer-based frameworks, ensuring stable convergence and efficient inference without sacrificing scalability. Applications benefiting from improved long-term contextual consistency, such as dialogue systems and document summarization, stand to gain from this approach. Empirical findings suggest that dynamically reinforced memory pathways offer a promising alternative to conventional memory mechanisms, addressing longstanding limitations in extended sequence modeling.

FindingDory: A Benchmark to Evaluate Memory in Embodied Agents

Large vision-language models have recently demonstrated impressive performance in planning and control tasks, driving interest in their application to real-world robotics. However, deploying these models for reasoning in embodied contexts is limited by their ability to incorporate long-term experience collected across multiple days and represented by vast collections of images. Current VLMs typically struggle to process more than a few hundred images concurrently, highlighting the need for more efficient mechanisms to handle long-term memory in embodied settings. To effectively evaluate these models for long-horizon control, a benchmark must specifically target scenarios where memory is crucial for success. Existing long-video QA benchmarks overlook embodied challenges like object manipulation and navigation, which demand low-level skills and fine-grained reasoning over past interactions. Moreover, effective memory integration in embodied agents involves both recalling relevant historical information and executing actions based on that information, making it essential to study these aspects together rather than in isolation. In this work, we introduce a new benchmark for long-range embodied tasks in the Habitat simulator. This benchmark evaluates memory-based capabilities across 60 tasks requiring sustained engagement and contextual awareness in an environment. The tasks can also be procedurally extended to longer and more challenging versions, enabling scalable evaluation of memory and reasoning. We also present baselines that integrate state-of-the-art VLMs with low level navigation policies, assessing their performance on these memory-intensive tasks and highlight areas for improvement.

Task Memory Engine (TME): A Structured Memory Framework with Graph-Aware Extensions for Multi-Step LLM Agent Tasks

Large Language Models (LLMs) are increasingly used as autonomous agents for multi-step tasks. However, most existing frameworks fail to maintain a structured understanding of the task state, often relying on linear prompt concatenation or shallow memory buffers. This leads to brittle performance, frequent hallucinations, and poor long-range coherence. In this work, we propose the Task Memory Engine (TME), a lightweight and structured memory module that tracks task execution using a hierarchical Task Memory Tree (TMT). Each node in the tree corresponds to a task step, storing relevant input, output, status, and sub-task relationships. We introduce a prompt synthesis method that dynamically generates LLM prompts based on the active node path, significantly improving execution consistency and contextual grounding. Through case studies and comparative experiments on multi-step agent tasks, we demonstrate that TME leads to better task completion accuracy and more interpretable behavior with minimal implementation overhead. A reference implementation of the core TME components is available at https://github.com/biubiutomato/TME-Agent, including basic examples and structured memory integration. While the current implementation uses a tree-based structure, TME is designed to be graph-aware, supporting reusable substeps, converging task paths, and shared dependencies. This lays the groundwork for future DAG-based memory architectures.

Is the Reversal Curse a Binding Problem? Uncovering Limitations of Transformers from a Basic Generalization Failure

Despite their impressive capabilities, LLMs exhibit a basic generalization failure known as the Reversal Curse, where they struggle to learn reversible factual associations. Understanding why this occurs could help identify weaknesses in current models and advance their generalization and robustness. In this paper, we conjecture that the Reversal Curse in LLMs is a manifestation of the long-standing binding problem in cognitive science, neuroscience and AI. Specifically, we identify two primary causes of the Reversal Curse stemming from transformers' limitations in conceptual binding: the inconsistency and entanglements of concept representations. We perform a series of experiments that support these conjectures. Our exploration leads to a model design based on JEPA (Joint-Embedding Predictive Architecture) that for the first time breaks the Reversal Curse without side-stepping it with specialized data augmentation or non-causal masking, and moreover, generalization could be further improved by incorporating special memory layers that support disentangled concept representations. We demonstrate that the skill of reversal unlocks a new kind of memory integration that enables models to solve large-scale arithmetic reasoning problems via parametric forward-chaining, outperforming frontier LLMs based on non-parametric memory and prolonged explicit reasoning.

Thinking Beyond Tokens: From Brain-Inspired Intelligence to Cognitive Foundations for Artificial General Intelligence and its Societal Impact

Can machines truly think, reason and act in domains like humans? This enduring question continues to shape the pursuit of Artificial General Intelligence (AGI). Despite the growing capabilities of models such as GPT-4.5, DeepSeek, Claude 3.5 Sonnet, Phi-4, and Grok 3, which exhibit multimodal fluency and partial reasoning, these systems remain fundamentally limited by their reliance on token-level prediction and lack of grounded agency. This paper offers a cross-disciplinary synthesis of AGI development, spanning artificial intelligence, cognitive neuroscience, psychology, generative models, and agent-based systems. We analyze the architectural and cognitive foundations of general intelligence, highlighting the role of modular reasoning, persistent memory, and multi-agent coordination. In particular, we emphasize the rise of Agentic RAG frameworks that combine retrieval, planning, and dynamic tool use to enable more adaptive behavior. We discuss generalization strategies, including information compression, test-time adaptation, and training-free methods, as critical pathways toward flexible, domain-agnostic intelligence. Vision-Language Models (VLMs) are reexamined not just as perception modules but as evolving interfaces for embodied understanding and collaborative task completion. We also argue that true intelligence arises not from scale alone but from the integration of memory and reasoning: an orchestration of modular, interactive, and self-improving components where compression enables adaptive behavior. Drawing on advances in neurosymbolic systems, reinforcement learning, and cognitive scaffolding, we explore how recent architectures begin to bridge the gap between statistical learning and goal-directed cognition. Finally, we identify key scientific, technical, and ethical challenges on the path to AGI.

Beyond Single-Turn: A Survey on Multi-Turn Interactions with Large Language Models

Recent advancements in large language models (LLMs) have revolutionized their ability to handle single-turn tasks, yet real-world applications demand sophisticated multi-turn interactions. This survey provides a comprehensive review of recent advancements in evaluating and enhancing multi-turn interactions in LLMs. Focusing on task-specific scenarios, from instruction following in diverse domains such as math and coding to complex conversational engagements in roleplay, healthcare, education, and even adversarial jailbreak settings, we systematically examine the challenges of maintaining context, coherence, fairness, and responsiveness over prolonged dialogues. The paper organizes current benchmarks and datasets into coherent categories that reflect the evolving landscape of multi-turn dialogue evaluation. In addition, we review a range of enhancement methodologies under multi-turn settings, including model-centric strategies (contextual learning, supervised fine-tuning, reinforcement learning, and new architectures), external integration approaches (memory-augmented, retrieval-based methods, and knowledge graph), and agent-based techniques for collaborative interactions. Finally, we discuss open challenges and propose future directions for research to further advance the robustness and effectiveness of multi-turn interactions in LLMs. Related resources and papers are available at https://github.com/yubol-cmu/Awesome-Multi-Turn-LLMs.

LLM in a flash: Efficient Large Language Model Inference with Limited Memory

Large language models (LLMs) are central to modern natural language processing, delivering exceptional performance in various tasks. However, their intensive computational and memory requirements present challenges, especially for devices with limited DRAM capacity. This paper tackles the challenge of efficiently running LLMs that exceed the available DRAM capacity by storing the model parameters on flash memory but bringing them on demand to DRAM. Our method involves constructing an inference cost model that harmonizes with the flash memory behavior, guiding us to optimize in two critical areas: reducing the volume of data transferred from flash and reading data in larger, more contiguous chunks. Within this flash memory-informed framework, we introduce two principal techniques. First, "windowing'" strategically reduces data transfer by reusing previously activated neurons, and second, "row-column bundling", tailored to the sequential data access strengths of flash memory, increases the size of data chunks read from flash memory. These methods collectively enable running models up to twice the size of the available DRAM, with a 4-5x and 20-25x increase in inference speed compared to naive loading approaches in CPU and GPU, respectively. Our integration of sparsity awareness, context-adaptive loading, and a hardware-oriented design paves the way for effective inference of LLMs on devices with limited memory.

HippoMM: Hippocampal-inspired Multimodal Memory for Long Audiovisual Event Understanding

Comprehending extended audiovisual experiences remains a fundamental challenge for computational systems. Current approaches struggle with temporal integration and cross-modal associations that humans accomplish effortlessly through hippocampal-cortical networks. We introduce HippoMM, a biologically-inspired architecture that transforms hippocampal mechanisms into computational advantages for multimodal understanding. HippoMM implements three key innovations: (i) hippocampus-inspired pattern separation and completion specifically designed for continuous audiovisual streams, (ii) short-to-long term memory consolidation that transforms perceptual details into semantic abstractions, and (iii) cross-modal associative retrieval pathways enabling modality-crossing queries. Unlike existing retrieval systems with static indexing schemes, HippoMM dynamically forms integrated episodic representations through adaptive temporal segmentation and dual-process memory encoding. Evaluations on our challenging HippoVlog benchmark demonstrate that HippoMM significantly outperforms state-of-the-art approaches (78.2% vs. 64.2% accuracy) while providing substantially faster response times (20.4s vs. 112.5s). Our results demonstrate that translating neuroscientific memory principles into computational architectures provides a promising foundation for next-generation multimodal understanding systems. The code and benchmark dataset are publicly available at https://github.com/linyueqian/HippoMM.

State and Memory is All You Need for Robust and Reliable AI Agents

Large language models (LLMs) have enabled powerful advances in natural language understanding and generation. Yet their application to complex, real-world scientific workflows remain limited by challenges in memory, planning, and tool integration. Here, we introduce SciBORG (Scientific Bespoke Artificial Intelligence Agents Optimized for Research Goals), a modular agentic framework that allows LLM-based agents to autonomously plan, reason, and achieve robust and reliable domain-specific task execution. Agents are constructed dynamically from source code documentation and augmented with finite-state automata (FSA) memory, enabling persistent state tracking and context-aware decision-making. This approach eliminates the need for manual prompt engineering and allows for robust, scalable deployment across diverse applications via maintaining context across extended workflows and to recover from tool or execution failures. We validate SciBORG through integration with both physical and virtual hardware, such as microwave synthesizers for executing user-specified reactions, with context-aware decision making and demonstrate its use in autonomous multi-step bioassay retrieval from the PubChem database utilizing multi-step planning, reasoning, agent-to-agent communication and coordination for execution of exploratory tasks. Systematic benchmarking shows that SciBORG agents achieve reliable execution, adaptive planning, and interpretable state transitions. Our results show that memory and state awareness are critical enablers of agentic planning and reliability, offering a generalizable foundation for deploying AI agents in complex environments.

ZO2: Scalable Zeroth-Order Fine-Tuning for Extremely Large Language Models with Limited GPU Memory

Fine-tuning large pre-trained LLMs generally demands extensive GPU memory. Traditional first-order optimizers like SGD encounter substantial difficulties due to increased memory requirements from storing activations and gradients during both the forward and backward phases as the model size expands. Alternatively, zeroth-order (ZO) techniques can compute gradients using just forward operations, eliminating the need to store activations. Furthermore, by leveraging CPU capabilities, it's feasible to enhance both the memory and processing power available to a single GPU. We propose a novel framework, ZO2 (Zeroth-Order Offloading), for efficient zeroth-order fine-tuning of LLMs with only limited GPU memory. Our framework dynamically shifts model parameters between the CPU and GPU as required, optimizing computation flow and maximizing GPU usage by minimizing downtime. This integration of parameter adjustments with ZO's double forward operations reduces unnecessary data movement, enhancing the fine-tuning efficacy. Additionally, our framework supports an innovative low-bit precision approach in AMP mode to streamline data exchanges between the CPU and GPU. Employing this approach allows us to fine-tune extraordinarily large models, such as the OPT-175B with more than 175 billion parameters, on a mere 18GB GPU--achievements beyond the reach of traditional methods. Moreover, our framework achieves these results with almost no additional time overhead and absolutely no accuracy loss compared to standard zeroth-order methods. ZO2's code has been open-sourced in https://github.com/liangyuwang/zo2.

Enabling Flexible Multi-LLM Integration for Scalable Knowledge Aggregation

Large language models (LLMs) have shown remarkable promise but remain challenging to continually improve through traditional finetuning, particularly when integrating capabilities from other specialized LLMs. Popular methods like ensemble and weight merging require substantial memory and struggle to adapt to changing data environments. Recent efforts have transferred knowledge from multiple LLMs into a single target model; however, they suffer from interference and degraded performance among tasks, largely due to limited flexibility in candidate selection and training pipelines. To address these issues, we propose a framework that adaptively selects and aggregates knowledge from diverse LLMs to build a single, stronger model, avoiding the high memory overhead of ensemble and inflexible weight merging. Specifically, we design an adaptive selection network that identifies the most relevant source LLMs based on their scores, thereby reducing knowledge interference. We further propose a dynamic weighted fusion strategy that accounts for the inherent strengths of candidate LLMs, along with a feedback-driven loss function that prevents the selector from converging on a single subset of sources. Experimental results demonstrate that our method can enable a more stable and scalable knowledge aggregation process while reducing knowledge interference by up to 50% compared to existing approaches. Code is avaliable at https://github.com/ZLKong/LLM_Integration

AutoRedTeamer: Autonomous Red Teaming with Lifelong Attack Integration

As large language models (LLMs) become increasingly capable, security and safety evaluation are crucial. While current red teaming approaches have made strides in assessing LLM vulnerabilities, they often rely heavily on human input and lack comprehensive coverage of emerging attack vectors. This paper introduces AutoRedTeamer, a novel framework for fully automated, end-to-end red teaming against LLMs. AutoRedTeamer combines a multi-agent architecture with a memory-guided attack selection mechanism to enable continuous discovery and integration of new attack vectors. The dual-agent framework consists of a red teaming agent that can operate from high-level risk categories alone to generate and execute test cases and a strategy proposer agent that autonomously discovers and implements new attacks by analyzing recent research. This modular design allows AutoRedTeamer to adapt to emerging threats while maintaining strong performance on existing attack vectors. We demonstrate AutoRedTeamer's effectiveness across diverse evaluation settings, achieving 20% higher attack success rates on HarmBench against Llama-3.1-70B while reducing computational costs by 46% compared to existing approaches. AutoRedTeamer also matches the diversity of human-curated benchmarks in generating test cases, providing a comprehensive, scalable, and continuously evolving framework for evaluating the security of AI systems.

AI-native Memory: A Pathway from LLMs Towards AGI

Large language models (LLMs) have demonstrated the world with the sparks of artificial general intelligence (AGI). One opinion, especially from some startups working on LLMs, argues that an LLM with nearly unlimited context length can realize AGI. However, they might be too optimistic about the long-context capability of (existing) LLMs -- (1) Recent literature has shown that their effective context length is significantly smaller than their claimed context length; and (2) Our reasoning-in-a-haystack experiments further demonstrate that simultaneously finding the relevant information from a long context and conducting (simple) reasoning is nearly impossible. In this paper, we envision a pathway from LLMs to AGI through the integration of memory. We believe that AGI should be a system where LLMs serve as core processors. In addition to raw data, the memory in this system would store a large number of important conclusions derived from reasoning processes. Compared with retrieval-augmented generation (RAG) that merely processing raw data, this approach not only connects semantically related information closer, but also simplifies complex inferences at the time of querying. As an intermediate stage, the memory will likely be in the form of natural language descriptions, which can be directly consumed by users too. Ultimately, every agent/person should have its own large personal model, a deep neural network model (thus AI-native) that parameterizes and compresses all types of memory, even the ones cannot be described by natural languages. Finally, we discuss the significant potential of AI-native memory as the transformative infrastructure for (proactive) engagement, personalization, distribution, and social in the AGI era, as well as the incurred privacy and security challenges with preliminary solutions.

From RAG to Memory: Non-Parametric Continual Learning for Large Language Models

Our ability to continuously acquire, organize, and leverage knowledge is a key feature of human intelligence that AI systems must approximate to unlock their full potential. Given the challenges in continual learning with large language models (LLMs), retrieval-augmented generation (RAG) has become the dominant way to introduce new information. However, its reliance on vector retrieval hinders its ability to mimic the dynamic and interconnected nature of human long-term memory. Recent RAG approaches augment vector embeddings with various structures like knowledge graphs to address some of these gaps, namely sense-making and associativity. However, their performance on more basic factual memory tasks drops considerably below standard RAG. We address this unintended deterioration and propose HippoRAG 2, a framework that outperforms standard RAG comprehensively on factual, sense-making, and associative memory tasks. HippoRAG 2 builds upon the Personalized PageRank algorithm used in HippoRAG and enhances it with deeper passage integration and more effective online use of an LLM. This combination pushes this RAG system closer to the effectiveness of human long-term memory, achieving a 7% improvement in associative memory tasks over the state-of-the-art embedding model while also exhibiting superior factual knowledge and sense-making memory capabilities. This work paves the way for non-parametric continual learning for LLMs. Our code and data will be released at https://github.com/OSU-NLP-Group/HippoRAG.

Resource-Aware Arabic LLM Creation: Model Adaptation, Integration, and Multi-Domain Testing

This paper presents a novel approach to fine-tuning the Qwen2-1.5B model for Arabic language processing using Quantized Low-Rank Adaptation (QLoRA) on a system with only 4GB VRAM. We detail the process of adapting this large language model to the Arabic domain, using diverse datasets including Bactrian, OpenAssistant, and Wikipedia Arabic corpora. Our methodology involves custom data preprocessing, model configuration, and training optimization techniques such as gradient accumulation and mixed-precision training. We address specific challenges in Arabic NLP, including morphological complexity, dialectal variations, and diacritical mark handling. Experimental results over 10,000 training steps show significant performance improvements, with the final loss converging to 0.1083. We provide comprehensive analysis of GPU memory usage, training dynamics, and model evaluation across various Arabic language tasks, including text classification, question answering, and dialect identification. The fine-tuned model demonstrates robustness to input perturbations and improved handling of Arabic-specific linguistic phenomena. This research contributes to multilingual AI by demonstrating a resource-efficient approach for creating specialized language models, potentially democratizing access to advanced NLP technologies for diverse linguistic communities. Our work paves the way for future research in low-resource language adaptation and efficient fine-tuning of large language models.

Understanding AI Cognition: A Neural Module for Inference Inspired by Human Memory Mechanisms

How humans and machines make sense of current inputs for relation reasoning and question-answering while putting the perceived information into context of our past memories, has been a challenging conundrum in cognitive science and artificial intelligence. Inspired by human brain's memory system and cognitive architectures, we propose a PMI framework that consists of perception, memory and inference components. Notably, the memory module comprises working and long-term memory, with the latter endowed with a higher-order structure to retain more accumulated knowledge and experiences. Through a differentiable competitive write access, current perceptions update working memory, which is later merged with long-term memory via outer product associations, averting memory overflow and minimizing information conflicts. In the inference module, relevant information is retrieved from two separate memory origins and associatively integrated to attain a more comprehensive and precise interpretation of current perceptions. We exploratively apply our PMI to improve prevailing Transformers and CNN models on question-answering tasks like bAbI-20k and Sort-of-CLEVR datasets, as well as relation calculation and image classification tasks, and in each case, our PMI enhancements consistently outshine their original counterparts significantly. Visualization analyses reveal that memory consolidation, along with the interaction and integration of information from diverse memory sources, substantially contributes to the model effectiveness on inference tasks.

Decoding the Enigma: Benchmarking Humans and AIs on the Many Facets of Working Memory

Working memory (WM), a fundamental cognitive process facilitating the temporary storage, integration, manipulation, and retrieval of information, plays a vital role in reasoning and decision-making tasks. Robust benchmark datasets that capture the multifaceted nature of WM are crucial for the effective development and evaluation of AI WM models. Here, we introduce a comprehensive Working Memory (WorM) benchmark dataset for this purpose. WorM comprises 10 tasks and a total of 1 million trials, assessing 4 functionalities, 3 domains, and 11 behavioral and neural characteristics of WM. We jointly trained and tested state-of-the-art recurrent neural networks and transformers on all these tasks. We also include human behavioral benchmarks as an upper bound for comparison. Our results suggest that AI models replicate some characteristics of WM in the brain, most notably primacy and recency effects, and neural clusters and correlates specialized for different domains and functionalities of WM. In the experiments, we also reveal some limitations in existing models to approximate human behavior. This dataset serves as a valuable resource for communities in cognitive psychology, neuroscience, and AI, offering a standardized framework to compare and enhance WM models, investigate WM's neural underpinnings, and develop WM models with human-like capabilities. Our source code and data are available at https://github.com/ZhangLab-DeepNeuroCogLab/WorM.

The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks

Biological cortical neurons are remarkably sophisticated computational devices, temporally integrating their vast synaptic input over an intricate dendritic tree, subject to complex, nonlinearly interacting internal biological processes. A recent study proposed to characterize this complexity by fitting accurate surrogate models to replicate the input-output relationship of a detailed biophysical cortical pyramidal neuron model and discovered it needed temporal convolutional networks (TCN) with millions of parameters. Requiring these many parameters, however, could stem from a misalignment between the inductive biases of the TCN and cortical neuron's computations. In light of this, and to explore the computational implications of leaky memory units and nonlinear dendritic processing, we introduce the Expressive Leaky Memory (ELM) neuron model, a biologically inspired phenomenological model of a cortical neuron. Remarkably, by exploiting such slowly decaying memory-like hidden states and two-layered nonlinear integration of synaptic input, our ELM neuron can accurately match the aforementioned input-output relationship with under ten thousand trainable parameters. To further assess the computational ramifications of our neuron design, we evaluate it on various tasks with demanding temporal structures, including the Long Range Arena (LRA) datasets, as well as a novel neuromorphic dataset based on the Spiking Heidelberg Digits dataset (SHD-Adding). Leveraging a larger number of memory units with sufficiently long timescales, and correspondingly sophisticated synaptic integration, the ELM neuron displays substantial long-range processing capabilities, reliably outperforming the classic Transformer or Chrono-LSTM architectures on LRA, and even solving the Pathfinder-X task with over 70% accuracy (16k context length).

Evaluating Memory in LLM Agents via Incremental Multi-Turn Interactions

Recent benchmarks for Large Language Model (LLM) agents primarily focus on evaluating reasoning, planning, and execution capabilities, while another critical component-memory, encompassing how agents memorize, update, and retrieve long-term information-is under-evaluated due to the lack of benchmarks. We term agents with memory mechanisms as memory agents. In this paper, we identify four core competencies essential for memory agents: accurate retrieval, test-time learning, long-range understanding, and conflict resolution. Existing datasets either rely on limited context lengths or are tailored for static, long-context settings like book-based QA, which do not reflect the interactive, multi-turn nature of memory agents that incrementally accumulate information. Furthermore, no existing benchmarks cover all four competencies. Therefore, we introduce MemoryAgentBench, a new benchmark specifically designed for memory agents. Our benchmark combines reformulated existing datasets with newly constructed ones, covering the above four memory competencies, providing a systematic and challenging testbed for assessing memory quality. We evaluate a diverse set of memory agents, ranging from simple context-based and retrieval-augmented generation (RAG) systems to advanced agents with external memory modules and tool integration. Empirical results reveal that current methods fall short of mastering all four competencies, underscoring the need for further research into comprehensive memory mechanisms for LLM agents.

Hardware-Aware Parallel Prompt Decoding for Memory-Efficient Acceleration of LLM Inference

The auto-regressive decoding of Large Language Models (LLMs) results in significant overheads in their hardware performance. While recent research has investigated various speculative decoding techniques for multi-token generation, these efforts have primarily focused on improving processing speed such as throughput. Crucially, they often neglect other metrics essential for real-life deployments, such as memory consumption and training cost. To overcome these limitations, we propose a novel parallel prompt decoding that requires only 0.0002% trainable parameters, enabling efficient training on a single A100-40GB GPU in just 16 hours. Inspired by the human natural language generation process, PPD approximates outputs generated at future timesteps in parallel by using multiple prompt tokens. This approach partially recovers the missing conditional dependency information necessary for multi-token generation, resulting in up to a 28% higher acceptance rate for long-range predictions. Furthermore, we present a hardware-aware dynamic sparse tree technique that adaptively optimizes this decoding scheme to fully leverage the computational capacities on different GPUs. Through extensive experiments across LLMs ranging from MobileLlama to Vicuna-13B on a wide range of benchmarks, our approach demonstrates up to 2.49times speedup and maintains a minimal runtime memory overhead of just 0.0004%. More importantly, our parallel prompt decoding can serve as an orthogonal optimization for synergistic integration with existing speculative decoding, showing up to 1.22times further speed improvement. Our code is available at https://github.com/hmarkc/parallel-prompt-decoding.

Towards Adaptive Memory-Based Optimization for Enhanced Retrieval-Augmented Generation

Retrieval-Augmented Generation (RAG), by integrating non-parametric knowledge from external knowledge bases into models, has emerged as a promising approach to enhancing response accuracy while mitigating factual errors and hallucinations. This method has been widely applied in tasks such as Question Answering (QA). However, existing RAG methods struggle with open-domain QA tasks because they perform independent retrieval operations and directly incorporate the retrieved information into generation without maintaining a summarizing memory or using adaptive retrieval strategies, leading to noise from redundant information and insufficient information integration. To address these challenges, we propose Adaptive memory-based optimization for enhanced RAG (Amber) for open-domain QA tasks, which comprises an Agent-based Memory Updater, an Adaptive Information Collector, and a Multi-granular Content Filter, working together within an iterative memory updating paradigm. Specifically, Amber integrates and optimizes the language model's memory through a multi-agent collaborative approach, ensuring comprehensive knowledge integration from previous retrieval steps. It dynamically adjusts retrieval queries and decides when to stop retrieval based on the accumulated knowledge, enhancing retrieval efficiency and effectiveness. Additionally, it reduces noise by filtering irrelevant content at multiple levels, retaining essential information to improve overall model performance. We conduct extensive experiments on several open-domain QA datasets, and the results demonstrate the superiority and effectiveness of our method and its components. The source code is available https://anonymous.4open.science/r/Amber-B203/.

MemOS: A Memory OS for AI System

Large Language Models (LLMs) have become an essential infrastructure for Artificial General Intelligence (AGI), yet their lack of well-defined memory management systems hinders the development of long-context reasoning, continual personalization, and knowledge consistency.Existing models mainly rely on static parameters and short-lived contextual states, limiting their ability to track user preferences or update knowledge over extended periods.While Retrieval-Augmented Generation (RAG) introduces external knowledge in plain text, it remains a stateless workaround without lifecycle control or integration with persistent representations.Recent work has modeled the training and inference cost of LLMs from a memory hierarchy perspective, showing that introducing an explicit memory layer between parameter memory and external retrieval can substantially reduce these costs by externalizing specific knowledge. Beyond computational efficiency, LLMs face broader challenges arising from how information is distributed over time and context, requiring systems capable of managing heterogeneous knowledge spanning different temporal scales and sources. To address this challenge, we propose MemOS, a memory operating system that treats memory as a manageable system resource. It unifies the representation, scheduling, and evolution of plaintext, activation-based, and parameter-level memories, enabling cost-efficient storage and retrieval. As the basic unit, a MemCube encapsulates both memory content and metadata such as provenance and versioning. MemCubes can be composed, migrated, and fused over time, enabling flexible transitions between memory types and bridging retrieval with parameter-based learning. MemOS establishes a memory-centric system framework that brings controllability, plasticity, and evolvability to LLMs, laying the foundation for continual learning and personalized modeling.

HippoRAG: Neurobiologically Inspired Long-Term Memory for Large Language Models

In order to thrive in hostile and ever-changing natural environments, mammalian brains evolved to store large amounts of knowledge about the world and continually integrate new information while avoiding catastrophic forgetting. Despite the impressive accomplishments, large language models (LLMs), even with retrieval-augmented generation (RAG), still struggle to efficiently and effectively integrate a large amount of new experiences after pre-training. In this work, we introduce HippoRAG, a novel retrieval framework inspired by the hippocampal indexing theory of human long-term memory to enable deeper and more efficient knowledge integration over new experiences. HippoRAG synergistically orchestrates LLMs, knowledge graphs, and the Personalized PageRank algorithm to mimic the different roles of neocortex and hippocampus in human memory. We compare HippoRAG with existing RAG methods on multi-hop question answering and show that our method outperforms the state-of-the-art methods remarkably, by up to 20%. Single-step retrieval with HippoRAG achieves comparable or better performance than iterative retrieval like IRCoT while being 10-30 times cheaper and 6-13 times faster, and integrating HippoRAG into IRCoT brings further substantial gains. Finally, we show that our method can tackle new types of scenarios that are out of reach of existing methods. Code and data are available at https://github.com/OSU-NLP-Group/HippoRAG.

MemOS: An Operating System for Memory-Augmented Generation (MAG) in Large Language Models

Large Language Models (LLMs) have emerged as foundational infrastructure in the pursuit of Artificial General Intelligence (AGI). Despite their remarkable capabilities in language perception and generation, current LLMs fundamentally lack a unified and structured architecture for handling memory. They primarily rely on parametric memory (knowledge encoded in model weights) and ephemeral activation memory (context-limited runtime states). While emerging methods like Retrieval-Augmented Generation (RAG) incorporate plaintext memory, they lack lifecycle management and multi-modal integration, limiting their capacity for long-term knowledge evolution. To address this, we introduce MemOS, a memory operating system designed for LLMs that, for the first time, elevates memory to a first-class operational resource. It builds unified mechanisms for representation, organization, and governance across three core memory types: parametric, activation, and plaintext. At its core is the MemCube, a standardized memory abstraction that enables tracking, fusion, and migration of heterogeneous memory, while offering structured, traceable access across tasks and contexts. MemOS establishes a memory-centric execution framework with strong controllability, adaptability, and evolvability. It fills a critical gap in current LLM infrastructure and lays the groundwork for continual adaptation, personalized intelligence, and cross-platform coordination in next-generation intelligent systems.

Zep: A Temporal Knowledge Graph Architecture for Agent Memory

We introduce Zep, a novel memory layer service for AI agents that outperforms the current state-of-the-art system, MemGPT, in the Deep Memory Retrieval (DMR) benchmark. Additionally, Zep excels in more comprehensive and challenging evaluations than DMR that better reflect real-world enterprise use cases. While existing retrieval-augmented generation (RAG) frameworks for large language model (LLM)-based agents are limited to static document retrieval, enterprise applications demand dynamic knowledge integration from diverse sources including ongoing conversations and business data. Zep addresses this fundamental limitation through its core component Graphiti -- a temporally-aware knowledge graph engine that dynamically synthesizes both unstructured conversational data and structured business data while maintaining historical relationships. In the DMR benchmark, which the MemGPT team established as their primary evaluation metric, Zep demonstrates superior performance (94.8% vs 93.4%). Beyond DMR, Zep's capabilities are further validated through the more challenging LongMemEval benchmark, which better reflects enterprise use cases through complex temporal reasoning tasks. In this evaluation, Zep achieves substantial results with accuracy improvements of up to 18.5% while simultaneously reducing response latency by 90% compared to baseline implementations. These results are particularly pronounced in enterprise-critical tasks such as cross-session information synthesis and long-term context maintenance, demonstrating Zep's effectiveness for deployment in real-world applications.

MCUFormer: Deploying Vision Transformers on Microcontrollers with Limited Memory

Due to the high price and heavy energy consumption of GPUs, deploying deep models on IoT devices such as microcontrollers makes significant contributions for ecological AI. Conventional methods successfully enable convolutional neural network inference of high resolution images on microcontrollers, while the framework for vision transformers that achieve the state-of-the-art performance in many vision applications still remains unexplored. In this paper, we propose a hardware-algorithm co-optimizations method called MCUFormer to deploy vision transformers on microcontrollers with extremely limited memory, where we jointly design transformer architecture and construct the inference operator library to fit the memory resource constraint. More specifically, we generalize the one-shot network architecture search (NAS) to discover the optimal architecture with highest task performance given the memory budget from the microcontrollers, where we enlarge the existing search space of vision transformers by considering the low-rank decomposition dimensions and patch resolution for memory reduction. For the construction of the inference operator library of vision transformers, we schedule the memory buffer during inference through operator integration, patch embedding decomposition, and token overwriting, allowing the memory buffer to be fully utilized to adapt to the forward pass of the vision transformer. Experimental results demonstrate that our MCUFormer achieves 73.62\% top-1 accuracy on ImageNet for image classification with 320KB memory on STM32F746 microcontroller. Code is available at https://github.com/liangyn22/MCUFormer.

LLM-Agent-UMF: LLM-based Agent Unified Modeling Framework for Seamless Integration of Multi Active/Passive Core-Agents

The integration of tools in LLM-based agents overcame the difficulties of standalone LLMs and traditional agents' limited capabilities. However, the conjunction of these technologies and the proposed enhancements in several state-of-the-art works followed a non-unified software architecture resulting in a lack of modularity. Indeed, they focused mainly on functionalities and overlooked the definition of the component's boundaries within the agent. This caused terminological and architectural ambiguities between researchers which we addressed in this paper by proposing a unified framework that establishes a clear foundation for LLM-based agents' development from both functional and software architectural perspectives. Our framework, LLM-Agent-UMF (LLM-based Agent Unified Modeling Framework), clearly distinguishes between the different components of an agent, setting LLMs, and tools apart from a newly introduced element: the core-agent, playing the role of the central coordinator of the agent which comprises five modules: planning, memory, profile, action, and security, the latter often neglected in previous works. Differences in the internal structure of core-agents led us to classify them into a taxonomy of passive and active types. Based on this, we proposed different multi-core agent architectures combining unique characteristics of various individual agents. For evaluation purposes, we applied this framework to a selection of state-of-the-art agents, thereby demonstrating its alignment with their functionalities and clarifying the overlooked architectural aspects. Moreover, we thoroughly assessed four of our proposed architectures by integrating distinctive agents into hybrid active/passive core-agents' systems. This analysis provided clear insights into potential improvements and highlighted the challenges involved in the combination of specific agents.

Sketch to Adapt: Fine-Tunable Sketches for Efficient LLM Adaptation

Adapting pre-trained large language models (LLMs) is crucial but challenging due to their enormous size. Parameter-efficient fine-tuning (PEFT) techniques typically employ additive adapters applied to frozen model weights. To further reduce memory usage, model weights can be compressed through quantization. However, existing PEFT methods often yield suboptimal model quality due to restrictive assumptions, such as imposing low-rank constraints on adapters to reduce trainable parameters. We find that sketching, a popular data compression technique, can serve as an efficient adaptation strategy for LLMs while avoiding low-rank assumptions. We introduce SketchTune, a compressive adaptation strategy that compresses LLM weights into compact fine-tunable sketches, integrating compression and adaptation into a unified framework. This integration eliminates the need for complex two-path computation common in existing PEFT techniques, enabling faster and more memory-efficient training and inference. SketchTune is supported by mathematical insights into matrix classes that are better approximated using sketching rather than low-rank methods. Our rigorous evaluations with Llama-1/2/3 models demonstrate that SketchTune outperforms leading PEFT methods across diverse tasks including math problem-solving, common sense reasoning, and instruction following, while using substantially smaller base models and comparable trainable parameters. As a highlight, SketchTune outperforms LoRA, DoRA, and S2FT on commonsense and math benchmarks using 2.6-3.5times smaller base models and exceeds LoftQ in accuracy by 14.48% on GSM8K with 7.3times fewer trainable parameters.

Neural Fields in Robotics: A Survey

Neural Fields have emerged as a transformative approach for 3D scene representation in computer vision and robotics, enabling accurate inference of geometry, 3D semantics, and dynamics from posed 2D data. Leveraging differentiable rendering, Neural Fields encompass both continuous implicit and explicit neural representations enabling high-fidelity 3D reconstruction, integration of multi-modal sensor data, and generation of novel viewpoints. This survey explores their applications in robotics, emphasizing their potential to enhance perception, planning, and control. Their compactness, memory efficiency, and differentiability, along with seamless integration with foundation and generative models, make them ideal for real-time applications, improving robot adaptability and decision-making. This paper provides a thorough review of Neural Fields in robotics, categorizing applications across various domains and evaluating their strengths and limitations, based on over 200 papers. First, we present four key Neural Fields frameworks: Occupancy Networks, Signed Distance Fields, Neural Radiance Fields, and Gaussian Splatting. Second, we detail Neural Fields' applications in five major robotics domains: pose estimation, manipulation, navigation, physics, and autonomous driving, highlighting key works and discussing takeaways and open challenges. Finally, we outline the current limitations of Neural Fields in robotics and propose promising directions for future research. Project page: https://robonerf.github.io

X-EcoMLA: Upcycling Pre-Trained Attention into MLA for Efficient and Extreme KV Compression

Multi-head latent attention (MLA) is designed to optimize KV cache memory through low-rank key-value joint compression. Rather than caching keys and values separately, MLA stores their compressed latent representations, reducing memory overhead while maintaining the performance. While MLA improves memory efficiency without compromising language model accuracy, its major limitation lies in its integration during the pre-training phase, requiring models to be trained from scratch. This raises a key question: can we use MLA's benefits fully or partially in models that have already been pre-trained with different attention mechanisms? In this paper, we propose X-EcoMLA to deploy post training distillation to enable the upcycling of Transformer-based attention into an efficient hybrid MLA variant through lightweight post-training adaptation, bypassing the need for extensive pre-training. We demonstrate that leveraging the dark knowledge of a well-trained model can enhance training accuracy and enable extreme KV cache compression in MLA without compromising model performance. The experimental results show that our proposed method can effectively compress the KV cache while preserving the performance on the benchmarks; specifically, for Llama3.2-1B-Instruct baseline, a 6.4x compression achieves the same average score by using only 3.6B training tokens and 70 GPU hours on AMD MI300, whereas a 10.6x compression have less than 0.1\% average score drop with 7B training tokens and 140 GPU hours.

Weight-Entanglement Meets Gradient-Based Neural Architecture Search

Weight sharing is a fundamental concept in neural architecture search (NAS), enabling gradient-based methods to explore cell-based architecture spaces significantly faster than traditional blackbox approaches. In parallel, weight entanglement has emerged as a technique for intricate parameter sharing among architectures within macro-level search spaces. %However, the macro structure of such spaces poses compatibility challenges for gradient-based NAS methods. %As a result, blackbox optimization methods have been commonly employed, particularly in conjunction with supernet training, to maintain search efficiency. %Due to the inherent differences in the structure of these search spaces, these Since weight-entanglement poses compatibility challenges for gradient-based NAS methods, these two paradigms have largely developed independently in parallel sub-communities. This paper aims to bridge the gap between these sub-communities by proposing a novel scheme to adapt gradient-based methods for weight-entangled spaces. This enables us to conduct an in-depth comparative assessment and analysis of the performance of gradient-based NAS in weight-entangled search spaces. Our findings reveal that this integration of weight-entanglement and gradient-based NAS brings forth the various benefits of gradient-based methods (enhanced performance, improved supernet training properties and superior any-time performance), while preserving the memory efficiency of weight-entangled spaces. The code for our work is openly accessible https://anonymous.4open.science/r/TangleNAS-527C{here}

AdjointDPM: Adjoint Sensitivity Method for Gradient Backpropagation of Diffusion Probabilistic Models

Existing customization methods require access to multiple reference examples to align pre-trained diffusion probabilistic models (DPMs) with user-provided concepts. This paper aims to address the challenge of DPM customization when the only available supervision is a differentiable metric defined on the generated contents. Since the sampling procedure of DPMs involves recursive calls to the denoising UNet, na\"ive gradient backpropagation requires storing the intermediate states of all iterations, resulting in extremely high memory consumption. To overcome this issue, we propose a novel method AdjointDPM, which first generates new samples from diffusion models by solving the corresponding probability-flow ODEs. It then uses the adjoint sensitivity method to backpropagate the gradients of the loss to the models' parameters (including conditioning signals, network weights, and initial noises) by solving another augmented ODE. To reduce numerical errors in both the forward generation and gradient backpropagation processes, we further reparameterize the probability-flow ODE and augmented ODE as simple non-stiff ODEs using exponential integration. Finally, we demonstrate the effectiveness of AdjointDPM on three interesting tasks: converting visual effects into identification text embeddings, finetuning DPMs for specific types of stylization, and optimizing initial noise to generate adversarial samples for security auditing.

CO2: Efficient Distributed Training with Full Communication-Computation Overlap

The fundamental success of large language models hinges upon the efficacious implementation of large-scale distributed training techniques. Nevertheless, building a vast, high-performance cluster featuring high-speed communication interconnectivity is prohibitively costly, and accessible only to prominent entities. In this work, we aim to lower this barrier and democratize large-scale training with limited bandwidth clusters. We propose a new approach called CO2 that introduces local-updating and asynchronous communication to the distributed data-parallel training, thereby facilitating the full overlap of COmunication with COmputation. CO2 is able to attain a high scalability even on extensive multi-node clusters constrained by very limited communication bandwidth. We further propose the staleness gap penalty and outer momentum clipping techniques together with CO2 to bolster its convergence and training stability. Besides, CO2 exhibits seamless integration with well-established ZeRO-series optimizers which mitigate memory consumption of model states with large model training. We also provide a mathematical proof of convergence, accompanied by the establishment of a stringent upper bound. Furthermore, we validate our findings through an extensive set of practical experiments encompassing a wide range of tasks in the fields of computer vision and natural language processing. These experiments serve to demonstrate the capabilities of CO2 in terms of convergence, generalization, and scalability when deployed across configurations comprising up to 128 A100 GPUs. The outcomes emphasize the outstanding capacity of CO2 to hugely improve scalability, no matter on clusters with 800Gbps RDMA or 80Gbps TCP/IP inter-node connections.

Augmenting LLMs with Knowledge: A survey on hallucination prevention

Large pre-trained language models have demonstrated their proficiency in storing factual knowledge within their parameters and achieving remarkable results when fine-tuned for downstream natural language processing tasks. Nonetheless, their capacity to access and manipulate knowledge with precision remains constrained, resulting in performance disparities on knowledge-intensive tasks when compared to task-specific architectures. Additionally, the challenges of providing provenance for model decisions and maintaining up-to-date world knowledge persist as open research frontiers. To address these limitations, the integration of pre-trained models with differentiable access mechanisms to explicit non-parametric memory emerges as a promising solution. This survey delves into the realm of language models (LMs) augmented with the ability to tap into external knowledge sources, including external knowledge bases and search engines. While adhering to the standard objective of predicting missing tokens, these augmented LMs leverage diverse, possibly non-parametric external modules to augment their contextual processing capabilities, departing from the conventional language modeling paradigm. Through an exploration of current advancements in augmenting large language models with knowledge, this work concludes that this emerging research direction holds the potential to address prevalent issues in traditional LMs, such as hallucinations, un-grounded responses, and scalability challenges.

Entanglement Purification in Quantum Networks: Guaranteed Improvement and Optimal Time

While the concept of entanglement purification protocols (EPPs) is straightforward, the integration of EPPs in network architectures requires careful performance evaluations and optimizations that take into account realistic conditions and imperfections, especially probabilistic entanglement generation and quantum memory decoherence. It is important to understand what is guaranteed to be improved from successful EPP with arbitrary non-identical input, which determines whether we want to perform the EPP at all. When successful EPP can offer improvement, the time to perform the EPP should also be optimized to maximize the improvement. In this work, we study the guaranteed improvement and optimal time for the CNOT-based recurrence EPP, previously shown to be optimal in various scenarios. We firstly prove guaranteed improvement for multiple figures of merit, including fidelity and several entanglement measures when compared to practical baselines as functions of input states. However, it is noteworthy that the guaranteed improvement we prove does not imply the universality of the EPP as introduced in arXiv:2407.21760. Then we prove robust, parameter-independent optimal time for typical error models and figures of merit. We further explore memory decoherence described by continuous-time Pauli channels, and demonstrate the phenomenon of optimal time transition when the memory decoherence error pattern changes. Our work deepens the understanding of EPP performance in realistic scenarios and offers insights into optimizing quantum networks that integrate EPPs.

Cutting Off the Head Ends the Conflict: A Mechanism for Interpreting and Mitigating Knowledge Conflicts in Language Models

Recently, retrieval augmentation and tool augmentation have demonstrated a remarkable capability to expand the internal memory boundaries of language models (LMs) by providing external context. However, internal memory and external context inevitably clash, leading to knowledge conflicts within LMs. In this paper, we aim to interpret the mechanism of knowledge conflicts through the lens of information flow, and then mitigate conflicts by precise interventions at the pivotal point. We find there are some attention heads with opposite effects in the later layers, where memory heads can recall knowledge from internal memory, and context heads can retrieve knowledge from external context. Moreover, we reveal that the pivotal point at which knowledge conflicts emerge in LMs is the integration of inconsistent information flows by memory heads and context heads. Inspired by the insights, we propose a novel method called Pruning Head via PatH PatcHing (PH3), which can efficiently mitigate knowledge conflicts by pruning conflicting attention heads without updating model parameters. PH3 can flexibly control eight LMs to use internal memory (uparrow 44.0%) or external context (uparrow 38.5%). Moreover, PH3 can also improve the performance of LMs on open-domain QA tasks. We also conduct extensive experiments to demonstrate the cross-model, cross-relation, and cross-format generalization of our method.

Redefining Robot Generalization Through Interactive Intelligence

Recent advances in large-scale machine learning have produced high-capacity foundation models capable of adapting to a broad array of downstream tasks. While such models hold great promise for robotics, the prevailing paradigm still portrays robots as single, autonomous decision-makers, performing tasks like manipulation and navigation, with limited human involvement. However, a large class of real-world robotic systems, including wearable robotics (e.g., prostheses, orthoses, exoskeletons), teleoperation, and neural interfaces, are semiautonomous, and require ongoing interactive coordination with human partners, challenging single-agent assumptions. In this position paper, we argue that robot foundation models must evolve to an interactive multi-agent perspective in order to handle the complexities of real-time human-robot co-adaptation. We propose a generalizable, neuroscience-inspired architecture encompassing four modules: (1) a multimodal sensing module informed by sensorimotor integration principles, (2) an ad-hoc teamwork model reminiscent of joint-action frameworks in cognitive science, (3) a predictive world belief model grounded in internal model theories of motor control, and (4) a memory/feedback mechanism that echoes concepts of Hebbian and reinforcement-based plasticity. Although illustrated through the lens of cyborg systems, where wearable devices and human physiology are inseparably intertwined, the proposed framework is broadly applicable to robots operating in semi-autonomous or interactive contexts. By moving beyond single-agent designs, our position emphasizes how foundation models in robotics can achieve a more robust, personalized, and anticipatory level of performance.

Continual Lifelong Learning with Neural Networks: A Review

Humans and animals have the ability to continually acquire, fine-tune, and transfer knowledge and skills throughout their lifespan. This ability, referred to as lifelong learning, is mediated by a rich set of neurocognitive mechanisms that together contribute to the development and specialization of our sensorimotor skills as well as to long-term memory consolidation and retrieval. Consequently, lifelong learning capabilities are crucial for autonomous agents interacting in the real world and processing continuous streams of information. However, lifelong learning remains a long-standing challenge for machine learning and neural network models since the continual acquisition of incrementally available information from non-stationary data distributions generally leads to catastrophic forgetting or interference. This limitation represents a major drawback for state-of-the-art deep neural network models that typically learn representations from stationary batches of training data, thus without accounting for situations in which information becomes incrementally available over time. In this review, we critically summarize the main challenges linked to lifelong learning for artificial learning systems and compare existing neural network approaches that alleviate, to different extents, catastrophic forgetting. We discuss well-established and emerging research motivated by lifelong learning factors in biological systems such as structural plasticity, memory replay, curriculum and transfer learning, intrinsic motivation, and multisensory integration.

A-MEM: Agentic Memory for LLM Agents

While large language model (LLM) agents can effectively use external tools for complex real-world tasks, they require memory systems to leverage historical experiences. Current memory systems enable basic storage and retrieval but lack sophisticated memory organization, despite recent attempts to incorporate graph databases. Moreover, these systems' fixed operations and structures limit their adaptability across diverse tasks. To address this limitation, this paper proposes a novel agentic memory system for LLM agents that can dynamically organize memories in an agentic way. Following the basic principles of the Zettelkasten method, we designed our memory system to create interconnected knowledge networks through dynamic indexing and linking. When a new memory is added, we generate a comprehensive note containing multiple structured attributes, including contextual descriptions, keywords, and tags. The system then analyzes historical memories to identify relevant connections, establishing links where meaningful similarities exist. Additionally, this process enables memory evolution - as new memories are integrated, they can trigger updates to the contextual representations and attributes of existing historical memories, allowing the memory network to continuously refine its understanding. Our approach combines the structured organization principles of Zettelkasten with the flexibility of agent-driven decision making, allowing for more adaptive and context-aware memory management. Empirical experiments on six foundation models show superior improvement against existing SOTA baselines. The source code for evaluating performance is available at https://github.com/WujiangXu/AgenticMemory, while the source code of agentic memory system is available at https://github.com/agiresearch/A-mem.

Think-in-Memory: Recalling and Post-thinking Enable LLMs with Long-Term Memory

Memory-augmented Large Language Models (LLMs) have demonstrated remarkable performance in long-term human-machine interactions, which basically relies on iterative recalling and reasoning of history to generate high-quality responses. However, such repeated recall-reason steps easily produce biased thoughts, i.e., inconsistent reasoning results when recalling the same history for different questions. On the contrary, humans can keep thoughts in the memory and recall them without repeated reasoning. Motivated by this human capability, we propose a novel memory mechanism called TiM (Think-in-Memory) that enables LLMs to maintain an evolved memory for storing historical thoughts along the conversation stream. The TiM framework consists of two crucial stages: (1) before generating a response, a LLM agent recalls relevant thoughts from memory, and (2) after generating a response, the LLM agent post-thinks and incorporates both historical and new thoughts to update the memory. Thus, TiM can eliminate the issue of repeated reasoning by saving the post-thinking thoughts as the history. Besides, we formulate the basic principles to organize the thoughts in memory based on the well-established operations, (i.e., insert, forget, and merge operations), allowing for dynamic updates and evolution of the thoughts. Furthermore, we introduce Locality-Sensitive Hashing into TiM to achieve efficient retrieval for the long-term conversations. We conduct qualitative and quantitative experiments on real-world and simulated dialogues covering a wide range of topics, demonstrating that equipping existing LLMs with TiM significantly enhances their performance in generating responses for long-term interactions.

Assessing Episodic Memory in LLMs with Sequence Order Recall Tasks

Current LLM benchmarks focus on evaluating models' memory of facts and semantic relations, primarily assessing semantic aspects of long-term memory. However, in humans, long-term memory also includes episodic memory, which links memories to their contexts, such as the time and place they occurred. The ability to contextualize memories is crucial for many cognitive tasks and everyday functions. This form of memory has not been evaluated in LLMs with existing benchmarks. To address the gap in evaluating memory in LLMs, we introduce Sequence Order Recall Tasks (SORT), which we adapt from tasks used to study episodic memory in cognitive psychology. SORT requires LLMs to recall the correct order of text segments, and provides a general framework that is both easily extendable and does not require any additional annotations. We present an initial evaluation dataset, Book-SORT, comprising 36k pairs of segments extracted from 9 books recently added to the public domain. Based on a human experiment with 155 participants, we show that humans can recall sequence order based on long-term memory of a book. We find that models can perform the task with high accuracy when relevant text is given in-context during the SORT evaluation. However, when presented with the book text only during training, LLMs' performance on SORT falls short. By allowing to evaluate more aspects of memory, we believe that SORT will aid in the emerging development of memory-augmented models.

MEM1: Learning to Synergize Memory and Reasoning for Efficient Long-Horizon Agents

Modern language agents must operate over long-horizon, multi-turn interactions, where they retrieve external information, adapt to observations, and answer interdependent queries. Yet, most LLM systems rely on full-context prompting, appending all past turns regardless of their relevance. This leads to unbounded memory growth, increased computational costs, and degraded reasoning performance on out-of-distribution input lengths. We introduce MEM1, an end-to-end reinforcement learning framework that enables agents to operate with constant memory across long multi-turn tasks. At each turn, MEM1 updates a compact shared internal state that jointly supports memory consolidation and reasoning. This state integrates prior memory with new observations from the environment while strategically discarding irrelevant or redundant information. To support training in more realistic and compositional settings, we propose a simple yet effective and scalable approach to constructing multi-turn environments by composing existing datasets into arbitrarily complex task sequences. Experiments across three domains, including internal retrieval QA, open-domain web QA, and multi-turn web shopping, show that MEM1-7B improves performance by 3.5x while reducing memory usage by 3.7x compared to Qwen2.5-14B-Instruct on a 16-objective multi-hop QA task, and generalizes beyond the training horizon. Our results demonstrate the promise of reasoning-driven memory consolidation as a scalable alternative to existing solutions for training long-horizon interactive agents, where both efficiency and performance are optimized.

Superposed Episodic and Semantic Memory via Sparse Distributed Representation

The abilities to perceive, learn, and use generalities, similarities, classes, i.e., semantic memory (SM), is central to cognition. Machine learning (ML), neural network, and AI research has been primarily driven by tasks requiring such abilities. However, another central facet of cognition, single-trial formation of permanent memories of experiences, i.e., episodic memory (EM), has had relatively little focus. Only recently has EM-like functionality been added to Deep Learning (DL) models, e.g., Neural Turing Machine, Memory Networks. However, in these cases: a) EM is implemented as a separate module, which entails substantial data movement (and so, time and power) between the DL net itself and EM; and b) individual items are stored localistically within the EM, precluding realizing the exponential representational efficiency of distributed over localist coding. We describe Sparsey, an unsupervised, hierarchical, spatial/spatiotemporal associative memory model differing fundamentally from mainstream ML models, most crucially, in its use of sparse distributed representations (SDRs), or, cell assemblies, which admits an extremely efficient, single-trial learning algorithm that maps input similarity into code space similarity (measured as intersection). SDRs of individual inputs are stored in superposition and because similarity is preserved, the patterns of intersections over the assigned codes reflect the similarity, i.e., statistical, structure, of all orders, not simply pairwise, over the inputs. Thus, SM, i.e., a generative model, is built as a computationally free side effect of the act of storing episodic memory traces of individual inputs, either spatial patterns or sequences. We report initial results on MNIST and on the Weizmann video event recognition benchmarks. While we have not yet attained SOTA class accuracy, learning takes only minutes on a single CPU.

MemoryBank: Enhancing Large Language Models with Long-Term Memory

Revolutionary advancements in Large Language Models have drastically reshaped our interactions with artificial intelligence systems. Despite this, a notable hindrance remains-the deficiency of a long-term memory mechanism within these models. This shortfall becomes increasingly evident in situations demanding sustained interaction, such as personal companion systems and psychological counseling. Therefore, we propose MemoryBank, a novel memory mechanism tailored for LLMs. MemoryBank enables the models to summon relevant memories, continually evolve through continuous memory updates, comprehend, and adapt to a user personality by synthesizing information from past interactions. To mimic anthropomorphic behaviors and selectively preserve memory, MemoryBank incorporates a memory updating mechanism, inspired by the Ebbinghaus Forgetting Curve theory, which permits the AI to forget and reinforce memory based on time elapsed and the relative significance of the memory, thereby offering a human-like memory mechanism. MemoryBank is versatile in accommodating both closed-source models like ChatGPT and open-source models like ChatGLM. We exemplify application of MemoryBank through the creation of an LLM-based chatbot named SiliconFriend in a long-term AI Companion scenario. Further tuned with psychological dialogs, SiliconFriend displays heightened empathy in its interactions. Experiment involves both qualitative analysis with real-world user dialogs and quantitative analysis with simulated dialogs. In the latter, ChatGPT acts as users with diverse characteristics and generates long-term dialog contexts covering a wide array of topics. The results of our analysis reveal that SiliconFriend, equipped with MemoryBank, exhibits a strong capability for long-term companionship as it can provide emphatic response, recall relevant memories and understand user personality.

MoM: Linear Sequence Modeling with Mixture-of-Memories

Linear sequence modeling methods, such as linear attention, state space modeling, and linear RNNs, offer significant efficiency improvements by reducing the complexity of training and inference. However, these methods typically compress the entire input sequence into a single fixed-size memory state, which leads to suboptimal performance on recall-intensive downstream tasks. Drawing inspiration from neuroscience, particularly the brain's ability to maintain robust long-term memory while mitigating "memory interference", we introduce a novel architecture called Mixture-of-Memories (MoM). MoM utilizes multiple independent memory states, with a router network directing input tokens to specific memory states. This approach greatly enhances the overall memory capacity while minimizing memory interference. As a result, MoM performs exceptionally well on recall-intensive tasks, surpassing existing linear sequence modeling techniques. Despite incorporating multiple memory states, the computation of each memory state remains linear in complexity, allowing MoM to retain the linear-complexity advantage during training, while constant-complexity during inference. Our experimental results show that MoM significantly outperforms current linear sequence models on downstream language tasks, particularly recall-intensive tasks, and even achieves performance comparable to Transformer models. The code is released at https://github.com/OpenSparseLLMs/MoM and is also released as a part of https://github.com/OpenSparseLLMs/Linear-MoE.

AI-native Memory 2.0: Second Me

Human interaction with the external world fundamentally involves the exchange of personal memory, whether with other individuals, websites, applications, or, in the future, AI agents. A significant portion of this interaction is redundant, requiring users to repeatedly provide the same information across different contexts. Existing solutions, such as browser-stored credentials, autofill mechanisms, and unified authentication systems, have aimed to mitigate this redundancy by serving as intermediaries that store and retrieve commonly used user data. The advent of large language models (LLMs) presents an opportunity to redefine memory management through an AI-native paradigm: SECOND ME. SECOND ME acts as an intelligent, persistent memory offload system that retains, organizes, and dynamically utilizes user-specific knowledge. By serving as an intermediary in user interactions, it can autonomously generate context-aware responses, prefill required information, and facilitate seamless communication with external systems, significantly reducing cognitive load and interaction friction. Unlike traditional memory storage solutions, SECOND ME extends beyond static data retention by leveraging LLM-based memory parameterization. This enables structured organization, contextual reasoning, and adaptive knowledge retrieval, facilitating a more systematic and intelligent approach to memory management. As AI-driven personal agents like SECOND ME become increasingly integrated into digital ecosystems, SECOND ME further represents a critical step toward augmenting human-world interaction with persistent, contextually aware, and self-optimizing memory systems. We have open-sourced the fully localizable deployment system at GitHub: https://github.com/Mindverse/Second-Me.

CAIM: Development and Evaluation of a Cognitive AI Memory Framework for Long-Term Interaction with Intelligent Agents

Large language models (LLMs) have advanced the field of artificial intelligence (AI) and are a powerful enabler for interactive systems. However, they still face challenges in long-term interactions that require adaptation towards the user as well as contextual knowledge and understanding of the ever-changing environment. To overcome these challenges, holistic memory modeling is required to efficiently retrieve and store relevant information across interaction sessions for suitable responses. Cognitive AI, which aims to simulate the human thought process in a computerized model, highlights interesting aspects, such as thoughts, memory mechanisms, and decision-making, that can contribute towards improved memory modeling for LLMs. Inspired by these cognitive AI principles, we propose our memory framework CAIM. CAIM consists of three modules: 1.) The Memory Controller as the central decision unit; 2.) the Memory Retrieval, which filters relevant data for interaction upon request; and 3.) the Post-Thinking, which maintains the memory storage. We compare CAIM against existing approaches, focusing on metrics such as retrieval accuracy, response correctness, contextual coherence, and memory storage. The results demonstrate that CAIM outperforms baseline frameworks across different metrics, highlighting its context-awareness and potential to improve long-term human-AI interactions.

Towards mental time travel: a hierarchical memory for reinforcement learning agents

Reinforcement learning agents often forget details of the past, especially after delays or distractor tasks. Agents with common memory architectures struggle to recall and integrate across multiple timesteps of a past event, or even to recall the details of a single timestep that is followed by distractor tasks. To address these limitations, we propose a Hierarchical Chunk Attention Memory (HCAM), which helps agents to remember the past in detail. HCAM stores memories by dividing the past into chunks, and recalls by first performing high-level attention over coarse summaries of the chunks, and then performing detailed attention within only the most relevant chunks. An agent with HCAM can therefore "mentally time-travel" -- remember past events in detail without attending to all intervening events. We show that agents with HCAM substantially outperform agents with other memory architectures at tasks requiring long-term recall, retention, or reasoning over memory. These include recalling where an object is hidden in a 3D environment, rapidly learning to navigate efficiently in a new neighborhood, and rapidly learning and retaining new object names. Agents with HCAM can extrapolate to task sequences much longer than they were trained on, and can even generalize zero-shot from a meta-learning setting to maintaining knowledge across episodes. HCAM improves agent sample efficiency, generalization, and generality (by solving tasks that previously required specialized architectures). Our work is a step towards agents that can learn, interact, and adapt in complex and temporally-extended environments.

Spatially-Aware Transformer for Embodied Agents

Episodic memory plays a crucial role in various cognitive processes, such as the ability to mentally recall past events. While cognitive science emphasizes the significance of spatial context in the formation and retrieval of episodic memory, the current primary approach to implementing episodic memory in AI systems is through transformers that store temporally ordered experiences, which overlooks the spatial dimension. As a result, it is unclear how the underlying structure could be extended to incorporate the spatial axis beyond temporal order alone and thereby what benefits can be obtained. To address this, this paper explores the use of Spatially-Aware Transformer models that incorporate spatial information. These models enable the creation of place-centric episodic memory that considers both temporal and spatial dimensions. Adopting this approach, we demonstrate that memory utilization efficiency can be improved, leading to enhanced accuracy in various place-centric downstream tasks. Additionally, we propose the Adaptive Memory Allocator, a memory management method based on reinforcement learning that aims to optimize efficiency of memory utilization. Our experiments demonstrate the advantages of our proposed model in various environments and across multiple downstream tasks, including prediction, generation, reasoning, and reinforcement learning. The source code for our models and experiments will be available at https://github.com/junmokane/spatially-aware-transformer.

EXPEREPAIR: Dual-Memory Enhanced LLM-based Repository-Level Program Repair

Automatically repairing software issues remains a fundamental challenge at the intersection of software engineering and AI. Although recent advancements in Large Language Models (LLMs) have demonstrated potential for repository-level repair tasks, current methodologies exhibit two notable limitations: (1) they often address issues in isolation, neglecting to incorporate insights from previously resolved issues, and (2) they rely on static and rigid prompting strategies, which constrain their ability to generalize across diverse and evolving issue scenarios. Inspired by the dual memory systems of human cognition, where episodic and semantic memories work synergistically to support human reasoning and decision-making, we propose ExpeRepair, a novel LLM-based approach that continuously learns from historical repair experiences through dual-channel knowledge accumulation. ExpeRepair organizes historical repair experiences into two complementary memories: an episodic memory that stores concrete repair demonstrations, and a semantic memory that encodes abstract reflective insights. At inference time, ExpeRepair activates both memory systems by retrieving relevant demonstrations from episodic memory and recalling high-level repair insights from semantic memory. It further enhances adaptability through dynamic prompt composition, synergistically integrating both memory types to replace static prompts with context-aware, experience-driven prompts. Experiments on the SWE-bench Lite benchmark demonstrate that ExpeRepair achieves a pass@1 score of 49.3% with Claude 3.7 Sonnet, outperforming all state-of-the-art open-source methods.

Human-like Episodic Memory for Infinite Context LLMs

Large language models (LLMs) have shown remarkable capabilities, but still struggle with processing extensive contexts, limiting their ability to maintain coherence and accuracy over long sequences. In contrast, the human brain excels at organising and retrieving episodic experiences across vast temporal scales, spanning a lifetime. In this work, we introduce EM-LLM, a novel approach that integrates key aspects of human episodic memory and event cognition into LLMs, enabling them to effectively handle practically infinite context lengths while maintaining computational efficiency. EM-LLM organises sequences of tokens into coherent episodic events using a combination of Bayesian surprise and graph-theoretic boundary refinement in an on-line fashion. When needed, these events are retrieved through a two-stage memory process, combining similarity-based and temporally contiguous retrieval for efficient and human-like access to relevant information. Experiments on the LongBench dataset demonstrate EM-LLM's superior performance, outperforming the state-of-the-art InfLLM model with an overall relative improvement of 4.3% across various tasks, including a 33% improvement on the PassageRetrieval task. Furthermore, our analysis reveals strong correlations between EM-LLM's event segmentation and human-perceived events, suggesting a bridge between this artificial system and its biological counterpart. This work not only advances LLM capabilities in processing extended contexts but also provides a computational framework for exploring human memory mechanisms, opening new avenues for interdisciplinary research in AI and cognitive science.

InternLM-XComposer2.5-OmniLive: A Comprehensive Multimodal System for Long-term Streaming Video and Audio Interactions

Creating AI systems that can interact with environments over long periods, similar to human cognition, has been a longstanding research goal. Recent advancements in multimodal large language models (MLLMs) have made significant strides in open-world understanding. However, the challenge of continuous and simultaneous streaming perception, memory, and reasoning remains largely unexplored. Current MLLMs are constrained by their sequence-to-sequence architecture, which limits their ability to process inputs and generate responses simultaneously, akin to being unable to think while perceiving. Furthermore, relying on long contexts to store historical data is impractical for long-term interactions, as retaining all information becomes costly and inefficient. Therefore, rather than relying on a single foundation model to perform all functions, this project draws inspiration from the concept of the Specialized Generalist AI and introduces disentangled streaming perception, reasoning, and memory mechanisms, enabling real-time interaction with streaming video and audio input. The proposed framework InternLM-XComposer2.5-OmniLive (IXC2.5-OL) consists of three key modules: (1) Streaming Perception Module: Processes multimodal information in real-time, storing key details in memory and triggering reasoning in response to user queries. (2) Multi-modal Long Memory Module: Integrates short-term and long-term memory, compressing short-term memories into long-term ones for efficient retrieval and improved accuracy. (3) Reasoning Module: Responds to queries and executes reasoning tasks, coordinating with the perception and memory modules. This project simulates human-like cognition, enabling multimodal large language models to provide continuous and adaptive service over time.

The Tensor Brain: Semantic Decoding for Perception and Memory

We analyse perception and memory, using mathematical models for knowledge graphs and tensors, to gain insights into the corresponding functionalities of the human mind. Our discussion is based on the concept of propositional sentences consisting of subject-predicate-object (SPO) triples for expressing elementary facts. SPO sentences are the basis for most natural languages but might also be important for explicit perception and declarative memories, as well as intra-brain communication and the ability to argue and reason. A set of SPO sentences can be described as a knowledge graph, which can be transformed into an adjacency tensor. We introduce tensor models, where concepts have dual representations as indices and associated embeddings, two constructs we believe are essential for the understanding of implicit and explicit perception and memory in the brain. We argue that a biological realization of perception and memory imposes constraints on information processing. In particular, we propose that explicit perception and declarative memories require a semantic decoder, which, in a simple realization, is based on four layers: First, a sensory memory layer, as a buffer for sensory input, second, an index layer representing concepts, third, a memoryless representation layer for the broadcasting of information ---the "blackboard", or the "canvas" of the brain--- and fourth, a working memory layer as a processing center and data buffer. We discuss the operations of the four layers and relate them to the global workspace theory. In a Bayesian brain interpretation, semantic memory defines the prior for observable triple statements. We propose that ---in evolution and during development--- semantic memory, episodic memory, and natural language evolved as emergent properties in agents' process to gain a deeper understanding of sensory information.

AriGraph: Learning Knowledge Graph World Models with Episodic Memory for LLM Agents

Advancements in generative AI have broadened the potential applications of Large Language Models (LLMs) in the development of autonomous agents. Achieving true autonomy requires accumulating and updating knowledge gained from interactions with the environment and effectively utilizing it. Current LLM-based approaches leverage past experiences using a full history of observations, summarization or retrieval augmentation. However, these unstructured memory representations do not facilitate the reasoning and planning essential for complex decision-making. In our study, we introduce AriGraph, a novel method wherein the agent constructs a memory graph that integrates semantic and episodic memories while exploring the environment. This graph structure facilitates efficient associative retrieval of interconnected concepts, relevant to the agent's current state and goals, thus serving as an effective environmental model that enhances the agent's exploratory and planning capabilities. We demonstrate that our Ariadne LLM agent, equipped with this proposed memory architecture augmented with planning and decision-making, effectively handles complex tasks on a zero-shot basis in the TextWorld environment. Our approach markedly outperforms established methods such as full-history, summarization, and Retrieval-Augmented Generation in various tasks, including the cooking challenge from the First TextWorld Problems competition and novel tasks like house cleaning and puzzle Treasure Hunting.

KARMA: Augmenting Embodied AI Agents with Long-and-short Term Memory Systems

Embodied AI agents responsible for executing interconnected, long-sequence household tasks often face difficulties with in-context memory, leading to inefficiencies and errors in task execution. To address this issue, we introduce KARMA, an innovative memory system that integrates long-term and short-term memory modules, enhancing large language models (LLMs) for planning in embodied agents through memory-augmented prompting. KARMA distinguishes between long-term and short-term memory, with long-term memory capturing comprehensive 3D scene graphs as representations of the environment, while short-term memory dynamically records changes in objects' positions and states. This dual-memory structure allows agents to retrieve relevant past scene experiences, thereby improving the accuracy and efficiency of task planning. Short-term memory employs strategies for effective and adaptive memory replacement, ensuring the retention of critical information while discarding less pertinent data. Compared to state-of-the-art embodied agents enhanced with memory, our memory-augmented embodied AI agent improves success rates by 1.3x and 2.3x in Composite Tasks and Complex Tasks within the AI2-THOR simulator, respectively, and enhances task execution efficiency by 3.4x and 62.7x. Furthermore, we demonstrate that KARMA's plug-and-play capability allows for seamless deployment on real-world robotic systems, such as mobile manipulation platforms.Through this plug-and-play memory system, KARMA significantly enhances the ability of embodied agents to generate coherent and contextually appropriate plans, making the execution of complex household tasks more efficient. The experimental videos from the work can be found at https://youtu.be/4BT7fnw9ehs. Our code is available at https://github.com/WZX0Swarm0Robotics/KARMA/tree/master.

Grounded Language Learning Fast and Slow

Recent work has shown that large text-based neural language models, trained with conventional supervised learning objectives, acquire a surprising propensity for few- and one-shot learning. Here, we show that an embodied agent situated in a simulated 3D world, and endowed with a novel dual-coding external memory, can exhibit similar one-shot word learning when trained with conventional reinforcement learning algorithms. After a single introduction to a novel object via continuous visual perception and a language prompt ("This is a dax"), the agent can re-identify the object and manipulate it as instructed ("Put the dax on the bed"). In doing so, it seamlessly integrates short-term, within-episode knowledge of the appropriate referent for the word "dax" with long-term lexical and motor knowledge acquired across episodes (i.e. "bed" and "putting"). We find that, under certain training conditions and with a particular memory writing mechanism, the agent's one-shot word-object binding generalizes to novel exemplars within the same ShapeNet category, and is effective in settings with unfamiliar numbers of objects. We further show how dual-coding memory can be exploited as a signal for intrinsic motivation, stimulating the agent to seek names for objects that may be useful for later executing instructions. Together, the results demonstrate that deep neural networks can exploit meta-learning, episodic memory and an explicitly multi-modal environment to account for 'fast-mapping', a fundamental pillar of human cognitive development and a potentially transformative capacity for agents that interact with human users.

Titans: Learning to Memorize at Test Time

Over more than a decade there has been an extensive research effort on how to effectively utilize recurrent models and attention. While recurrent models aim to compress the data into a fixed-size memory (called hidden state), attention allows attending to the entire context window, capturing the direct dependencies of all tokens. This more accurate modeling of dependencies, however, comes with a quadratic cost, limiting the model to a fixed-length context. We present a new neural long-term memory module that learns to memorize historical context and helps attention to attend to the current context while utilizing long past information. We show that this neural memory has the advantage of fast parallelizable training while maintaining a fast inference. From a memory perspective, we argue that attention due to its limited context but accurate dependency modeling performs as a short-term memory, while neural memory due to its ability to memorize the data, acts as a long-term, more persistent, memory. Based on these two modules, we introduce a new family of architectures, called Titans, and present three variants to address how one can effectively incorporate memory into this architecture. Our experimental results on language modeling, common-sense reasoning, genomics, and time series tasks show that Titans are more effective than Transformers and recent modern linear recurrent models. They further can effectively scale to larger than 2M context window size with higher accuracy in needle-in-haystack tasks compared to baselines.

Fast & Slow Learning: Incorporating Synthetic Gradients in Neural Memory Controllers

Neural Memory Networks (NMNs) have received increased attention in recent years compared to deep architectures that use a constrained memory. Despite their new appeal, the success of NMNs hinges on the ability of the gradient-based optimiser to perform incremental training of the NMN controllers, determining how to leverage their high capacity for knowledge retrieval. This means that while excellent performance can be achieved when the training data is consistent and well distributed, rare data samples are hard to learn from as the controllers fail to incorporate them effectively during model training. Drawing inspiration from the human cognition process, in particular the utilisation of neuromodulators in the human brain, we propose to decouple the learning process of the NMN controllers to allow them to achieve flexible, rapid adaptation in the presence of new information. This trait is highly beneficial for meta-learning tasks where the memory controllers must quickly grasp abstract concepts in the target domain, and adapt stored knowledge. This allows the NMN controllers to quickly determine which memories are to be retained and which are to be erased, and swiftly adapt their strategy to the new task at hand. Through both quantitative and qualitative evaluations on multiple public benchmarks, including classification and regression tasks, we demonstrate the utility of the proposed approach. Our evaluations not only highlight the ability of the proposed NMN architecture to outperform the current state-of-the-art methods, but also provide insights on how the proposed augmentations help achieve such superior results. In addition, we demonstrate the practical implications of the proposed learning strategy, where the feedback path can be shared among multiple neural memory networks as a mechanism for knowledge sharing.

HMT: Hierarchical Memory Transformer for Long Context Language Processing

Transformer-based large language models (LLM) have been widely used in language processing applications. However, most of them restrict the context window that permits the model to attend to every token in the inputs. Previous works in recurrent models can memorize past tokens to enable unlimited context and maintain effectiveness. However, they have "flat" memory architectures, which have limitations in selecting and filtering information. Since humans are good at learning and self-adjustment, we speculate that imitating brain memory hierarchy is beneficial for model memorization. We propose the Hierarchical Memory Transformer (HMT), a novel framework that enables and improves models' long-context processing ability by imitating human memorization behavior. Leveraging memory-augmented segment-level recurrence, we organize the memory hierarchy by preserving tokens from early input token segments, passing memory embeddings along the sequence, and recalling relevant information from history. Evaluating general language modeling (Wikitext-103, PG-19) and question-answering tasks (PubMedQA), we show that HMT steadily improves the long-context processing ability of context-constrained and long-context models. With an additional 0.5% - 2% of parameters, HMT can easily plug in and augment future LLMs to handle long context effectively. Our code is open-sourced on Github: https://github.com/OswaldHe/HMT-pytorch.

Contextual Memory Reweaving in Large Language Models Using Layered Latent State Reconstruction

Memory retention challenges in deep neural architectures have ongoing limitations in the ability to process and recall extended contextual information. Token dependencies degrade as sequence length increases, leading to a decline in coherence and factual consistency across longer outputs. A structured approach is introduced to mitigate this issue through the reweaving of latent states captured at different processing layers, reinforcing token representations over extended sequences. The proposed Contextual Memory Reweaving framework incorporates a Layered Latent State Reconstruction mechanism to systematically integrate past contextual embeddings without introducing external memory modules. Experimental results demonstrate improvements in recall accuracy across a range of sequence lengths, with notable gains in the retention of rarely occurring tokens and numerical reasoning consistency. Further analysis of computational efficiency indicates that the additional processing overhead remains within acceptable thresholds, enabling scalability across different model sizes. Evaluations in long-form text generation and ambiguous query resolution highlight the capacity of memory reweaving to enhance continuity and reduce inconsistencies over extended outputs. Attention weight distributions reveal more structured allocation patterns, suggesting that reweaved latent states contribute to improved contextual awareness. The findings establish a framework for refining memory retention mechanisms in language models, addressing long-standing challenges in handling complex, multi-step reasoning tasks.

RoboMemory: A Brain-inspired Multi-memory Agentic Framework for Lifelong Learning in Physical Embodied Systems

We present RoboMemory, a brain-inspired multi-memory framework for lifelong learning in physical embodied systems, addressing critical challenges in real-world environments: continuous learning, multi-module memory latency, task correlation capture, and infinite-loop mitigation in closed-loop planning. Grounded in cognitive neuroscience, it integrates four core modules: the Information Preprocessor (thalamus-like), the Lifelong Embodied Memory System (hippocampus-like), the Closed-Loop Planning Module (prefrontal lobe-like), and the Low-Level Executer (cerebellum-like) to enable long-term planning and cumulative learning. The Lifelong Embodied Memory System, central to the framework, alleviates inference speed issues in complex memory frameworks via parallelized updates/retrieval across Spatial, Temporal, Episodic, and Semantic submodules. It incorporates a dynamic Knowledge Graph (KG) and consistent architectural design to enhance memory consistency and scalability. Evaluations on EmbodiedBench show RoboMemory outperforms the open-source baseline (Qwen2.5-VL-72B-Ins) by 25% in average success rate and surpasses the closed-source State-of-the-Art (SOTA) (Claude3.5-Sonnet) by 5%, establishing new SOTA. Ablation studies validate key components (critic, spatial memory, long-term memory), while real-world deployment confirms its lifelong learning capability with significantly improved success rates across repeated tasks. RoboMemory alleviates high latency challenges with scalability, serving as a foundational reference for integrating multi-modal memory systems in physical robots.

MindSearch: Mimicking Human Minds Elicits Deep AI Searcher

Information seeking and integration is a complex cognitive task that consumes enormous time and effort. Inspired by the remarkable progress of Large Language Models, recent works attempt to solve this task by combining LLMs and search engines. However, these methods still obtain unsatisfying performance due to three challenges: (1) complex requests often cannot be accurately and completely retrieved by the search engine once (2) corresponding information to be integrated is spread over multiple web pages along with massive noise, and (3) a large number of web pages with long contents may quickly exceed the maximum context length of LLMs. Inspired by the cognitive process when humans solve these problems, we introduce MindSearch to mimic the human minds in web information seeking and integration, which can be instantiated by a simple yet effective LLM-based multi-agent framework. The WebPlanner models the human mind of multi-step information seeking as a dynamic graph construction process: it decomposes the user query into atomic sub-questions as nodes in the graph and progressively extends the graph based on the search result from WebSearcher. Tasked with each sub-question, WebSearcher performs hierarchical information retrieval with search engines and collects valuable information for WebPlanner. The multi-agent design of MindSearch enables the whole framework to seek and integrate information parallelly from larger-scale (e.g., more than 300) web pages in 3 minutes, which is worth 3 hours of human effort. MindSearch demonstrates significant improvement in the response quality in terms of depth and breadth, on both close-set and open-set QA problems. Besides, responses from MindSearch based on InternLM2.5-7B are preferable by humans to ChatGPT-Web and Perplexity.ai applications, which implies that MindSearch can already deliver a competitive solution to the proprietary AI search engine.

Mem0: Building Production-Ready AI Agents with Scalable Long-Term Memory

Large Language Models (LLMs) have demonstrated remarkable prowess in generating contextually coherent responses, yet their fixed context windows pose fundamental challenges for maintaining consistency over prolonged multi-session dialogues. We introduce Mem0, a scalable memory-centric architecture that addresses this issue by dynamically extracting, consolidating, and retrieving salient information from ongoing conversations. Building on this foundation, we further propose an enhanced variant that leverages graph-based memory representations to capture complex relational structures among conversational elements. Through comprehensive evaluations on LOCOMO benchmark, we systematically compare our approaches against six baseline categories: (i) established memory-augmented systems, (ii) retrieval-augmented generation (RAG) with varying chunk sizes and k-values, (iii) a full-context approach that processes the entire conversation history, (iv) an open-source memory solution, (v) a proprietary model system, and (vi) a dedicated memory management platform. Empirical results show that our methods consistently outperform all existing memory systems across four question categories: single-hop, temporal, multi-hop, and open-domain. Notably, Mem0 achieves 26% relative improvements in the LLM-as-a-Judge metric over OpenAI, while Mem0 with graph memory achieves around 2% higher overall score than the base configuration. Beyond accuracy gains, we also markedly reduce computational overhead compared to full-context method. In particular, Mem0 attains a 91% lower p95 latency and saves more than 90% token cost, offering a compelling balance between advanced reasoning capabilities and practical deployment constraints. Our findings highlight critical role of structured, persistent memory mechanisms for long-term conversational coherence, paving the way for more reliable and efficient LLM-driven AI agents.

L2MAC: Large Language Model Automatic Computer for Extensive Code Generation

Transformer-based large language models (LLMs) are constrained by the fixed context window of the underlying transformer architecture, hindering their ability to produce long and coherent outputs. Memory-augmented LLMs are a promising solution, but current approaches cannot handle long output generation tasks since they (1) only focus on reading memory and reduce its evolution to the concatenation of new memories or (2) use very specialized memories that cannot adapt to other domains. This paper presents L2MAC, the first practical LLM-based general-purpose stored-program automatic computer (von Neumann architecture) framework, an LLM-based multi-agent system, for long and consistent output generation. Its memory has two components: the instruction registry, which is populated with a prompt program to solve the user-given task, and a file store, which will contain the final and intermediate outputs. Each instruction in turn is executed by a separate LLM agent, whose context is managed by a control unit capable of precise memory reading and writing to ensure effective interaction with the file store. These components enable L2MAC to generate extensive outputs, bypassing the constraints of the finite context window while producing outputs that fulfill a complex user-specified task. We empirically demonstrate that L2MAC achieves state-of-the-art performance in generating large codebases for system design tasks, significantly outperforming other coding methods in implementing the detailed user-specified task; we show that L2MAC works for general-purpose extensive text-based tasks, such as writing an entire book; and we provide valuable insights into L2MAC's performance improvement over existing methods.

HiAgent: Hierarchical Working Memory Management for Solving Long-Horizon Agent Tasks with Large Language Model

Large Language Model (LLM)-based agents exhibit significant potential across various domains, operating as interactive systems that process environmental observations to generate executable actions for target tasks. The effectiveness of these agents is significantly influenced by their memory mechanism, which records historical experiences as sequences of action-observation pairs. We categorize memory into two types: cross-trial memory, accumulated across multiple attempts, and in-trial memory (working memory), accumulated within a single attempt. While considerable research has optimized performance through cross-trial memory, the enhancement of agent performance through improved working memory utilization remains underexplored. Instead, existing approaches often involve directly inputting entire historical action-observation pairs into LLMs, leading to redundancy in long-horizon tasks. Inspired by human problem-solving strategies, this paper introduces HiAgent, a framework that leverages subgoals as memory chunks to manage the working memory of LLM-based agents hierarchically. Specifically, HiAgent prompts LLMs to formulate subgoals before generating executable actions and enables LLMs to decide proactively to replace previous subgoals with summarized observations, retaining only the action-observation pairs relevant to the current subgoal. Experimental results across five long-horizon tasks demonstrate that HiAgent achieves a twofold increase in success rate and reduces the average number of steps required by 3.8. Additionally, our analysis shows that HiAgent consistently improves performance across various steps, highlighting its robustness and generalizability. Project Page: https://github.com/HiAgent2024/HiAgent .

Augmenting Language Models with Long-Term Memory

Existing large language models (LLMs) can only afford fix-sized inputs due to the input length limit, preventing them from utilizing rich long-context information from past inputs. To address this, we propose a framework, Language Models Augmented with Long-Term Memory (LongMem), which enables LLMs to memorize long history. We design a novel decoupled network architecture with the original backbone LLM frozen as a memory encoder and an adaptive residual side-network as a memory retriever and reader. Such a decoupled memory design can easily cache and update long-term past contexts for memory retrieval without suffering from memory staleness. Enhanced with memory-augmented adaptation training, LongMem can thus memorize long past context and use long-term memory for language modeling. The proposed memory retrieval module can handle unlimited-length context in its memory bank to benefit various downstream tasks. Typically, LongMem can enlarge the long-form memory to 65k tokens and thus cache many-shot extra demonstration examples as long-form memory for in-context learning. Experiments show that our method outperforms strong long-context models on ChapterBreak, a challenging long-context modeling benchmark, and achieves remarkable improvements on memory-augmented in-context learning over LLMs. The results demonstrate that the proposed method is effective in helping language models to memorize and utilize long-form contents. Our code is open-sourced at https://aka.ms/LongMem.

LongMemEval: Benchmarking Chat Assistants on Long-Term Interactive Memory

Recent large language model (LLM)-driven chat assistant systems have integrated memory components to track user-assistant chat histories, enabling more accurate and personalized responses. However, their long-term memory capabilities in sustained interactions remain underexplored. This paper introduces LongMemEval, a comprehensive benchmark designed to evaluate five core long-term memory abilities of chat assistants: information extraction, multi-session reasoning, temporal reasoning, knowledge updates, and abstention. With 500 meticulously curated questions embedded within freely scalable user-assistant chat histories, LongMemEval presents a significant challenge to existing long-term memory systems, with commercial chat assistants and long-context LLMs showing 30% accuracy drop on memorizing information across sustained interactions. We then present a unified framework that breaks down the long-term memory design into four design choices across the indexing, retrieval, and reading stages. Built upon key experimental insights, we propose several memory designs including session decomposition for optimizing value granularity, fact-augmented key expansion for enhancing the index structure, and time-aware query expansion for refining the search scope. Experiment results show that these optimizations greatly improve both memory recall and downstream question answering on LongMemEval. Overall, our study provides valuable resources and guidance for advancing the long-term memory capabilities of LLM-based chat assistants, paving the way toward more personalized and reliable conversational AI.

Can Language Models Follow Multiple Turns of Entangled Instructions?

Despite significant achievements in improving the instruction-following capabilities of large language models (LLMs), the ability to process multiple potentially entangled or conflicting instructions remains a considerable challenge. Real-world scenarios often require consistency across multiple instructions over time, such as secret privacy, personal preferences, and prioritization, which demand sophisticated abilities to integrate multiple turns and carefully balance competing objectives when instructions intersect or conflict. This work presents a systematic investigation of LLMs' capabilities in handling multiple turns of instructions, covering three levels of difficulty: (1) retrieving information from instructions, (2) tracking and reasoning across turns, and (3) resolving conflicts among instructions. We construct MultiTurnInstruct with around 1.1K high-quality multi-turn conversations through the human-in-the-loop approach and result in nine capability categories, including statics and dynamics, reasoning, and multitasking. Our finding reveals an intriguing trade-off between different capabilities. While GPT models demonstrate superior memorization, they show reduced effectiveness in privacy-protection tasks requiring selective information withholding. Larger models exhibit stronger reasoning capabilities but still struggle with resolving conflicting instructions. Importantly, these performance gaps cannot be attributed solely to information loss, as models demonstrate strong BLEU scores on memorization tasks but their attention mechanisms fail to integrate multiple related instructions effectively. These findings highlight critical areas for improvement in complex real-world tasks involving multi-turn instructions.

Towards Multi-Granularity Memory Association and Selection for Long-Term Conversational Agents

Large Language Models (LLMs) have recently been widely adopted in conversational agents. However, the increasingly long interactions between users and agents accumulate extensive dialogue records, making it difficult for LLMs with limited context windows to maintain a coherent long-term dialogue memory and deliver personalized responses. While retrieval-augmented memory systems have emerged to address this issue, existing methods often depend on single-granularity memory segmentation and retrieval. This approach falls short in capturing deep memory connections, leading to partial retrieval of useful information or substantial noise, resulting in suboptimal performance. To tackle these limits, we propose MemGAS, a framework that enhances memory consolidation by constructing multi-granularity association, adaptive selection, and retrieval. MemGAS is based on multi-granularity memory units and employs Gaussian Mixture Models to cluster and associate new memories with historical ones. An entropy-based router adaptively selects optimal granularity by evaluating query relevance distributions and balancing information completeness and noise. Retrieved memories are further refined via LLM-based filtering. Experiments on four long-term memory benchmarks demonstrate that MemGAS outperforms state-of-the-art methods on both question answer and retrieval tasks, achieving superior performance across different query types and top-K settings.

WISE: Rethinking the Knowledge Memory for Lifelong Model Editing of Large Language Models

Large language models (LLMs) need knowledge updates to meet the ever-growing world facts and correct the hallucinated responses, facilitating the methods of lifelong model editing. Where the updated knowledge resides in memories is a fundamental question for model editing. In this paper, we find that editing either long-term memory (direct model parameters) or working memory (non-parametric knowledge of neural network activations/representations by retrieval) will result in an impossible triangle -- reliability, generalization, and locality can not be realized together in the lifelong editing settings. For long-term memory, directly editing the parameters will cause conflicts with irrelevant pretrained knowledge or previous edits (poor reliability and locality). For working memory, retrieval-based activations can hardly make the model understand the edits and generalize (poor generalization). Therefore, we propose WISE to bridge the gap between memories. In WISE, we design a dual parametric memory scheme, which consists of the main memory for the pretrained knowledge and a side memory for the edited knowledge. We only edit the knowledge in the side memory and train a router to decide which memory to go through when given a query. For continual editing, we devise a knowledge-sharding mechanism where different sets of edits reside in distinct subspaces of parameters, and are subsequently merged into a shared memory without conflicts. Extensive experiments show that WISE can outperform previous model editing methods and overcome the impossible triangle under lifelong model editing of question answering, hallucination, and out-of-distribution settings across trending LLM architectures, e.g., GPT, LLaMA, and Mistral. Code will be released at https://github.com/zjunlp/EasyEdit.

Bio-inspired computational memory model of the Hippocampus: an approach to a neuromorphic spike-based Content-Addressable Memory

The brain has computational capabilities that surpass those of modern systems, being able to solve complex problems efficiently in a simple way. Neuromorphic engineering aims to mimic biology in order to develop new systems capable of incorporating such capabilities. Bio-inspired learning systems continue to be a challenge that must be solved, and much work needs to be done in this regard. Among all brain regions, the hippocampus stands out as an autoassociative short-term memory with the capacity to learn and recall memories from any fragment of them. These characteristics make the hippocampus an ideal candidate for developing bio-inspired learning systems that, in addition, resemble content-addressable memories. Therefore, in this work we propose a bio-inspired spiking content-addressable memory model based on the CA3 region of the hippocampus with the ability to learn, forget and recall memories, both orthogonal and non-orthogonal, from any fragment of them. The model was implemented on the SpiNNaker hardware platform using Spiking Neural Networks. A set of experiments based on functional, stress and applicability tests were performed to demonstrate its correct functioning. This work presents the first hardware implementation of a fully-functional bio-inspired spiking hippocampal content-addressable memory model, paving the way for the development of future more complex neuromorphic systems.

Sculptor: Empowering LLMs with Cognitive Agency via Active Context Management

Large Language Models (LLMs) suffer from significant performance degradation when processing long contexts due to proactive interference, where irrelevant information in earlier parts of the context disrupts reasoning and memory recall. While most research focuses on external memory systems to augment LLMs' capabilities, we propose a complementary approach: empowering LLMs with Active Context Management (ACM) tools to actively sculpt their internal working memory. We introduce Sculptor, a framework that equips LLMs with three categories of tools: (1) context fragmentation, (2) summary, hide, and restore, and (3) intelligent search. Our approach enables LLMs to proactively manage their attention and working memory, analogous to how humans selectively focus on relevant information while filtering out distractions. Experimental evaluation on information-sparse benchmarks-PI-LLM (proactive interference) and NeedleBench Multi-Needle Reasoning-demonstrates that Sculptor significantly improves performance even without specific training, leveraging LLMs' inherent tool calling generalization capabilities. By enabling Active Context Management, Sculptor not only mitigates proactive interference but also provides a cognitive foundation for more reliable reasoning across diverse long-context tasks-highlighting that explicit context-control strategies, rather than merely larger token windows, are key to robustness at scale.

In Prospect and Retrospect: Reflective Memory Management for Long-term Personalized Dialogue Agents

Large Language Models (LLMs) have made significant progress in open-ended dialogue, yet their inability to retain and retrieve relevant information from long-term interactions limits their effectiveness in applications requiring sustained personalization. External memory mechanisms have been proposed to address this limitation, enabling LLMs to maintain conversational continuity. However, existing approaches struggle with two key challenges. First, rigid memory granularity fails to capture the natural semantic structure of conversations, leading to fragmented and incomplete representations. Second, fixed retrieval mechanisms cannot adapt to diverse dialogue contexts and user interaction patterns. In this work, we propose Reflective Memory Management (RMM), a novel mechanism for long-term dialogue agents, integrating forward- and backward-looking reflections: (1) Prospective Reflection, which dynamically summarizes interactions across granularities-utterances, turns, and sessions-into a personalized memory bank for effective future retrieval, and (2) Retrospective Reflection, which iteratively refines the retrieval in an online reinforcement learning (RL) manner based on LLMs' cited evidence. Experiments show that RMM demonstrates consistent improvement across various metrics and benchmarks. For example, RMM shows more than 10% accuracy improvement over the baseline without memory management on the LongMemEval dataset.

Can "consciousness" be observed from large language model (LLM) internal states? Dissecting LLM representations obtained from Theory of Mind test with Integrated Information Theory and Span Representation analysis

Integrated Information Theory (IIT) provides a quantitative framework for explaining consciousness phenomenon, positing that conscious systems comprise elements integrated through causal properties. We apply IIT 3.0 and 4.0 -- the latest iterations of this framework -- to sequences of Large Language Model (LLM) representations, analyzing data derived from existing Theory of Mind (ToM) test results. Our study systematically investigates whether the differences of ToM test performances, when presented in the LLM representations, can be revealed by IIT estimates, i.e., Phi^{max} (IIT 3.0), Phi (IIT 4.0), Conceptual Information (IIT 3.0), and Phi-structure (IIT 4.0). Furthermore, we compare these metrics with the Span Representations independent of any estimate for consciousness. This additional effort aims to differentiate between potential "consciousness" phenomena and inherent separations within LLM representational space. We conduct comprehensive experiments examining variations across LLM transformer layers and linguistic spans from stimuli. Our results suggest that sequences of contemporary Transformer-based LLM representations lack statistically significant indicators of observed "consciousness" phenomena but exhibit intriguing patterns under spatio-permutational analyses. The Appendix and code are available as Supplementary Materials at: https://doi.org/10.1016/j.nlp.2025.100163.

Incorporating brain-inspired mechanisms for multimodal learning in artificial intelligence

Multimodal learning enhances the perceptual capabilities of cognitive systems by integrating information from different sensory modalities. However, existing multimodal fusion research typically assumes static integration, not fully incorporating key dynamic mechanisms found in the brain. Specifically, the brain exhibits an inverse effectiveness phenomenon, wherein weaker unimodal cues yield stronger multisensory integration benefits; conversely, when individual modal cues are stronger, the effect of fusion is diminished. This mechanism enables biological systems to achieve robust cognition even with scarce or noisy perceptual cues. Inspired by this biological mechanism, we explore the relationship between multimodal output and information from individual modalities, proposing an inverse effectiveness driven multimodal fusion (IEMF) strategy. By incorporating this strategy into neural networks, we achieve more efficient integration with improved model performance and computational efficiency, demonstrating up to 50% reduction in computational cost across diverse fusion methods. We conduct experiments on audio-visual classification, continual learning, and question answering tasks to validate our method. Results consistently demonstrate that our method performs excellently in these tasks. To verify universality and generalization, we also conduct experiments on Artificial Neural Networks (ANN) and Spiking Neural Networks (SNN), with results showing good adaptability to both network types. Our research emphasizes the potential of incorporating biologically inspired mechanisms into multimodal networks and provides promising directions for the future development of multimodal artificial intelligence. The code is available at https://github.com/Brain-Cog-Lab/IEMF.

TradingGPT: Multi-Agent System with Layered Memory and Distinct Characters for Enhanced Financial Trading Performance

Large Language Models (LLMs), prominently highlighted by the recent evolution in the Generative Pre-trained Transformers (GPT) series, have displayed significant prowess across various domains, such as aiding in healthcare diagnostics and curating analytical business reports. The efficacy of GPTs lies in their ability to decode human instructions, achieved through comprehensively processing historical inputs as an entirety within their memory system. Yet, the memory processing of GPTs does not precisely emulate the hierarchical nature of human memory. This can result in LLMs struggling to prioritize immediate and critical tasks efficiently. To bridge this gap, we introduce an innovative LLM multi-agent framework endowed with layered memories. We assert that this framework is well-suited for stock and fund trading, where the extraction of highly relevant insights from hierarchical financial data is imperative to inform trading decisions. Within this framework, one agent organizes memory into three distinct layers, each governed by a custom decay mechanism, aligning more closely with human cognitive processes. Agents can also engage in inter-agent debate. In financial trading contexts, LLMs serve as the decision core for trading agents, leveraging their layered memory system to integrate multi-source historical actions and market insights. This equips them to navigate financial changes, formulate strategies, and debate with peer agents about investment decisions. Another standout feature of our approach is to equip agents with individualized trading traits, enhancing memory diversity and decision robustness. These sophisticated designs boost the system's responsiveness to historical trades and real-time market signals, ensuring superior automated trading accuracy.

"Sorry, Come Again?" Prompting -- Enhancing Comprehension and Diminishing Hallucination with [PAUSE]-injected Optimal Paraphrasing

Hallucination has emerged as the most vulnerable aspect of contemporary Large Language Models (LLMs). In this paper, we introduce the Sorry, Come Again (SCA) prompting, aimed to avoid LLM hallucinations by enhancing comprehension through: (i) optimal paraphrasing and (ii) injecting [PAUSE] tokens to delay LLM generation. First, we provide an in-depth analysis of linguistic nuances: formality, readability, and concreteness of prompts for 21 LLMs, and elucidate how these nuances contribute to hallucinated generation. Prompts with lower readability, formality, or concreteness pose comprehension challenges for LLMs, similar to those faced by humans. In such scenarios, an LLM tends to speculate and generate content based on its imagination (associative memory) to fill these information gaps. Although these speculations may occasionally align with factual information, their accuracy is not assured, often resulting in hallucination. Recent studies reveal that an LLM often neglects the middle sections of extended prompts, a phenomenon termed as lost in the middle. While a specific paraphrase may suit one LLM, the same paraphrased version may elicit a different response from another LLM. Therefore, we propose an optimal paraphrasing technique to identify the most comprehensible paraphrase of a given prompt, evaluated using Integrated Gradient (and its variations) to guarantee that the LLM accurately processes all words. While reading lengthy sentences, humans often pause at various points to better comprehend the meaning read thus far. We have fine-tuned an LLM with injected [PAUSE] tokens, allowing the LLM to pause while reading lengthier prompts. This has brought several key contributions: (i) determining the optimal position to inject [PAUSE], (ii) determining the number of [PAUSE] tokens to be inserted, and (iii) introducing reverse proxy tuning to fine-tune the LLM for [PAUSE] insertion.

Task Memory Engine: Spatial Memory for Robust Multi-Step LLM Agents

Large Language Models (LLMs) falter in multi-step interactions -- often hallucinating, repeating actions, or misinterpreting user corrections -- due to reliance on linear, unstructured context. This fragility stems from the lack of persistent memory to track evolving goals and task dependencies, undermining trust in autonomous agents. We introduce the Task Memory Engine (TME), a modular memory controller that transforms existing LLMs into robust, revision-aware agents without fine-tuning. TME implements a spatial memory framework that replaces flat context with graph-based structures to support consistent, multi-turn reasoning. Departing from linear concatenation and ReAct-style prompting, TME builds a dynamic task graph -- either a tree or directed acyclic graph (DAG) -- to map user inputs to subtasks, align them with prior context, and enable dependency-tracked revisions. Its Task Representation and Intent Management (TRIM) component models task semantics and user intent to ensure accurate interpretation. Across four multi-turn scenarios-trip planning, cooking, meeting scheduling, and shopping cart editing -- TME eliminates 100% of hallucinations and misinterpretations in three tasks, and reduces hallucinations by 66.7% and misinterpretations by 83.3% across 27 user turns, outperforming ReAct. TME's modular design supports plug-and-play deployment and domain-specific customization, adaptable to both personal assistants and enterprise automation. We release TME's codebase, benchmarks, and components as open-source resources, enabling researchers to develop reliable LLM agents. TME's scalable architecture addresses a critical gap in agent performance across complex, interactive settings.

Multi-Stage Knowledge Integration of Vision-Language Models for Continual Learning

Vision Language Models (VLMs), pre-trained on large-scale image-text datasets, enable zero-shot predictions for unseen data but may underperform on specific unseen tasks. Continual learning (CL) can help VLMs effectively adapt to new data distributions without joint training, but faces challenges of catastrophic forgetting and generalization forgetting. Although significant progress has been achieved by distillation-based methods, they exhibit two severe limitations. One is the popularly adopted single-teacher paradigm fails to impart comprehensive knowledge, The other is the existing methods inadequately leverage the multimodal information in the original training dataset, instead they rely on additional data for distillation, which increases computational and storage overhead. To mitigate both limitations, by drawing on Knowledge Integration Theory (KIT), we propose a Multi-Stage Knowledge Integration network (MulKI) to emulate the human learning process in distillation methods. MulKI achieves this through four stages, including Eliciting Ideas, Adding New Ideas, Distinguishing Ideas, and Making Connections. During the four stages, we first leverage prototypes to align across modalities, eliciting cross-modal knowledge, then adding new knowledge by constructing fine-grained intra- and inter-modality relationships with prototypes. After that, knowledge from two teacher models is adaptively distinguished and re-weighted. Finally, we connect between models from intra- and inter-task, integrating preceding and new knowledge. Our method demonstrates significant improvements in maintaining zero-shot capabilities while supporting continual learning across diverse downstream tasks, showcasing its potential in adapting VLMs to evolving data distributions.

From Internal Conflict to Contextual Adaptation of Language Models

Knowledge-intensive language understanding tasks require Language Models (LMs) to integrate relevant context, mitigating their inherent weaknesses, such as incomplete or outdated knowledge. Nevertheless, studies indicate that LMs often ignore the provided context as it can conflict with the pre-existing LM's memory learned during pre-training. Moreover, conflicting knowledge can already be present in the LM's parameters, termed intra-memory conflict. Existing works have studied the two types of knowledge conflicts only in isolation. We conjecture that the (degree of) intra-memory conflicts can in turn affect LM's handling of context-memory conflicts. To study this, we introduce the DYNAMICQA dataset, which includes facts with a temporal dynamic nature where a fact can change with a varying time frequency and disputable dynamic facts, which can change depending on the viewpoint. DYNAMICQA is the first to include real-world knowledge conflicts and provide context to study the link between the different types of knowledge conflicts. With the proposed dataset, we assess the use of uncertainty for measuring the intra-memory conflict and introduce a novel Coherent Persuasion (CP) score to evaluate the context's ability to sway LM's semantic output. Our extensive experiments reveal that static facts, which are unlikely to change, are more easily updated with additional context, relative to temporal and disputable facts.

Adaptive Chameleon or Stubborn Sloth: Unraveling the Behavior of Large Language Models in Knowledge Clashes

By providing external information to large language models (LLMs), tool augmentation (including retrieval augmentation) has emerged as a promising solution for addressing the limitations of LLMs' static parametric memory. However, how receptive are LLMs to such external evidence, especially when the evidence conflicts with their parametric memory? We present the first comprehensive and controlled investigation into the behavior of LLMs when encountering knowledge conflicts. We propose a systematic framework to elicit high-quality parametric memory from LLMs and construct the corresponding counter-memory, which enables us to conduct a series of controlled experiments. Our investigation reveals seemingly contradicting behaviors of LLMs. On the one hand, different from prior wisdom, we find that LLMs can be highly receptive to external evidence even when that conflicts with their parametric memory, given that the external evidence is coherent and convincing. On the other hand, LLMs also demonstrate a strong confirmation bias when the external evidence contains some information that is consistent with their parametric memory, despite being presented with conflicting evidence at the same time. These results pose important implications that are worth careful consideration for the further development and deployment of tool- and retrieval-augmented LLMs.