Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeHardware Beyond Backpropagation: a Photonic Co-Processor for Direct Feedback Alignment
The scaling hypothesis motivates the expansion of models past trillions of parameters as a path towards better performance. Recent significant developments, such as GPT-3, have been driven by this conjecture. However, as models scale-up, training them efficiently with backpropagation becomes difficult. Because model, pipeline, and data parallelism distribute parameters and gradients over compute nodes, communication is challenging to orchestrate: this is a bottleneck to further scaling. In this work, we argue that alternative training methods can mitigate these issues, and can inform the design of extreme-scale training hardware. Indeed, using a synaptically asymmetric method with a parallelizable backward pass, such as Direct Feedback Alignement, communication needs are drastically reduced. We present a photonic accelerator for Direct Feedback Alignment, able to compute random projections with trillions of parameters. We demonstrate our system on benchmark tasks, using both fully-connected and graph convolutional networks. Our hardware is the first architecture-agnostic photonic co-processor for training neural networks. This is a significant step towards building scalable hardware, able to go beyond backpropagation, and opening new avenues for deep learning.
Scaling Laws for Adversarial Attacks on Language Model Activations
We explore a class of adversarial attacks targeting the activations of language models. By manipulating a relatively small subset of model activations, a, we demonstrate the ability to control the exact prediction of a significant number (in some cases up to 1000) of subsequent tokens t. We empirically verify a scaling law where the maximum number of target tokens t_max predicted depends linearly on the number of tokens a whose activations the attacker controls as t_max = kappa a. We find that the number of bits of control in the input space needed to control a single bit in the output space (what we call attack resistance chi) is remarkably constant between approx 16 and approx 25 over 2 orders of magnitude of model sizes for different language models. Compared to attacks on tokens, attacks on activations are predictably much stronger, however, we identify a surprising regularity where one bit of input steered either via activations or via tokens is able to exert control over a similar amount of output bits. This gives support for the hypothesis that adversarial attacks are a consequence of dimensionality mismatch between the input and output spaces. A practical implication of the ease of attacking language model activations instead of tokens is for multi-modal and selected retrieval models, where additional data sources are added as activations directly, sidestepping the tokenized input. This opens up a new, broad attack surface. By using language models as a controllable test-bed to study adversarial attacks, we were able to experiment with input-output dimensions that are inaccessible in computer vision, especially where the output dimension dominates.
Scaling Laws and Interpretability of Learning from Repeated Data
Recent large language models have been trained on vast datasets, but also often on repeated data, either intentionally for the purpose of upweighting higher quality data, or unintentionally because data deduplication is not perfect and the model is exposed to repeated data at the sentence, paragraph, or document level. Some works have reported substantial negative performance effects of this repeated data. In this paper we attempt to study repeated data systematically and to understand its effects mechanistically. To do this, we train a family of models where most of the data is unique but a small fraction of it is repeated many times. We find a strong double descent phenomenon, in which repeated data can lead test loss to increase midway through training. A predictable range of repetition frequency leads to surprisingly severe degradation in performance. For instance, performance of an 800M parameter model can be degraded to that of a 2x smaller model (400M params) by repeating 0.1% of the data 100 times, despite the other 90% of the training tokens remaining unique. We suspect there is a range in the middle where the data can be memorized and doing so consumes a large fraction of the model's capacity, and this may be where the peak of degradation occurs. Finally, we connect these observations to recent mechanistic interpretability work - attempting to reverse engineer the detailed computations performed by the model - by showing that data repetition disproportionately damages copying and internal structures associated with generalization, such as induction heads, providing a possible mechanism for the shift from generalization to memorization. Taken together, these results provide a hypothesis for why repeating a relatively small fraction of data in large language models could lead to disproportionately large harms to performance.
AutoSDT: Scaling Data-Driven Discovery Tasks Toward Open Co-Scientists
Despite long-standing efforts in accelerating scientific discovery with AI, building AI co-scientists remains challenging due to limited high-quality data for training and evaluation. To tackle this data scarcity issue, we present AutoSDT, an automatic pipeline that collects high-quality coding tasks in real-world data-driven discovery workflows. AutoSDT leverages the coding capabilities and parametric knowledge of LLMs to search for diverse sources, select ecologically valid tasks, and synthesize accurate task instructions and code solutions. Using our pipeline, we construct AutoSDT-5K, a dataset of 5,404 coding tasks for data-driven discovery that covers four scientific disciplines and 756 unique Python packages. To the best of our knowledge, AutoSDT-5K is the only automatically collected and the largest open dataset for data-driven scientific discovery. Expert feedback on a subset of 256 tasks shows the effectiveness of AutoSDT: 93% of the collected tasks are ecologically valid, and 92.2% of the synthesized programs are functionally correct. Trained on AutoSDT-5K, the Qwen2.5-Coder-Instruct LLM series, dubbed AutoSDT-Coder, show substantial improvement on two challenging data-driven discovery benchmarks, ScienceAgentBench and DiscoveryBench. Most notably, AutoSDT-Coder-32B reaches the same level of performance as GPT-4o on ScienceAgentBench with a success rate of 7.8%, doubling the performance of its base model. On DiscoveryBench, it lifts the hypothesis matching score to 8.1, bringing a 17.4% relative improvement and closing the gap between open-weight models and GPT-4o.
Resolving Discrepancies in Compute-Optimal Scaling of Language Models
Kaplan et al. and Hoffmann et al. developed influential scaling laws for the optimal model size as a function of the compute budget, but these laws yield substantially different predictions. We explain the discrepancy by reproducing the Kaplan scaling law on two datasets (OpenWebText2 and RefinedWeb) and identifying three factors causing the difference: last layer computational cost, warmup duration, and scale-dependent optimizer tuning. With these factors corrected, we obtain excellent agreement with the Hoffmann et al. (i.e., "Chinchilla") scaling law. Counter to a hypothesis of Hoffmann et al., we find that careful learning rate decay is not essential for the validity of their scaling law. As a secondary result, we derive scaling laws for the optimal learning rate and batch size, finding that tuning the AdamW beta_2 parameter is essential at lower batch sizes.
Scaling Synthetic Logical Reasoning Datasets with Context-Sensitive Declarative Grammars
Logical reasoning remains a challenge for natural language processing, but it can be improved by training language models to mimic theorem provers on procedurally generated problems. Previous work used domain-specific proof generation algorithms, which biases reasoning toward specific proof traces and limits auditability and extensibility. We present a simpler and more general declarative framework with flexible context-sensitive rules binding multiple languages (specifically, simplified English and the TPTP theorem-proving language). We construct first-order logic problems by selecting up to 32 premises and one hypothesis. We demonstrate that using semantic constraints during generation and careful English verbalization of predicates enhances logical reasoning without hurting natural English tasks. We use relatively small DeBERTa-v3 models to achieve state-of-the-art accuracy on the FOLIO human-authored logic dataset, surpassing GPT-4 in accuracy with or without an external solver by 12%.
LongRoPE2: Near-Lossless LLM Context Window Scaling
LongRoPE2 is a novel approach that extends the effective context window of pre-trained large language models (LLMs) to the target length, while preserving the performance on the original shorter context window. This is achieved by three contributions: (1) a hypothesis that insufficient training in higher RoPE dimensions contributes to the persistent out-of-distribution (OOD) issues observed in existing methods; (2) an effective RoPE rescaling algorithm that adopts evolutionary search guided by "needle-driven" perplexity to address the insufficient training problem; (3) a mixed context window training approach that fine-tunes model weights to adopt rescaled RoPE for long-context sequences while preserving the short-context performance with the original RoPE. Extensive experiments on LLaMA3-8B and Phi3-mini-3.8B across various benchmarks validate the hypothesis and demonstrate the effectiveness of LongRoPE2. Remarkably, LongRoPE2 extends LLaMA3-8B to achieve a 128K effective context length while retaining over 98.5% of short-context performance, using only 10B tokens -- 80x fewer than Meta's approach, which fails to reach the target effective context length. Code will be available at https://github.com/microsoft/LongRoPE.
Scaling Laws in Scientific Discovery with AI and Robot Scientists
Scientific discovery is poised for rapid advancement through advanced robotics and artificial intelligence. Current scientific practices face substantial limitations as manual experimentation remains time-consuming and resource-intensive, while multidisciplinary research demands knowledge integration beyond individual researchers' expertise boundaries. Here, we envision an autonomous generalist scientist (AGS) concept combines agentic AI and embodied robotics to automate the entire research lifecycle. This system could dynamically interact with both physical and virtual environments while facilitating the integration of knowledge across diverse scientific disciplines. By deploying these technologies throughout every research stage -- spanning literature review, hypothesis generation, experimentation, and manuscript writing -- and incorporating internal reflection alongside external feedback, this system aims to significantly reduce the time and resources needed for scientific discovery. Building on the evolution from virtual AI scientists to versatile generalist AI-based robot scientists, AGS promises groundbreaking potential. As these autonomous systems become increasingly integrated into the research process, we hypothesize that scientific discovery might adhere to new scaling laws, potentially shaped by the number and capabilities of these autonomous systems, offering novel perspectives on how knowledge is generated and evolves. The adaptability of embodied robots to extreme environments, paired with the flywheel effect of accumulating scientific knowledge, holds the promise of continually pushing beyond both physical and intellectual frontiers.
Reimagining Urban Science: Scaling Causal Inference with Large Language Models
Urban causal research is essential for understanding the complex dynamics of cities and informing evidence-based policies. However, it is challenged by the inefficiency and bias of hypothesis generation, barriers to multimodal data complexity, and the methodological fragility of causal experimentation. Recent advances in large language models (LLMs) present an opportunity to rethink how urban causal analysis is conducted. This Perspective examines current urban causal research by analyzing taxonomies that categorize research topics, data sources, and methodological approaches to identify structural gaps. We then introduce an LLM-driven conceptual framework, AutoUrbanCI, composed of four distinct modular agents responsible for hypothesis generation, data engineering, experiment design and execution, and results interpretation with policy recommendations. We propose evaluation criteria for rigor and transparency and reflect on implications for human-AI collaboration, equity, and accountability. We call for a new research agenda that embraces AI-augmented workflows not as replacements for human expertise but as tools to broaden participation, improve reproducibility, and unlock more inclusive forms of urban causal reasoning.
Revisiting the Superficial Alignment Hypothesis
The Superficial Alignment Hypothesis posits that almost all of a language model's abilities and knowledge are learned during pre-training, while post-training is about giving a model the right style and format. We re-examine these claims by empirically studying the scaling behavior of post-training with increasing finetuning examples and evaluating them using objective task-specific standardized benchmarks. Through experiments with the Llama-3, Mistral, and Llama-2 model families of multiple sizes, we observe that, similar to the pre-training scaling laws, post-training task performance scales as a power law against the number of finetuning examples. This power law relationship holds across a broad array of capabilities, including mathematical reasoning, coding, instruction following, and multihop-reasoning. In addition, for tasks like math and multihop reasoning, we observe that a handful of examples merely align the model stylistically but do not saturate performance on the benchmarks. Model performance is instead correlated with its reasoning ability and it improves significantly with more examples, illustrating the need for holistic evaluation programs leveraging objective benchmarks in addition to measurement of alignment to human preferences. We also observe that language models are not necessarily limited to using knowledge learned during pre-training. With appropriate post-training, a model's ability to integrate new knowledge greatly improves on downstream tasks like multihop question-answering. Taken together, these results shed new light on the Superficial Alignment Hypothesis, suggesting that it is, at best, an over-simplification.
Scaling MLPs: A Tale of Inductive Bias
In this work we revisit the most fundamental building block in deep learning, the multi-layer perceptron (MLP), and study the limits of its performance on vision tasks. Empirical insights into MLPs are important for multiple reasons. (1) Given the recent narrative "less inductive bias is better", popularized due to transformers eclipsing convolutional models, it is natural to explore the limits of this hypothesis. To that end, MLPs offer an ideal test bed, being completely free of any inductive bias. (2) MLPs have almost exclusively been the main protagonist in the deep learning theory literature due to their mathematical simplicity, serving as a proxy to explain empirical phenomena observed for more complex architectures. Surprisingly, experimental datapoints for MLPs are very difficult to find in the literature, especially when coupled with large pre-training protocols. This discrepancy between practice and theory is worrying: Do MLPs reflect the empirical advances exhibited by practical models? Or do theorists need to rethink the role of MLPs as a proxy? We provide insights into both these aspects. We show that the performance of MLPs drastically improves with scale (93% on CIFAR10, 79% on CIFAR100, 69% on TinyImageNet), highlighting that lack of inductive bias can indeed be compensated. We observe that MLPs mimic the behaviour of their modern counterparts faithfully, with some components in the learning setting however surprisingly exhibiting stronger or unexpected behaviours. Due to their inherent computational efficiency, large pre-training experiments become more accessible for academic researchers. All of our experiments were run on a single GPU.
Unlock Predictable Scaling from Emergent Abilities
The scientific scale-up of large language models (LLMs) necessitates a comprehensive understanding of their scaling properties. However, the existing literature on the scaling properties only yields an incomplete answer: optimization loss decreases predictably as the model size increases, in line with established scaling law; yet no scaling law for task has been established and the task performances are far from predictable during scaling. Task performances typically show minor gains on small models until they improve dramatically once models exceed a size threshold, exemplifying the ``emergent abilities''. In this study, we discover that small models, although they exhibit minor performance, demonstrate critical and consistent task performance improvements that are not captured by conventional evaluation strategies due to insufficient measurement resolution. To measure such improvements, we introduce PassUntil, an evaluation strategy through massive sampling in the decoding phase. We conduct quantitative investigations into the scaling law of task performance. Firstly, a strict task scaling law is identified, enhancing the predictability of task performances. Remarkably, we are able to predict the performance of the 2.4B model on code generation with merely 0.05\% deviation before training starts. Secondly, underpinned by PassUntil, we observe concrete evidence of emergent abilities and ascertain that they are not in conflict with the continuity of performance improvement. Their semblance to break-through is that their scaling curve cannot be fitted by standard scaling law function. We then introduce a mathematical definition for the emergent abilities. Through the definition, we refute a prevalent ``multi-step reasoning hypothesis'' regarding the genesis of emergent abilities and propose a new hypothesis with a satisfying fit to the observed scaling curve.
Questioning Representational Optimism in Deep Learning: The Fractured Entangled Representation Hypothesis
Much of the excitement in modern AI is driven by the observation that scaling up existing systems leads to better performance. But does better performance necessarily imply better internal representations? While the representational optimist assumes it must, this position paper challenges that view. We compare neural networks evolved through an open-ended search process to networks trained via conventional stochastic gradient descent (SGD) on the simple task of generating a single image. This minimal setup offers a unique advantage: each hidden neuron's full functional behavior can be easily visualized as an image, thus revealing how the network's output behavior is internally constructed neuron by neuron. The result is striking: while both networks produce the same output behavior, their internal representations differ dramatically. The SGD-trained networks exhibit a form of disorganization that we term fractured entangled representation (FER). Interestingly, the evolved networks largely lack FER, even approaching a unified factored representation (UFR). In large models, FER may be degrading core model capacities like generalization, creativity, and (continual) learning. Therefore, understanding and mitigating FER could be critical to the future of representation learning.
Towards Embodiment Scaling Laws in Robot Locomotion
Developing generalist agents that can operate across diverse tasks, environments, and physical embodiments is a grand challenge in robotics and artificial intelligence. In this work, we focus on the axis of embodiment and investigate embodiment scaling lawsx2013the hypothesis that increasing the number of training embodiments improves generalization to unseen ones. Using robot locomotion as a test bed, we procedurally generate a dataset of sim1,000 varied embodiments, spanning humanoids, quadrupeds, and hexapods, and train generalist policies capable of handling diverse observation and action spaces on random subsets. We find that increasing the number of training embodiments improves generalization to unseen ones, and scaling embodiments is more effective in enabling embodiment-level generalization than scaling data on small, fixed sets of embodiments. Notably, our best policy, trained on the full dataset, zero-shot transfers to novel embodiments in the real world, such as Unitree Go2 and H1. These results represent a step toward general embodied intelligence, with potential relevance to adaptive control for configurable robots, co-design of morphology and control, and beyond.
Stabilizing the Lottery Ticket Hypothesis
Pruning is a well-established technique for removing unnecessary structure from neural networks after training to improve the performance of inference. Several recent results have explored the possibility of pruning at initialization time to provide similar benefits during training. In particular, the "lottery ticket hypothesis" conjectures that typical neural networks contain small subnetworks that can train to similar accuracy in a commensurate number of steps. The evidence for this claim is that a procedure based on iterative magnitude pruning (IMP) reliably finds such subnetworks retroactively on small vision tasks. However, IMP fails on deeper networks, and proposed methods to prune before training or train pruned networks encounter similar scaling limitations. In this paper, we argue that these efforts have struggled on deeper networks because they have focused on pruning precisely at initialization. We modify IMP to search for subnetworks that could have been obtained by pruning early in training (0.1% to 7% through) rather than at iteration 0. With this change, it finds small subnetworks of deeper networks (e.g., 80% sparsity on Resnet-50) that can complete the training process to match the accuracy of the original network on more challenging tasks (e.g., ImageNet). In situations where IMP fails at iteration 0, the accuracy benefits of delaying pruning accrue rapidly over the earliest iterations of training. To explain these behaviors, we study subnetwork "stability," finding that - as accuracy improves in this fashion - IMP subnetworks train to parameters closer to those of the full network and do so with improved consistency in the face of gradient noise. These results offer new insights into the opportunity to prune large-scale networks early in training and the behaviors underlying the lottery ticket hypothesis
Leanabell-Prover: Posttraining Scaling in Formal Reasoning
Recent advances in automated theorem proving (ATP) through LLMs have highlighted the potential of formal reasoning with Lean 4 codes. However, ATP has not yet be revolutionized by the recent posttraining scaling as demonstrated by Open AI O1/O3 and Deepseek R1. In this work, we investigate the entire posttraining of ATP, aiming to align it with breakthroughs in reasoning models in natural languages.To begin, we continual train current ATP models with a hybrid dataset, which consists of numerous statement-proof pairs, and additional data aimed at incorporating cognitive behaviors that emulate human reasoning and hypothesis refinement. Next, we explore reinforcement learning with the use of outcome reward returned by Lean 4 compiler. Through our designed continual training and reinforcement learning processes, we have successfully improved existing formal provers, including both DeepSeek-Prover-v1.5 and Goedel-Prover, achieving state-of-the-art performance in the field of whole-proof generation. For example, we achieve a 59.8% pass rate (pass@32) on MiniF2F. This is an on-going project and we will progressively update our findings, release our data and training details.
Decomposing The Dark Matter of Sparse Autoencoders
Sparse autoencoders (SAEs) are a promising technique for decomposing language model activations into interpretable linear features. However, current SAEs fall short of completely explaining model performance, resulting in "dark matter": unexplained variance in activations. This work investigates dark matter as an object of study in its own right. Surprisingly, we find that much of SAE dark matter--about half of the error vector itself and >90% of its norm--can be linearly predicted from the initial activation vector. Additionally, we find that the scaling behavior of SAE error norms at a per token level is remarkably predictable: larger SAEs mostly struggle to reconstruct the same contexts as smaller SAEs. We build on the linear representation hypothesis to propose models of activations that might lead to these observations, including postulating a new type of "introduced error"; these insights imply that the part of the SAE error vector that cannot be linearly predicted ("nonlinear" error) might be fundamentally different from the linearly predictable component. To validate this hypothesis, we empirically analyze nonlinear SAE error and show that 1) it contains fewer not yet learned features, 2) SAEs trained on it are quantitatively worse, 3) it helps predict SAE per-token scaling behavior, and 4) it is responsible for a proportional amount of the downstream increase in cross entropy loss when SAE activations are inserted into the model. Finally, we examine two methods to reduce nonlinear SAE error at a fixed sparsity: inference time gradient pursuit, which leads to a very slight decrease in nonlinear error, and linear transformations from earlier layer SAE outputs, which leads to a larger reduction.
Towards an AI co-scientist
Scientific discovery relies on scientists generating novel hypotheses that undergo rigorous experimental validation. To augment this process, we introduce an AI co-scientist, a multi-agent system built on Gemini 2.0. The AI co-scientist is intended to help uncover new, original knowledge and to formulate demonstrably novel research hypotheses and proposals, building upon prior evidence and aligned to scientist-provided research objectives and guidance. The system's design incorporates a generate, debate, and evolve approach to hypothesis generation, inspired by the scientific method and accelerated by scaling test-time compute. Key contributions include: (1) a multi-agent architecture with an asynchronous task execution framework for flexible compute scaling; (2) a tournament evolution process for self-improving hypotheses generation. Automated evaluations show continued benefits of test-time compute, improving hypothesis quality. While general purpose, we focus development and validation in three biomedical areas: drug repurposing, novel target discovery, and explaining mechanisms of bacterial evolution and anti-microbial resistance. For drug repurposing, the system proposes candidates with promising validation findings, including candidates for acute myeloid leukemia that show tumor inhibition in vitro at clinically applicable concentrations. For novel target discovery, the AI co-scientist proposed new epigenetic targets for liver fibrosis, validated by anti-fibrotic activity and liver cell regeneration in human hepatic organoids. Finally, the AI co-scientist recapitulated unpublished experimental results via a parallel in silico discovery of a novel gene transfer mechanism in bacterial evolution. These results, detailed in separate, co-timed reports, demonstrate the potential to augment biomedical and scientific discovery and usher an era of AI empowered scientists.
Inverse scaling can become U-shaped
Scaling up language models has been empirically shown to improve performance on a wide range of downstream tasks. However, if we were to observe worse performance as a function of scale ("inverse scaling") on certain tasks, this would indicate that scaling can also encourage behaviors that are misaligned with human preferences. The Inverse Scaling Prize (McKenzie et al. 2022) identified eleven such inverse scaling tasks, evaluated on models of up to 280B parameters and up to 500 zettaFLOPs of training compute. This paper takes a closer look at these inverse scaling tasks. We evaluate models of up to 540B parameters, trained on five times more compute than those evaluated in the Inverse Scaling Prize. With this increased range of model sizes and training compute, only four out of the eleven tasks remain inverse scaling. Six out of the eleven tasks exhibit "U-shaped scaling", where performance decreases up to a certain size, and then increases again up to the largest model evaluated (the one remaining task displays positive scaling). In addition, we find that 1-shot examples and chain-of-thought can help mitigate undesirable scaling patterns even further. U-shaped scaling suggests that the inverse scaling trend observed in McKenzie et al. (2022) may not continue to hold for larger models, which we attribute to the presence of distractor tasks that only sufficiently large models can avoid.
A Neural Scaling Law from Lottery Ticket Ensembling
Neural scaling laws (NSL) refer to the phenomenon where model performance improves with scale. Sharma & Kaplan analyzed NSL using approximation theory and predict that MSE losses decay as N^{-alpha}, alpha=4/d, where N is the number of model parameters, and d is the intrinsic input dimension. Although their theory works well for some cases (e.g., ReLU networks), we surprisingly find that a simple 1D problem y=x^2 manifests a different scaling law (alpha=1) from their predictions (alpha=4). We opened the neural networks and found that the new scaling law originates from lottery ticket ensembling: a wider network on average has more "lottery tickets", which are ensembled to reduce the variance of outputs. We support the ensembling mechanism by mechanistically interpreting single neural networks, as well as studying them statistically. We attribute the N^{-1} scaling law to the "central limit theorem" of lottery tickets. Finally, we discuss its potential implications for large language models and statistical physics-type theories of learning.
Scaling Laws Under the Microscope: Predicting Transformer Performance from Small Scale Experiments
Neural scaling laws define a predictable relationship between a model's parameter count and its performance after training in the form of a power law. However, most research to date has not explicitly investigated whether scaling laws can be used to accelerate model development. In this work, we perform such an empirical investigation across a wide range of language understanding tasks, starting from models with as few as 10K parameters, and evaluate downstream performance across 9 language understanding tasks. We find that scaling laws emerge at finetuning time in some NLP tasks, and that they can also be exploited for debugging convergence when training large models. Moreover, for tasks where scaling laws exist, they can be used to predict the performance of larger models, which enables effective model selection. However, revealing scaling laws requires careful hyperparameter tuning and multiple runs for the purpose of uncertainty estimation, which incurs additional overhead, partially offsetting the computational benefits.
Observational Scaling Laws and the Predictability of Language Model Performance
Understanding how language model performance varies with scale is critical to benchmark and algorithm development. Scaling laws are one approach to building this understanding, but the requirement of training models across many different scales has limited their use. We propose an alternative, observational approach that bypasses model training and instead builds scaling laws from ~80 publically available models. Building a single scaling law from multiple model families is challenging due to large variations in their training compute efficiencies and capabilities. However, we show that these variations are consistent with a simple, generalized scaling law where language model performance is a function of a low-dimensional capability space, and model families only vary in their efficiency in converting training compute to capabilities. Using this approach, we show the surprising predictability of complex scaling phenomena: we show that several emergent phenomena follow a smooth, sigmoidal behavior and are predictable from small models; we show that the agent performance of models such as GPT-4 can be precisely predicted from simpler non-agentic benchmarks; and we show how to predict the impact of post-training interventions like Chain-of-Thought and Self-Consistency as language model capabilities continue to improve.
A Dynamical Model of Neural Scaling Laws
On a variety of tasks, the performance of neural networks predictably improves with training time, dataset size and model size across many orders of magnitude. This phenomenon is known as a neural scaling law. Of fundamental importance is the compute-optimal scaling law, which reports the performance as a function of units of compute when choosing model sizes optimally. We analyze a random feature model trained with gradient descent as a solvable model of network training and generalization. This reproduces many observations about neural scaling laws. First, our model makes a prediction about why the scaling of performance with training time and with model size have different power law exponents. Consequently, the theory predicts an asymmetric compute-optimal scaling rule where the number of training steps are increased faster than model parameters, consistent with recent empirical observations. Second, it has been observed that early in training, networks converge to their infinite-width dynamics at a rate 1/width but at late time exhibit a rate width^{-c}, where c depends on the structure of the architecture and task. We show that our model exhibits this behavior. Lastly, our theory shows how the gap between training and test loss can gradually build up over time due to repeated reuse of data.
Unraveling the Mystery of Scaling Laws: Part I
Scaling law principles indicate a power-law correlation between loss and variables such as model size, dataset size, and computational resources utilized during training. These principles play a vital role in optimizing various aspects of model pre-training, ultimately contributing to the success of large language models such as GPT-4, Llama and Gemini. However, the original scaling law paper by OpenAI did not disclose the complete details necessary to derive the precise scaling law formulas, and their conclusions are only based on models containing up to 1.5 billion parameters. Though some subsequent works attempt to unveil these details and scale to larger models, they often neglect the training dependency of important factors such as the learning rate, context length and batch size, leading to their failure to establish a reliable formula for predicting the test loss trajectory. In this technical report, we confirm that the scaling law formulations proposed in the original OpenAI paper remain valid when scaling the model size up to 33 billion, but the constant coefficients in these formulas vary significantly with the experiment setup. We meticulously identify influential factors and provide transparent, step-by-step instructions to estimate all constant terms in scaling-law formulas by training on models with only 1M~60M parameters. Using these estimated formulas, we showcase the capability to accurately predict various attributes for models with up to 33B parameters before their training, including (1) the minimum possible test loss; (2) the minimum required training steps and processed tokens to achieve a specific loss; (3) the critical batch size with an optimal time/computation trade-off at any loss value; and (4) the complete test loss trajectory with arbitrary batch size.
Rethinking Conventional Wisdom in Machine Learning: From Generalization to Scaling
The remarkable success of large language pretraining and the discovery of scaling laws signify a paradigm shift in machine learning. Notably, the primary objective has evolved from minimizing generalization error to reducing approximation error, and the most effective strategy has transitioned from regularization (in a broad sense) to scaling up models. This raises a critical question: Do the established principles that proved successful in the generalization-centric era remain valid in this new era of scaling? This paper examines several influential regularization-based principles that may no longer hold true in the scaling-centric, large language model (LLM) era. These principles include explicit L2 regularization and implicit regularization through small batch sizes and large learning rates. Additionally, we identify a new phenomenon termed ``scaling law crossover,'' where two scaling curves intersect at a certain scale, implying that methods effective at smaller scales may not generalize to larger ones. Together, these observations highlight two fundamental questions within this new paradigm: bullet Guiding Principles for Scaling: If regularization is no longer the primary guiding principle for model design, what new principles are emerging to guide scaling? bullet Model Comparison at Scale: How to reliably and effectively compare models at the scale where only a single experiment is feasible?
A Solvable Model of Neural Scaling Laws
Large language models with a huge number of parameters, when trained on near internet-sized number of tokens, have been empirically shown to obey neural scaling laws: specifically, their performance behaves predictably as a power law in either parameters or dataset size until bottlenecked by the other resource. To understand this better, we first identify the necessary properties allowing such scaling laws to arise and then propose a statistical model -- a joint generative data model and random feature model -- that captures this neural scaling phenomenology. By solving this model in the dual limit of large training set size and large number of parameters, we gain insight into (i) the statistical structure of datasets and tasks that lead to scaling laws, (ii) the way nonlinear feature maps, such as those provided by neural networks, enable scaling laws when trained on these datasets, (iii) the optimality of the equiparameterization scaling of training sets and parameters, and (iv) whether such scaling laws can break down and how they behave when they do. Key findings are the manner in which the power laws that occur in the statistics of natural datasets are extended by nonlinear random feature maps and then translated into power-law scalings of the test loss and how the finite extent of the data's spectral power law causes the model's performance to plateau.
(Mis)Fitting: A Survey of Scaling Laws
Modern foundation models rely heavily on using scaling laws to guide crucial training decisions. Researchers often extrapolate the optimal architecture and hyper parameters settings from smaller training runs by describing the relationship between, loss, or task performance, and scale. All components of this process vary, from the specific equation being fit, to the training setup, to the optimization method. Each of these factors may affect the fitted law, and therefore, the conclusions of a given study. We discuss discrepancies in the conclusions that several prior works reach, on questions such as the optimal token to parameter ratio. We augment this discussion with our own analysis of the critical impact that changes in specific details may effect in a scaling study, and the resulting altered conclusions. Additionally, we survey over 50 papers that study scaling trends: while 45 of these papers quantify these trends using a power law, most under-report crucial details needed to reproduce their findings. To mitigate this, we we propose a checklist for authors to consider while contributing to scaling law research.
Chinchilla Scaling: A replication attempt
Hoffmann et al. (2022) propose three methods for estimating a compute-optimal scaling law. We attempt to replicate their third estimation procedure, which involves fitting a parametric loss function to a reconstruction of data from their plots. We find that the reported estimates are inconsistent with their first two estimation methods, fail at fitting the extracted data, and report implausibly narrow confidence intervals--intervals this narrow would require over 600,000 experiments, while they likely only ran fewer than 500. In contrast, our rederivation of the scaling law using the third approach yields results that are compatible with the findings from the first two estimation procedures described by Hoffmann et al.
Superposition Yields Robust Neural Scaling
The success of today's large language models (LLMs) depends on the observation that larger models perform better. However, the origin of this neural scaling law -- the finding that loss decreases as a power law with model size -- remains unclear. Starting from two empirical principles -- that LLMs represent more things than the model dimensions (widths) they have (i.e., representations are superposed), and that words or concepts in language occur with varying frequencies -- we constructed a toy model to study the loss scaling with model size. We found that when superposition is weak, meaning only the most frequent features are represented without interference, the scaling of loss with model size depends on the underlying feature frequency; if feature frequencies follow a power law, so does the loss. In contrast, under strong superposition, where all features are represented but overlap with each other, the loss becomes inversely proportional to the model dimension across a wide range of feature frequency distributions. This robust scaling behavior is explained geometrically: when many more vectors are packed into a lower dimensional space, the interference (squared overlaps) between vectors scales inversely with that dimension. We then analyzed four families of open-sourced LLMs and found that they exhibit strong superposition and quantitatively match the predictions of our toy model. The Chinchilla scaling law turned out to also agree with our results. We conclude that representation superposition is an important mechanism underlying the observed neural scaling laws. We anticipate that these insights will inspire new training strategies and model architectures to achieve better performance with less computation and fewer parameters.
Scaling Laws for Robust Comparison of Open Foundation Language-Vision Models and Datasets
In studies of transferable learning, scaling laws are obtained for various important foundation models to predict their properties and performance at larger scales. We show here how scaling law derivation can also be used for model and dataset comparison, allowing to decide which procedure is to be preferred for pre-training. For the first time, full scaling laws based on dense measurements across a wide span of model and samples seen scales are derived for two important language-vision learning procedures, CLIP and MaMMUT, that use either contrastive only or contrastive and captioning text generative loss. Ensuring sufficient prediction accuracy for held out points, we use derived scaling laws to compare both models, obtaining evidence for MaMMUT's stronger improvement with scale and better sample efficiency than standard CLIP. To strengthen validity of the comparison, we show scaling laws for various downstream tasks, classification, retrieval, and segmentation, and for different open datasets, DataComp, DFN and Re-LAION, observing consistently the same trends. We show that comparison can also be performed when deriving scaling laws with a constant learning rate schedule, reducing compute cost. Accurate derivation of scaling laws provides thus means to perform model and dataset comparison across scale spans, avoiding misleading conclusions based on measurements from single reference scales only, paving the road for systematic comparison and improvement of open foundation models and datasets for their creation. We release all the pre-trained models with their intermediate checkpoints, including openMaMMUT-L/14, which achieves 80.3% zero-shot ImageNet-1k accuracy, trained on 12.8B samples from DataComp-1.4B. Code for reproducing experiments in the paper and raw experiments data can be found at https://github.com/LAION-AI/scaling-laws-for-comparison.
Explaining Neural Scaling Laws
The population loss of trained deep neural networks often follows precise power-law scaling relations with either the size of the training dataset or the number of parameters in the network. We propose a theory that explains the origins of and connects these scaling laws. We identify variance-limited and resolution-limited scaling behavior for both dataset and model size, for a total of four scaling regimes. The variance-limited scaling follows simply from the existence of a well-behaved infinite data or infinite width limit, while the resolution-limited regime can be explained by positing that models are effectively resolving a smooth data manifold. In the large width limit, this can be equivalently obtained from the spectrum of certain kernels, and we present evidence that large width and large dataset resolution-limited scaling exponents are related by a duality. We exhibit all four scaling regimes in the controlled setting of large random feature and pretrained models and test the predictions empirically on a range of standard architectures and datasets. We also observe several empirical relationships between datasets and scaling exponents under modifications of task and architecture aspect ratio. Our work provides a taxonomy for classifying different scaling regimes, underscores that there can be different mechanisms driving improvements in loss, and lends insight into the microscopic origins of and relationships between scaling exponents.
A Tale of Tails: Model Collapse as a Change of Scaling Laws
As AI model size grows, neural scaling laws have become a crucial tool to predict the improvements of large models when increasing capacity and the size of original (human or natural) training data. Yet, the widespread use of popular models means that the ecosystem of online data and text will co-evolve to progressively contain increased amounts of synthesized data. In this paper we ask: How will the scaling laws change in the inevitable regime where synthetic data makes its way into the training corpus? Will future models, still improve, or be doomed to degenerate up to total (model) collapse? We develop a theoretical framework of model collapse through the lens of scaling laws. We discover a wide range of decay phenomena, analyzing loss of scaling, shifted scaling with number of generations, the ''un-learning" of skills, and grokking when mixing human and synthesized data. Our theory is validated by large-scale experiments with a transformer on an arithmetic task and text generation using the large language model Llama2.
Deep Learning Scaling is Predictable, Empirically
Deep learning (DL) creates impactful advances following a virtuous recipe: model architecture search, creating large training data sets, and scaling computation. It is widely believed that growing training sets and models should improve accuracy and result in better products. As DL application domains grow, we would like a deeper understanding of the relationships between training set size, computational scale, and model accuracy improvements to advance the state-of-the-art. This paper presents a large scale empirical characterization of generalization error and model size growth as training sets grow. We introduce a methodology for this measurement and test four machine learning domains: machine translation, language modeling, image processing, and speech recognition. Our empirical results show power-law generalization error scaling across a breadth of factors, resulting in power-law exponents---the "steepness" of the learning curve---yet to be explained by theoretical work. Further, model improvements only shift the error but do not appear to affect the power-law exponent. We also show that model size scales sublinearly with data size. These scaling relationships have significant implications on deep learning research, practice, and systems. They can assist model debugging, setting accuracy targets, and decisions about data set growth. They can also guide computing system design and underscore the importance of continued computational scaling.
Scaling Laws and Compute-Optimal Training Beyond Fixed Training Durations
Scale has become a main ingredient in obtaining strong machine learning models. As a result, understanding a model's scaling properties is key to effectively designing both the right training setup as well as future generations of architectures. In this work, we argue that scale and training research has been needlessly complex due to reliance on the cosine schedule, which prevents training across different lengths for the same model size. We investigate the training behavior of a direct alternative - constant learning rate and cooldowns - and find that it scales predictably and reliably similar to cosine. Additionally, we show that stochastic weight averaging yields improved performance along the training trajectory, without additional training costs, across different scales. Importantly, with these findings we demonstrate that scaling experiments can be performed with significantly reduced compute and GPU hours by utilizing fewer but reusable training runs.
Feature diversity in self-supervised learning
Many studies on scaling laws consider basic factors such as model size, model shape, dataset size, and compute power. These factors are easily tunable and represent the fundamental elements of any machine learning setup. But researchers have also employed more complex factors to estimate the test error and generalization performance with high predictability. These factors are generally specific to the domain or application. For example, feature diversity was primarily used for promoting syn-to-real transfer by Chen et al. (2021). With numerous scaling factors defined in previous works, it would be interesting to investigate how these factors may affect overall generalization performance in the context of self-supervised learning with CNN models. How do individual factors promote generalization, which includes varying depth, width, or the number of training epochs with early stopping? For example, does higher feature diversity result in higher accuracy held in complex settings other than a syn-to-real transfer? How do these factors depend on each other? We found that the last layer is the most diversified throughout the training. However, while the model's test error decreases with increasing epochs, its diversity drops. We also discovered that diversity is directly related to model width.
Training Language Models on the Knowledge Graph: Insights on Hallucinations and Their Detectability
While many capabilities of language models (LMs) improve with increased training budget, the influence of scale on hallucinations is not yet fully understood. Hallucinations come in many forms, and there is no universally accepted definition. We thus focus on studying only those hallucinations where a correct answer appears verbatim in the training set. To fully control the training data content, we construct a knowledge graph (KG)-based dataset, and use it to train a set of increasingly large LMs. We find that for a fixed dataset, larger and longer-trained LMs hallucinate less. However, hallucinating on leq5% of the training data requires an order of magnitude larger model, and thus an order of magnitude more compute, than Hoffmann et al. (2022) reported was optimal. Given this costliness, we study how hallucination detectors depend on scale. While we see detector size improves performance on fixed LM's outputs, we find an inverse relationship between the scale of the LM and the detectability of its hallucinations.
Scaling Laws for Autoregressive Generative Modeling
We identify empirical scaling laws for the cross-entropy loss in four domains: generative image modeling, video modeling, multimodal imageleftrightarrowtext models, and mathematical problem solving. In all cases autoregressive Transformers smoothly improve in performance as model size and compute budgets increase, following a power-law plus constant scaling law. The optimal model size also depends on the compute budget through a power-law, with exponents that are nearly universal across all data domains. The cross-entropy loss has an information theoretic interpretation as S(True) + D_{KL}(True||Model), and the empirical scaling laws suggest a prediction for both the true data distribution's entropy and the KL divergence between the true and model distributions. With this interpretation, billion-parameter Transformers are nearly perfect models of the YFCC100M image distribution downsampled to an 8times 8 resolution, and we can forecast the model size needed to achieve any given reducible loss (ie D_{KL}) in nats/image for other resolutions. We find a number of additional scaling laws in specific domains: (a) we identify a scaling relation for the mutual information between captions and images in multimodal models, and show how to answer the question "Is a picture worth a thousand words?"; (b) in the case of mathematical problem solving, we identify scaling laws for model performance when extrapolating beyond the training distribution; (c) we finetune generative image models for ImageNet classification and find smooth scaling of the classification loss and error rate, even as the generative loss levels off. Taken together, these results strengthen the case that scaling laws have important implications for neural network performance, including on downstream tasks.
Beyond neural scaling laws: beating power law scaling via data pruning
Widely observed neural scaling laws, in which error falls off as a power of the training set size, model size, or both, have driven substantial performance improvements in deep learning. However, these improvements through scaling alone require considerable costs in compute and energy. Here we focus on the scaling of error with dataset size and show how in theory we can break beyond power law scaling and potentially even reduce it to exponential scaling instead if we have access to a high-quality data pruning metric that ranks the order in which training examples should be discarded to achieve any pruned dataset size. We then test this improved scaling prediction with pruned dataset size empirically, and indeed observe better than power law scaling in practice on ResNets trained on CIFAR-10, SVHN, and ImageNet. Next, given the importance of finding high-quality pruning metrics, we perform the first large-scale benchmarking study of ten different data pruning metrics on ImageNet. We find most existing high performing metrics scale poorly to ImageNet, while the best are computationally intensive and require labels for every image. We therefore developed a new simple, cheap and scalable self-supervised pruning metric that demonstrates comparable performance to the best supervised metrics. Overall, our work suggests that the discovery of good data-pruning metrics may provide a viable path forward to substantially improved neural scaling laws, thereby reducing the resource costs of modern deep learning.
Critical scaling law for the deposition efficiency of inertia-driven particle collisions with a cylinder in high Reynolds number air flow
The Earth's atmosphere is an aerosol, it contains suspended particles. When air flows over an obstacle such as an aircraft wing or tree branch, these particles may not follow the same paths as the air flowing around the obstacle. Instead the particles in the air may deviate from the path of the air and so collide with the surface of the obstacle. It is known that particle inertia can drive this deposition, and that there is a critical value of this inertia, below which no point particles deposit. Particle inertia is measured by the Stokes number, St. We show that near the critical value of the Stokes number, St_c, the amount of deposition has the unusual scaling law of exp(-1/(St-St_c)^{1/2}). The scaling is controlled by the stagnation point of the flow. This scaling is determined by the time for the particle to reach the surface of the cylinder varying as 1/(St-St_c)^{1/2}, together with the distance away from the stagnation point (perpendicular to the flow direction) increasing exponentially with time. The scaling law applies to inviscid flow, a model for flow at high Reynolds numbers. The unusual scaling means that the amount of particles deposited increases only very slowly above the critical Stokes number. This has consequences for applications ranging from rime formation and fog harvesting to pollination.
Power Lines: Scaling Laws for Weight Decay and Batch Size in LLM Pre-training
Efficient LLM pre-training requires well-tuned hyperparameters (HPs), including learning rate {\eta} and weight decay {\lambda}. We study scaling laws for HPs: formulas for how to scale HPs as we scale model size N, dataset size D, and batch size B. Recent work suggests the AdamW timescale, B/({\eta}{\lambda}D), should remain constant across training settings, and we verify the implication that optimal {\lambda} scales linearly with B, for a fixed N,D. However, as N,D scale, we show the optimal timescale obeys a precise power law in the tokens-per-parameter ratio, D/N. This law thus provides a method to accurately predict {\lambda}opt in advance of large-scale training. We also study scaling laws for optimal batch size Bopt (the B enabling lowest loss at a given N,D) and critical batch size Bcrit (the B beyond which further data parallelism becomes ineffective). In contrast with prior work, we find both Bopt and Bcrit scale as power laws in D, independent of model size, N. Finally, we analyze how these findings inform the real-world selection of Pareto-optimal N and D under dual training time and compute objectives.
Selecting Large Language Model to Fine-tune via Rectified Scaling Law
The ever-growing ecosystem of LLMs has posed a challenge in selecting the most appropriate pre-trained model to fine-tune amidst a sea of options. Given constrained resources, fine-tuning all models and making selections afterward is unrealistic. In this work, we formulate this resource-constrained selection task into predicting fine-tuning performance and illustrate its natural connection with scaling laws. Unlike pre-training, We find that the fine-tuning scaling curve includes not just the well-known "power phase" but also the previously unobserved "pre-power phase". We also explain why existing scaling laws fail to capture this phase transition phenomenon both theoretically and empirically. To address this, we introduce the concept of "pre-learned data size" into our rectified scaling law, which overcomes theoretical limitations and fits experimental results much better. By leveraging our law, we propose a novel LLM selection algorithm that selects the near-optimal model with hundreds of times less resource consumption, while other methods may provide negatively correlated selection.
Why Has Predicting Downstream Capabilities of Frontier AI Models with Scale Remained Elusive?
Predictable behavior from scaling advanced AI systems is an extremely desirable property. Although a well-established literature exists on how pretraining performance scales, the literature on how particular downstream capabilities scale is significantly muddier. In this work, we take a step back and ask: why has predicting specific downstream capabilities with scale remained elusive? While many factors are certainly responsible, we identify a new factor that makes modeling scaling behavior on widely used multiple-choice question-answering benchmarks challenging. Using five model families and twelve well-established multiple-choice benchmarks, we show that downstream performance is computed from negative log likelihoods via a sequence of transformations that progressively degrade the statistical relationship between performance and scale. We then reveal the mechanism causing this degradation: downstream metrics require comparing the correct choice against a small number of specific incorrect choices, meaning accurately predicting downstream capabilities requires predicting not just how probability mass concentrates on the correct choice with scale, but also how probability mass fluctuates on specific incorrect choices with scale. We empirically study how probability mass on the correct choice co-varies with probability mass on incorrect choices with increasing compute, suggesting that scaling laws for incorrect choices might be achievable. Our work also explains why pretraining scaling laws are commonly regarded as more predictable than downstream capabilities and contributes towards establishing scaling-predictable evaluations of frontier AI models.
AnaloBench: Benchmarking the Identification of Abstract and Long-context Analogies
Humans regularly engage in analogical thinking, relating personal experiences to current situations (X is analogous to Y because of Z). Analogical thinking allows humans to solve problems in creative ways, grasp difficult concepts, and articulate ideas more effectively. Can language models (LMs) do the same? To answer this question, we propose ANALOBENCH, a benchmark to determine analogical reasoning ability in LMs. Our benchmarking approach focuses on aspects of this ability that are common among humans: (i) recalling related experiences from a large amount of information, and (ii) applying analogical reasoning to complex and lengthy scenarios. We test a broad collection of proprietary models (e.g., GPT family, Claude V2) and open source models such as LLaMA2. As in prior results, scaling up LMs results in some performance boosts. Surprisingly, scale offers minimal gains when, (i) analogies involve lengthy scenarios, or (ii) recalling relevant scenarios from a large pool of information, a process analogous to finding a needle in a haystack. We hope these observations encourage further research in this field.
Rethinking Scaling Laws for Learning in Strategic Environments
The deployment of ever-larger machine learning models reflects a growing consensus that the more expressive the modelx2013and the more data one has access tox2013the more one can improve performance. As models get deployed in a variety of real world scenarios, they inevitably face strategic environments. In this work, we consider the natural question of how the interplay of models and strategic interactions affects scaling laws. We find that strategic interactions can break the conventional view of scaling lawsx2013meaning that performance does not necessarily monotonically improve as models get larger and/ or more expressive (even with infinite data). We show the implications of this phenomenon in several contexts including strategic regression, strategic classification, and multi-agent reinforcement learning through examples of strategic environments in whichx2013by simply restricting the expressivity of one's model or policy classx2013one can achieve strictly better equilibrium outcomes. Motivated by these examples, we then propose a new paradigm for model-selection in games wherein an agent seeks to choose amongst different model classes to use as their action set in a game.
Gemstones: A Model Suite for Multi-Faceted Scaling Laws
Scaling laws are typically fit using a family of models with a narrow range of frozen hyper-parameter choices. In this work we study scaling laws using a wide range of architecture and hyper-parameter choices, and highlight their impact on resulting prescriptions. As a primary artifact of our research, we release the Gemstones: the most comprehensive open-source scaling law dataset to date, consisting of over 4000 checkpoints from transformers with up to 2 billion parameters; these models have been trained with different learning rates, cooldown schedules, and architectural shapes. Our checkpoints enable more complex studies of scaling, such as a law that predicts language modeling performance as a function of model width and depth. By examining the various facets of our model suite, we find that the prescriptions of scaling laws can be highly sensitive to the experimental design process and the specific model checkpoints used during fitting. Code: https://github.com/mcleish7/gemstone-scaling-laws
Beyond Chinchilla-Optimal: Accounting for Inference in Language Model Scaling Laws
Large language model (LLM) scaling laws are empirical formulas that estimate changes in model quality as a result of increasing parameter count and training data. However, these formulas, including the popular DeepMind Chinchilla scaling laws, neglect to include the cost of inference. We modify the Chinchilla scaling laws to calculate the optimal LLM parameter count and pre-training data size to train and deploy a model of a given quality and inference demand. We conduct our analysis both in terms of a compute budget and real-world costs and find that LLM researchers expecting reasonably large inference demand (~1B requests) should train models smaller and longer than Chinchilla-optimal.
Navigating Scaling Laws: Accelerating Vision Transformer's Training via Adaptive Strategies
In recent years, the state-of-the-art in deep learning has been dominated by very large models that have been pre-trained on vast amounts of data. The paradigm is very simple: Investing more computational resources (optimally) leads to better performance, and even predictably so; neural scaling laws have been derived that accurately forecast the performance of a network for a desired level of compute. This leads to the notion of a "compute-optimal" model, i.e. a model that allocates a given level of compute during training optimally to maximise performance. In this work, we extend the concept of optimality by allowing for an "adaptive" model, i.e. a model that can change its shape during the course of training. By allowing the shape to adapt, we can optimally traverse between the underlying scaling laws, leading to a significant reduction in the required compute to reach a given target performance. We focus on vision tasks and the family of Vision Transformers, where the patch size as well as the width naturally serve as adaptive shape parameters. We demonstrate that, guided by scaling laws, we can design compute-optimal adaptive models that beat their "static" counterparts.
Emergent Abilities of Large Language Models
Scaling up language models has been shown to predictably improve performance and sample efficiency on a wide range of downstream tasks. This paper instead discusses an unpredictable phenomenon that we refer to as emergent abilities of large language models. We consider an ability to be emergent if it is not present in smaller models but is present in larger models. Thus, emergent abilities cannot be predicted simply by extrapolating the performance of smaller models. The existence of such emergence implies that additional scaling could further expand the range of capabilities of language models.
Online Platt Scaling with Calibeating
We present an online post-hoc calibration method, called Online Platt Scaling (OPS), which combines the Platt scaling technique with online logistic regression. We demonstrate that OPS smoothly adapts between i.i.d. and non-i.i.d. settings with distribution drift. Further, in scenarios where the best Platt scaling model is itself miscalibrated, we enhance OPS by incorporating a recently developed technique called calibeating to make it more robust. Theoretically, our resulting OPS+calibeating method is guaranteed to be calibrated for adversarial outcome sequences. Empirically, it is effective on a range of synthetic and real-world datasets, with and without distribution drifts, achieving superior performance without hyperparameter tuning. Finally, we extend all OPS ideas to the beta scaling method.
Loss-to-Loss Prediction: Scaling Laws for All Datasets
While scaling laws provide a reliable methodology for predicting train loss across compute scales for a single data distribution, less is known about how these predictions should change as we change the distribution. In this paper, we derive a strategy for predicting one loss from another and apply it to predict across different pre-training datasets and from pre-training data to downstream task data. Our predictions extrapolate well even at 20x the largest FLOP budget used to fit the curves. More precisely, we find that there are simple shifted power law relationships between (1) the train losses of two models trained on two separate datasets when the models are paired by training compute (train-to-train), (2) the train loss and the test loss on any downstream distribution for a single model (train-to-test), and (3) the test losses of two models trained on two separate train datasets (test-to-test). The results hold up for pre-training datasets that differ substantially (some are entirely code and others have no code at all) and across a variety of downstream tasks. Finally, we find that in some settings these shifted power law relationships can yield more accurate predictions than extrapolating single-dataset scaling laws.
Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models
Language models demonstrate both quantitative improvement and new qualitative capabilities with increasing scale. Despite their potentially transformative impact, these new capabilities are as yet poorly characterized. In order to inform future research, prepare for disruptive new model capabilities, and ameliorate socially harmful effects, it is vital that we understand the present and near-future capabilities and limitations of language models. To address this challenge, we introduce the Beyond the Imitation Game benchmark (BIG-bench). BIG-bench currently consists of 204 tasks, contributed by 442 authors across 132 institutions. Task topics are diverse, drawing problems from linguistics, childhood development, math, common-sense reasoning, biology, physics, social bias, software development, and beyond. BIG-bench focuses on tasks that are believed to be beyond the capabilities of current language models. We evaluate the behavior of OpenAI's GPT models, Google-internal dense transformer architectures, and Switch-style sparse transformers on BIG-bench, across model sizes spanning millions to hundreds of billions of parameters. In addition, a team of human expert raters performed all tasks in order to provide a strong baseline. Findings include: model performance and calibration both improve with scale, but are poor in absolute terms (and when compared with rater performance); performance is remarkably similar across model classes, though with benefits from sparsity; tasks that improve gradually and predictably commonly involve a large knowledge or memorization component, whereas tasks that exhibit "breakthrough" behavior at a critical scale often involve multiple steps or components, or brittle metrics; social bias typically increases with scale in settings with ambiguous context, but this can be improved with prompting.
Scaling Laws Beyond Backpropagation
Alternatives to backpropagation have long been studied to better understand how biological brains may learn. Recently, they have also garnered interest as a way to train neural networks more efficiently. By relaxing constraints inherent to backpropagation (e.g., symmetric feedforward and feedback weights, sequential updates), these methods enable promising prospects, such as local learning. However, the tradeoffs between different methods in terms of final task performance, convergence speed, and ultimately compute and data requirements are rarely outlined. In this work, we use scaling laws to study the ability of Direct Feedback Alignment~(DFA) to train causal decoder-only Transformers efficiently. Scaling laws provide an overview of the tradeoffs implied by a modeling decision, up to extrapolating how it might transfer to increasingly large models. We find that DFA fails to offer more efficient scaling than backpropagation: there is never a regime for which the degradation in loss incurred by using DFA is worth the potential reduction in compute budget. Our finding comes at variance with previous beliefs in the alternative training methods community, and highlights the need for holistic empirical approaches to better understand modeling decisions.
Are Emergent Abilities of Large Language Models a Mirage?
Recent work claims that large language models display emergent abilities, abilities not present in smaller-scale models that are present in larger-scale models. What makes emergent abilities intriguing is two-fold: their sharpness, transitioning seemingly instantaneously from not present to present, and their unpredictability, appearing at seemingly unforeseeable model scales. Here, we present an alternative explanation for emergent abilities: that for a particular task and model family, when analyzing fixed model outputs, emergent abilities appear due to the researcher's choice of metric rather than due to fundamental changes in model behavior with scale. Specifically, nonlinear or discontinuous metrics produce apparent emergent abilities, whereas linear or continuous metrics produce smooth, continuous predictable changes in model performance. We present our alternative explanation in a simple mathematical model, then test it in three complementary ways: we (1) make, test and confirm three predictions on the effect of metric choice using the InstructGPT/GPT-3 family on tasks with claimed emergent abilities; (2) make, test and confirm two predictions about metric choices in a meta-analysis of emergent abilities on BIG-Bench; and (3) show to choose metrics to produce never-before-seen seemingly emergent abilities in multiple vision tasks across diverse deep networks. Via all three analyses, we provide evidence that alleged emergent abilities evaporate with different metrics or with better statistics, and may not be a fundamental property of scaling AI models.
Long Horizon Temperature Scaling
Temperature scaling is a popular technique for tuning the sharpness of a model distribution. It is used extensively for sampling likely generations and calibrating model uncertainty, and even features as a controllable parameter to many large language models in deployment. However, autoregressive models rely on myopic temperature scaling that greedily optimizes the next token. To address this, we propose Long Horizon Temperature Scaling (LHTS), a novel approach for sampling from temperature-scaled joint distributions. LHTS is compatible with all likelihood-based models, and optimizes for the long-horizon likelihood of samples. We derive a temperature-dependent LHTS objective, and show that fine-tuning a model on a range of temperatures produces a single model capable of generation with a controllable long-horizon temperature parameter. We experiment with LHTS on image diffusion models and character/language autoregressive models, demonstrating advantages over myopic temperature scaling in likelihood and sample quality, and showing improvements in accuracy on a multiple choice analogy task by 10%.
Oscillation-free Quantization for Low-bit Vision Transformers
Weight oscillation is an undesirable side effect of quantization-aware training, in which quantized weights frequently jump between two quantized levels, resulting in training instability and a sub-optimal final model. We discover that the learnable scaling factor, a widely-used de facto setting in quantization aggravates weight oscillation. In this study, we investigate the connection between the learnable scaling factor and quantized weight oscillation and use ViT as a case driver to illustrate the findings and remedies. In addition, we also found that the interdependence between quantized weights in query and key of a self-attention layer makes ViT vulnerable to oscillation. We, therefore, propose three techniques accordingly: statistical weight quantization (rm StatsQ) to improve quantization robustness compared to the prevalent learnable-scale-based method; confidence-guided annealing (rm CGA) that freezes the weights with high confidence and calms the oscillating weights; and query-key reparameterization (rm QKR) to resolve the query-key intertwined oscillation and mitigate the resulting gradient misestimation. Extensive experiments demonstrate that these proposed techniques successfully abate weight oscillation and consistently achieve substantial accuracy improvement on ImageNet. Specifically, our 2-bit DeiT-T/DeiT-S algorithms outperform the previous state-of-the-art by 9.8% and 7.7%, respectively. Code and models are available at: https://github.com/nbasyl/OFQ.
O1 Replication Journey -- Part 3: Inference-time Scaling for Medical Reasoning
Building upon our previous investigations of O1 replication (Part 1: Journey Learning [Qin et al., 2024] and Part 2: Distillation [Huang et al., 2024]), this work explores the potential of inference-time scaling in large language models (LLMs) for medical reasoning tasks, ranging from diagnostic decision-making to treatment planning. Through extensive experiments on medical benchmarks of varying complexity (MedQA, Medbullets, and JAMA Clinical Challenges), our investigation reveals several key insights: (1) Increasing inference time does lead to improved performance. With a modest training set of 500 samples, our model yields substantial performance improvements of 6%-11%. (2) Task complexity directly correlates with the required length of reasoning chains, confirming the necessity of extended thought processes for challenging problems. (3) The differential diagnoses generated by our model adhere to the principles of the hypothetico-deductive method, producing a list of potential conditions that may explain a patient's symptoms and systematically narrowing these possibilities by evaluating the evidence. These findings demonstrate the promising synergy between inference-time scaling and journey learning in advancing LLMs' real-world clinical reasoning capabilities.
Value-Based Deep RL Scales Predictably
Scaling data and compute is critical to the success of machine learning. However, scaling demands predictability: we want methods to not only perform well with more compute or data, but also have their performance be predictable from small-scale runs, without running the large-scale experiment. In this paper, we show that value-based off-policy RL methods are predictable despite community lore regarding their pathological behavior. First, we show that data and compute requirements to attain a given performance level lie on a Pareto frontier, controlled by the updates-to-data (UTD) ratio. By estimating this frontier, we can predict this data requirement when given more compute, and this compute requirement when given more data. Second, we determine the optimal allocation of a total resource budget across data and compute for a given performance and use it to determine hyperparameters that maximize performance for a given budget. Third, this scaling behavior is enabled by first estimating predictable relationships between hyperparameters, which is used to manage effects of overfitting and plasticity loss unique to RL. We validate our approach using three algorithms: SAC, BRO, and PQL on DeepMind Control, OpenAI gym, and IsaacGym, when extrapolating to higher levels of data, compute, budget, or performance.
Bayesian inference of the climbing grade scale
Climbing grades are used to classify a climbing route based on its perceived difficulty, and have come to play a central role in the sport of rock climbing. Recently, the first statistically rigorous method for estimating climbing grades from whole-history ascent data was described, based on the dynamic Bradley-Terry model for games between players of time-varying ability. In this paper, we implement inference under the whole-history rating model using Markov chain Monte Carlo and apply the method to a curated data set made up of climbers who climb regularly. We use these data to get an estimate of the model's fundamental scale parameter m, which defines the proportional increase in difficulty associated with an increment of grade. We show that the data conform to assumptions that the climbing grade scale is a logarithmic scale of difficulty, like decibels or stellar magnitude. We estimate that an increment in Ewbank, French and UIAA climbing grade systems corresponds to 2.1, 2.09 and 2.13 times increase in difficulty respectively, assuming a logistic model of probability of success as a function of grade. Whereas we find that the Vermin scale for bouldering (V-grade scale) corresponds to a 3.17 increase in difficulty per grade increment. In addition, we highlight potential connections between the logarithmic properties of climbing grade scales and the psychophysical laws of Weber and Fechner.
Unified Scaling Laws for Routed Language Models
The performance of a language model has been shown to be effectively modeled as a power-law in its parameter count. Here we study the scaling behaviors of Routing Networks: architectures that conditionally use only a subset of their parameters while processing an input. For these models, parameter count and computational requirement form two independent axes along which an increase leads to better performance. In this work we derive and justify scaling laws defined on these two variables which generalize those known for standard language models and describe the performance of a wide range of routing architectures trained via three different techniques. Afterwards we provide two applications of these laws: first deriving an Effective Parameter Count along which all models scale at the same rate, and then using the scaling coefficients to give a quantitative comparison of the three routing techniques considered. Our analysis derives from an extensive evaluation of Routing Networks across five orders of magnitude of size, including models with hundreds of experts and hundreds of billions of parameters.
Reproducible scaling laws for contrastive language-image learning
Scaling up neural networks has led to remarkable performance across a wide range of tasks. Moreover, performance often follows reliable scaling laws as a function of training set size, model size, and compute, which offers valuable guidance as large-scale experiments are becoming increasingly expensive. However, previous work on scaling laws has primarily used private data \& models or focused on uni-modal language or vision learning. To address these limitations, we investigate scaling laws for contrastive language-image pre-training (CLIP) with the public LAION dataset and the open-source OpenCLIP repository. Our large-scale experiments involve models trained on up to two billion image-text pairs and identify power law scaling for multiple downstream tasks including zero-shot classification, retrieval, linear probing, and end-to-end fine-tuning. We find that the training distribution plays a key role in scaling laws as the OpenAI and OpenCLIP models exhibit different scaling behavior despite identical model architectures and similar training recipes. We open-source our evaluation workflow and all models, including the largest public CLIP models, to ensure reproducibility and make scaling laws research more accessible. Source code and instructions to reproduce this study will be available at https://github.com/LAION-AI/scaling-laws-openclip
Performance Scaling via Optimal Transport: Enabling Data Selection from Partially Revealed Sources
Traditionally, data selection has been studied in settings where all samples from prospective sources are fully revealed to a machine learning developer. However, in practical data exchange scenarios, data providers often reveal only a limited subset of samples before an acquisition decision is made. Recently, there have been efforts to fit scaling laws that predict model performance at any size and data source composition using the limited available samples. However, these scaling functions are black-box, computationally expensive to fit, highly susceptible to overfitting, or/and difficult to optimize for data selection. This paper proposes a framework called <projektor>, which predicts model performance and supports data selection decisions based on partial samples of prospective data sources. Our approach distinguishes itself from existing work by introducing a novel *two-stage* performance inference process. In the first stage, we leverage the Optimal Transport distance to predict the model's performance for any data mixture ratio within the range of disclosed data sizes. In the second stage, we extrapolate the performance to larger undisclosed data sizes based on a novel parameter-free mapping technique inspired by neural scaling laws. We further derive an efficient gradient-based method to select data sources based on the projected model performance. Evaluation over a diverse range of applications demonstrates that <projektor> significantly improves existing performance scaling approaches in terms of both the accuracy of performance inference and the computation costs associated with constructing the performance predictor. Also, <projektor> outperforms by a wide margin in data selection effectiveness compared to a range of other off-the-shelf solutions.
4+3 Phases of Compute-Optimal Neural Scaling Laws
We consider the solvable neural scaling model with three parameters: data complexity, target complexity, and model-parameter-count. We use this neural scaling model to derive new predictions about the compute-limited, infinite-data scaling law regime. To train the neural scaling model, we run one-pass stochastic gradient descent on a mean-squared loss. We derive a representation of the loss curves which holds over all iteration counts and improves in accuracy as the model parameter count grows. We then analyze the compute-optimal model-parameter-count, and identify 4 phases (+3 subphases) in the data-complexity/target-complexity phase-plane. The phase boundaries are determined by the relative importance of model capacity, optimizer noise, and embedding of the features. We furthermore derive, with mathematical proof and extensive numerical evidence, the scaling-law exponents in all of these phases, in particular computing the optimal model-parameter-count as a function of floating point operation budget.
Inference Scaling scriptsizeFLaws: The Limits of LLM Resampling with Imperfect Verifiers
Recent research has generated hope that inference scaling could allow weaker language models to match or exceed the accuracy of stronger models, such as by repeatedly sampling solutions to a coding problem until it passes unit tests. The central thesis of this paper is that there is no free lunch for inference scaling: indefinite accuracy improvement through resampling can only be realized if the "verifier" (in this case, a set of unit tests) is perfect. When the verifier is imperfect, as it almost always is in domains such as reasoning or coding (for example, unit tests have imperfect coverage), there is a nonzero probability of false positives: incorrect solutions that pass the verifier. Resampling cannot decrease this probability, so it imposes an upper bound to the accuracy of resampling-based inference scaling even with an infinite compute budget. We find that there is a very strong correlation between the model's single-sample accuracy (i.e. accuracy without unit tests) and its false positive rate on coding benchmarks HumanEval and MBPP, whose unit tests have limited coverage. Therefore, no amount of inference scaling of weaker models can enable them to match the single-sample accuracy of a sufficiently strong model (Fig. 1a). When we consider that false positives have a negative utility compared to abstaining from producing a solution, it bends the inference scaling curve further downward. Empirically, we find that the optimal number of samples can be less than 10 under realistic assumptions (Fig. 1b). Finally, we show that beyond accuracy, false positives may have other undesirable qualities, such as poor adherence to coding style conventions.
Scaling laws for language encoding models in fMRI
Representations from transformer-based unidirectional language models are known to be effective at predicting brain responses to natural language. However, most studies comparing language models to brains have used GPT-2 or similarly sized language models. Here we tested whether larger open-source models such as those from the OPT and LLaMA families are better at predicting brain responses recorded using fMRI. Mirroring scaling results from other contexts, we found that brain prediction performance scales log-linearly with model size from 125M to 30B parameter models, with ~15% increased encoding performance as measured by correlation with a held-out test set across 3 subjects. Similar log-linear behavior was observed when scaling the size of the fMRI training set. We also characterized scaling for acoustic encoding models that use HuBERT, WavLM, and Whisper, and we found comparable improvements with model size. A noise ceiling analysis of these large, high-performance encoding models showed that performance is nearing the theoretical maximum for brain areas such as the precuneus and higher auditory cortex. These results suggest that increasing scale in both models and data will yield incredibly effective models of language processing in the brain, enabling better scientific understanding as well as applications such as decoding.
Scaling Laws for Pre-training Agents and World Models
The performance of embodied agents has been shown to improve by increasing model parameters, dataset size, and compute. This has been demonstrated in domains from robotics to video games, when generative learning objectives on offline datasets (pre-training) are used to model an agent's behavior (imitation learning) or their environment (world modeling). This paper characterizes the role of scale in these tasks more precisely. Going beyond the simple intuition that `bigger is better', we show that the same types of power laws found in language modeling (e.g. between loss and optimal model size), also arise in world modeling and imitation learning. However, the coefficients of these laws are heavily influenced by the tokenizer, task \& architecture -- this has important implications on the optimal sizing of models and data.
Scaling Laws for Optimal Data Mixtures
Large foundation models are typically trained on data from multiple domains, with the data mixture--the proportion of each domain used--playing a critical role in model performance. The standard approach to selecting this mixture relies on trial and error, which becomes impractical for large-scale pretraining. We propose a systematic method to determine the optimal data mixture for any target domain using scaling laws. Our approach accurately predicts the loss of a model of size N trained with D tokens and a specific domain weight vector h. We validate the universality of these scaling laws by demonstrating their predictive power in three distinct and large-scale settings: large language model (LLM), native multimodal model (NMM), and large vision models (LVM) pretraining. We further show that these scaling laws can extrapolate to new data mixtures and across scales: their parameters can be accurately estimated using a few small-scale training runs, and used to estimate the performance at larger scales and unseen domain weights. The scaling laws allow to derive the optimal domain weights for any target domain under a given training budget (N,D), providing a principled alternative to costly trial-and-error methods.
Unified Scaling Laws for Compressed Representations
Scaling laws have shaped recent advances in machine learning by enabling predictable scaling of model performance based on model size, computation, and data volume. Concurrently, the rise in computational cost for AI has motivated model compression techniques, notably quantization and sparsification, which have emerged to mitigate the steep computational demands associated with large-scale training and inference. This paper investigates the interplay between scaling laws and compression formats, exploring whether a unified scaling framework can accurately predict model performance when training occurs over various compressed representations, such as sparse, scalar-quantized, sparse-quantized or even vector-quantized formats. Our key contributions include validating a general scaling law formulation and showing that it is applicable both individually but also composably across compression types. Based on this, our main finding is demonstrating both theoretically and empirically that there exists a simple "capacity" metric -- based on the representation's ability to fit random Gaussian data -- which can robustly predict parameter efficiency across multiple compressed representations. On the practical side, we extend our formulation to directly compare the accuracy potential of different compressed formats, and to derive better algorithms for training over sparse-quantized formats.
Measuring Mathematical Problem Solving With the MATH Dataset
Many intellectual endeavors require mathematical problem solving, but this skill remains beyond the capabilities of computers. To measure this ability in machine learning models, we introduce MATH, a new dataset of 12,500 challenging competition mathematics problems. Each problem in MATH has a full step-by-step solution which can be used to teach models to generate answer derivations and explanations. To facilitate future research and increase accuracy on MATH, we also contribute a large auxiliary pretraining dataset which helps teach models the fundamentals of mathematics. Even though we are able to increase accuracy on MATH, our results show that accuracy remains relatively low, even with enormous Transformer models. Moreover, we find that simply increasing budgets and model parameter counts will be impractical for achieving strong mathematical reasoning if scaling trends continue. While scaling Transformers is automatically solving most other text-based tasks, scaling is not currently solving MATH. To have more traction on mathematical problem solving we will likely need new algorithmic advancements from the broader research community.
Alice in Wonderland: Simple Tasks Showing Complete Reasoning Breakdown in State-Of-the-Art Large Language Models
Large Language Models (LLMs) are often described as being instances of foundation models - that is, models that transfer strongly across various tasks and conditions in few-show or zero-shot manner, while exhibiting scaling laws that predict function improvement when increasing the pre-training scale. These claims of excelling in different functions and tasks rely on measurements taken across various sets of standardized benchmarks showing high scores for such models. We demonstrate here a dramatic breakdown of function and reasoning capabilities of state-of-the-art models trained at the largest available scales which claim strong function, using a simple, short, conventional common sense problem formulated in concise natural language, easily solvable by humans. The breakdown is dramatic, as models also express strong overconfidence in their wrong solutions, while providing often non-sensical "reasoning"-like explanations akin to confabulations to justify and backup the validity of their clearly failed responses, making them sound plausible. Various standard interventions in an attempt to get the right solution, like various type of enhanced prompting, or urging the models to reconsider the wrong solutions again by multi step re-evaluation, fail. We take these initial observations to the scientific and technological community to stimulate urgent re-assessment of the claimed capabilities of current generation of LLMs, Such re-assessment also requires common action to create standardized benchmarks that would allow proper detection of such basic reasoning deficits that obviously manage to remain undiscovered by current state-of-the-art evaluation procedures and benchmarks. Code for reproducing experiments in the paper and raw experiments data can be found at https://github.com/LAION-AI/AIW
The Geometry of Concepts: Sparse Autoencoder Feature Structure
Sparse autoencoders have recently produced dictionaries of high-dimensional vectors corresponding to the universe of concepts represented by large language models. We find that this concept universe has interesting structure at three levels: 1) The "atomic" small-scale structure contains "crystals" whose faces are parallelograms or trapezoids, generalizing well-known examples such as (man-woman-king-queen). We find that the quality of such parallelograms and associated function vectors improves greatly when projecting out global distractor directions such as word length, which is efficiently done with linear discriminant analysis. 2) The "brain" intermediate-scale structure has significant spatial modularity; for example, math and code features form a "lobe" akin to functional lobes seen in neural fMRI images. We quantify the spatial locality of these lobes with multiple metrics and find that clusters of co-occurring features, at coarse enough scale, also cluster together spatially far more than one would expect if feature geometry were random. 3) The "galaxy" scale large-scale structure of the feature point cloud is not isotropic, but instead has a power law of eigenvalues with steepest slope in middle layers. We also quantify how the clustering entropy depends on the layer.
Modular versus Hierarchical: A Structural Signature of Topic Popularity in Mathematical Research
Mathematical researchers, especially those in early-career positions, face critical decisions about topic specialization with limited information about the collaborative environments of different research areas. The aim of this paper is to study how the popularity of a research topic is associated with the structure of that topic's collaboration network, as observed by a suite of measures capturing organizational structure at several scales. We apply these measures to 1,938 algorithmically discovered topics across 121,391 papers sourced from arXiv metadata during the period 2020--2025. Our analysis, which controls for the confounding effects of network size, reveals a structural dichotomy--we find that popular topics organize into modular "schools of thought," while niche topics maintain hierarchical core-periphery structures centered around established experts. This divide is not an artifact of scale, but represents a size-independent structural pattern correlated with popularity. We also document a "constraint reversal": after controlling for size, researchers in popular fields face greater structural constraints on collaboration opportunities, contrary to conventional expectations. Our findings suggest that topic selection is an implicit choice between two fundamentally different collaborative environments, each with distinct implications for a researcher's career. To make these structural patterns transparent to the research community, we developed the Math Research Compass (https://mathresearchcompass.com), an interactive platform providing data on topic popularity and collaboration patterns across mathematical topics.
Hype, Sustainability, and the Price of the Bigger-is-Better Paradigm in AI
With the growing attention and investment in recent AI approaches such as large language models, the narrative that the larger the AI system the more valuable, powerful and interesting it is is increasingly seen as common sense. But what is this assumption based on, and how are we measuring value, power, and performance? And what are the collateral consequences of this race to ever-increasing scale? Here, we scrutinize the current scaling trends and trade-offs across multiple axes and refute two common assumptions underlying the 'bigger-is-better' AI paradigm: 1) that improved performance is a product of increased scale, and 2) that all interesting problems addressed by AI require large-scale models. Rather, we argue that this approach is not only fragile scientifically, but comes with undesirable consequences. First, it is not sustainable, as its compute demands increase faster than model performance, leading to unreasonable economic requirements and a disproportionate environmental footprint. Second, it implies focusing on certain problems at the expense of others, leaving aside important applications, e.g. health, education, or the climate. Finally, it exacerbates a concentration of power, which centralizes decision-making in the hands of a few actors while threatening to disempower others in the context of shaping both AI research and its applications throughout society.
TEDDY: A Family Of Foundation Models For Understanding Single Cell Biology
Understanding the biological mechanism of disease is critical for medicine, and in particular drug discovery. AI-powered analysis of genome-scale biological data hold great potential in this regard. The increasing availability of single-cell RNA sequencing data has enabled the development of large foundation models for disease biology. However, existing foundation models either do not improve or only modestly improve over task-specific models in downstream applications. Here, we explored two avenues for improving the state-of-the-art. First, we scaled the pre-training dataset to 116 million cells, which is larger than those used by previous models. Second, we leveraged the availability of large-scale biological annotations as a form of supervision during pre-training. We trained the TEDDY family of models comprising six transformer-based state-of-the-art single-cell foundation models with 70 million, 160 million, and 400 million parameters. We vetted our models on two downstream evaluation tasks -- identifying the underlying disease state of held-out donors not seen during training and distinguishing healthy cells from diseased ones for disease conditions and donors not seen during training. Scaling experiments showed that performance improved predictably with both data volume and parameter count. Our models showed substantial improvement over existing work on the first task and more muted improvements on the second.
On Calibration of Modern Neural Networks
Confidence calibration -- the problem of predicting probability estimates representative of the true correctness likelihood -- is important for classification models in many applications. We discover that modern neural networks, unlike those from a decade ago, are poorly calibrated. Through extensive experiments, we observe that depth, width, weight decay, and Batch Normalization are important factors influencing calibration. We evaluate the performance of various post-processing calibration methods on state-of-the-art architectures with image and document classification datasets. Our analysis and experiments not only offer insights into neural network learning, but also provide a simple and straightforward recipe for practical settings: on most datasets, temperature scaling -- a single-parameter variant of Platt Scaling -- is surprisingly effective at calibrating predictions.
Intriguing Properties of Quantization at Scale
Emergent properties have been widely adopted as a term to describe behavior not present in smaller models but observed in larger models. Recent work suggests that the trade-off incurred by quantization is also an emergent property, with sharp drops in performance in models over 6B parameters. In this work, we ask "are quantization cliffs in performance solely a factor of scale?" Against a backdrop of increased research focus on why certain emergent properties surface at scale, this work provides a useful counter-example. We posit that it is possible to optimize for a quantization friendly training recipe that suppresses large activation magnitude outliers. Here, we find that outlier dimensions are not an inherent product of scale, but rather sensitive to the optimization conditions present during pre-training. This both opens up directions for more efficient quantization, and poses the question of whether other emergent properties are inherent or can be altered and conditioned by optimization and architecture design choices. We successfully quantize models ranging in size from 410M to 52B with minimal degradation in performance.
Large Language Monkeys: Scaling Inference Compute with Repeated Sampling
Scaling the amount of compute used to train language models has dramatically improved their capabilities. However, when it comes to inference, we often limit the amount of compute to only one attempt per problem. Here, we explore inference compute as another axis for scaling by increasing the number of generated samples. Across multiple tasks and models, we observe that coverage - the fraction of problems solved by any attempt - scales with the number of samples over four orders of magnitude. In domains like coding and formal proofs, where all answers can be automatically verified, these increases in coverage directly translate into improved performance. When we apply repeated sampling to SWE-bench Lite, the fraction of issues solved with DeepSeek-V2-Coder-Instruct increases from 15.9% with one sample to 56% with 250 samples, outperforming the single-attempt state-of-the-art of 43% which uses more capable frontier models. Moreover, using current API pricing, amplifying the cheaper DeepSeek model with five samples is more cost-effective and solves more issues than paying a premium for one sample from GPT-4o or Claude 3.5 Sonnet. Interestingly, the relationship between coverage and the number of samples is often log-linear and can be modelled with an exponentiated power law, suggesting the existence of inference-time scaling laws. Finally, we find that identifying correct samples out of many generations remains an important direction for future research in domains without automatic verifiers. When solving math word problems from GSM8K and MATH, coverage with Llama-3 models grows to over 95% with 10,000 samples. However, common methods to pick correct solutions from a sample collection, such as majority voting or reward models, plateau beyond several hundred samples and fail to fully scale with the sample budget.
Scaling Law with Learning Rate Annealing
We find that the cross-entropy loss curves of neural language models empirically adhere to a scaling law with learning rate (LR) annealing over training steps (s): $L(s) = L_0 + Acdot S_1^{-alpha} - Ccdot S_2 Where S_1 is forward area and S_2$ is learning rate annealing area. This formulation takes into account two factors: (1) The forward scaling defined as typical scaling law, and (2) the additional loss drop brought by LR annealing. Therefore, this formulation can describe the full loss curve at each step, rather than the single loss point at the end of training. Applying the scaling law with LR annealing and fitting only one or two training curves, we can accurately predict the loss of language model training at any given step and across any learning rate scheduler (LRS). Furthermore, this equation accurately describes the dynamics during training process, and provides a theoretical verification and explanation for numerous experimental findings of previous studies, particularly those focusing on LR schedule and LR annealing. The resulting insights, also serve as a guide for researchers to select critical LRS in advance by prediction using our equation. Most significantly, since all the points in a full training curve follow the equation, we can achieve accurate loss prediction at any given step across any learning rate scheduler, while expending less than 1\% of the computational cost required by the chinchilla scaling law to fit language modeling loss. This approach extremely democratizes scaling law fitting and predicting in developing large language models.
Small-scale proxies for large-scale Transformer training instabilities
Teams that have trained large Transformer-based models have reported training instabilities at large scale that did not appear when training with the same hyperparameters at smaller scales. Although the causes of such instabilities are of scientific interest, the amount of resources required to reproduce them has made investigation difficult. In this work, we seek ways to reproduce and study training stability and instability at smaller scales. First, we focus on two sources of training instability described in previous work: the growth of logits in attention layers (Dehghani et al., 2023) and divergence of the output logits from the log probabilities (Chowdhery et al., 2022). By measuring the relationship between learning rate and loss across scales, we show that these instabilities also appear in small models when training at high learning rates, and that mitigations previously employed at large scales are equally effective in this regime. This prompts us to investigate the extent to which other known optimizer and model interventions influence the sensitivity of the final loss to changes in the learning rate. To this end, we study methods such as warm-up, weight decay, and the muParam (Yang et al., 2022), and combine techniques to train small models that achieve similar losses across orders of magnitude of learning rate variation. Finally, to conclude our exploration we study two cases where instabilities can be predicted before they emerge by examining the scaling behavior of model activation and gradient norms.
Exploring Neuron Interactions and Emergence in LLMs: From the Multifractal Analysis Perspective
Prior studies on the emergence in large models have primarily focused on how the functional capabilities of large language models (LLMs) scale with model size. Our research, however, transcends this traditional paradigm, aiming to deepen our understanding of the emergence within LLMs by placing a special emphasis not just on the model size but more significantly on the complex behavior of neuron interactions during the training process. By introducing the concepts of "self-organization" and "multifractal analysis," we explore how neuron interactions dynamically evolve during training, leading to "emergence," mirroring the phenomenon in natural systems where simple micro-level interactions give rise to complex macro-level behaviors. To quantitatively analyze the continuously evolving interactions among neurons in large models during training, we propose the Neuron-based Multifractal Analysis (NeuroMFA). Utilizing NeuroMFA, we conduct a comprehensive examination of the emergent behavior in LLMs through the lens of both model size and training process, paving new avenues for research into the emergence in large models.
Linguistic Collapse: Neural Collapse in (Large) Language Models
Neural collapse (NC) is a phenomenon observed in classification tasks where top-layer representations collapse into their class means, which become equinorm, equiangular and aligned with the classifiers. These behaviors -- associated with generalization and robustness -- would manifest under specific conditions: models are trained towards zero loss, with noise-free labels belonging to balanced classes, which do not outnumber the model's hidden dimension. Recent studies have explored NC in the absence of one or more of these conditions to extend and capitalize on the associated benefits of ideal geometries. Language modeling presents a curious frontier, as training by token prediction constitutes a classification task where none of the conditions exist: the vocabulary is imbalanced and exceeds the embedding dimension; different tokens might correspond to similar contextual embeddings; and large language models (LLMs) in particular are typically only trained for a few epochs. This paper empirically investigates the impact of scaling the architectures and training of causal language models (CLMs) on their progression towards NC. We find that NC properties that develop with scaling are linked to generalization. Moreover, there is evidence of some relationship between NC and generalization independent of scale. Our work therefore underscores the generality of NC as it extends to the novel and more challenging setting of language modeling. Downstream, we seek to inspire further research on the phenomenon to deepen our understanding of LLMs -- and neural networks at large -- and improve existing architectures based on NC-related properties.
Training and inference of large language models using 8-bit floating point
FP8 formats are gaining popularity to boost the computational efficiency for training and inference of large deep learning models. Their main challenge is that a careful choice of scaling is needed to prevent degradation due to the reduced dynamic range compared to higher-precision formats. Although there exists ample literature about selecting such scalings for INT formats, this critical aspect has yet to be addressed for FP8. This paper presents a methodology to select the scalings for FP8 linear layers, based on dynamically updating per-tensor scales for the weights, gradients and activations. We apply this methodology to train and validate large language models of the type of GPT and Llama 2 using FP8, for model sizes ranging from 111M to 70B. To facilitate the understanding of the FP8 dynamics, our results are accompanied by plots of the per-tensor scale distribution for weights, activations and gradients during both training and inference.
Towards Neural Scaling Laws for Time Series Foundation Models
Scaling laws offer valuable insights into the design of time series foundation models (TSFMs). However, previous research has largely focused on the scaling laws of TSFMs for in-distribution (ID) data, leaving their out-of-distribution (OOD) scaling behavior and the influence of model architectures less explored. In this work, we examine two common TSFM architectures, encoder-only and decoder-only Transformers, and investigate their scaling behavior on both ID and OOD data. These models are trained and evaluated across varying parameter counts, compute budgets, and dataset sizes. Our experiments reveal that the log-likelihood loss of TSFMs exhibits similar scaling behavior in both OOD and ID settings. We further compare the scaling properties across different architectures, incorporating two state-of-the-art TSFMs as case studies, showing that model architecture plays a significant role in scaling. The encoder-only Transformers demonstrate better scalability than the decoder-only Transformers, while the architectural enhancements in the two advanced TSFMs primarily improve ID performance but reduce OOD scalability. While scaling up TSFMs is expected to drive performance breakthroughs, the lack of a comprehensive understanding of TSFM scaling laws has hindered the development of a robust framework to guide model scaling. We fill this gap in this work by synthesizing our findings and providing practical guidelines for designing and scaling larger TSFMs with enhanced model capabilities.
In deep reinforcement learning, a pruned network is a good network
Recent work has shown that deep reinforcement learning agents have difficulty in effectively using their network parameters. We leverage prior insights into the advantages of sparse training techniques and demonstrate that gradual magnitude pruning enables agents to maximize parameter effectiveness. This results in networks that yield dramatic performance improvements over traditional networks and exhibit a type of "scaling law", using only a small fraction of the full network parameters.
A brain basis of dynamical intelligence for AI and computational neuroscience
The deep neural nets of modern artificial intelligence (AI) have not achieved defining features of biological intelligence, including abstraction, causal learning, and energy-efficiency. While scaling to larger models has delivered performance improvements for current applications, more brain-like capacities may demand new theories, models, and methods for designing artificial learning systems. Here, we argue that this opportunity to reassess insights from the brain should stimulate cooperation between AI research and theory-driven computational neuroscience (CN). To motivate a brain basis of neural computation, we present a dynamical view of intelligence from which we elaborate concepts of sparsity in network structure, temporal dynamics, and interactive learning. In particular, we suggest that temporal dynamics, as expressed through neural synchrony, nested oscillations, and flexible sequences, provide a rich computational layer for reading and updating hierarchical models distributed in long-term memory networks. Moreover, embracing agent-centered paradigms in AI and CN will accelerate our understanding of the complex dynamics and behaviors that build useful world models. A convergence of AI/CN theories and objectives will reveal dynamical principles of intelligence for brains and engineered learning systems. This article was inspired by our symposium on dynamical neuroscience and machine learning at the 6th Annual US/NIH BRAIN Initiative Investigators Meeting.
Distillation Scaling Laws
We provide a distillation scaling law that estimates distilled model performance based on a compute budget and its allocation between the student and teacher. Our findings reduce the risks associated with using distillation at scale; compute allocation for both the teacher and student models can now be done to maximize student performance. We provide compute optimal distillation recipes for when 1) a teacher exists, or 2) a teacher needs training. If many students are to be distilled, or a teacher already exists, distillation outperforms supervised pretraining until a compute level which grows predictably with student size. If one student is to be distilled and a teacher also needs training, supervised learning should be done instead. Additionally, we provide insights across our large scale study of distillation, which increase our understanding of distillation and inform experimental design.
Not Every AI Problem is a Data Problem: We Should Be Intentional About Data Scaling
While Large Language Models require more and more data to train and scale, rather than looking for any data to acquire, we should consider what types of tasks are more likely to benefit from data scaling. We should be intentional in our data acquisition. We argue that the topology of data itself informs which tasks to prioritize in data scaling, and shapes the development of the next generation of compute paradigms for tasks where data scaling is inefficient, or even insufficient.
u-μP: The Unit-Scaled Maximal Update Parametrization
The Maximal Update Parametrization (muP) aims to make the optimal hyperparameters (HPs) of a model independent of its size, allowing them to be swept using a cheap proxy model rather than the full-size target model. We present a new scheme, u-muP, which improves upon muP by combining it with Unit Scaling, a method for designing models that makes them easy to train in low-precision. The two techniques have a natural affinity: muP ensures that the scale of activations is independent of model size, and Unit Scaling ensures that activations, weights and gradients begin training with a scale of one. This synthesis opens the door to a simpler scheme, whose default values are near-optimal. This in turn facilitates a more efficient sweeping strategy, with u-muP models reaching a lower loss than comparable muP models and working out-of-the-box in FP8.
Counter-Strike Deathmatch with Large-Scale Behavioural Cloning
This paper describes an AI agent that plays the popular first-person-shooter (FPS) video game `Counter-Strike; Global Offensive' (CSGO) from pixel input. The agent, a deep neural network, matches the performance of the medium difficulty built-in AI on the deathmatch game mode, whilst adopting a humanlike play style. Unlike much prior work in games, no API is available for CSGO, so algorithms must train and run in real-time. This limits the quantity of on-policy data that can be generated, precluding many reinforcement learning algorithms. Our solution uses behavioural cloning - training on a large noisy dataset scraped from human play on online servers (4 million frames, comparable in size to ImageNet), and a smaller dataset of high-quality expert demonstrations. This scale is an order of magnitude larger than prior work on imitation learning in FPS games.
Time Transfer: On Optimal Learning Rate and Batch Size In The Infinite Data Limit
One of the main challenges in optimal scaling of large language models (LLMs) is the prohibitive cost of hyperparameter tuning, particularly learning rate eta and batch size B. While techniques like muP (Yang et al., 2022) provide scaling rules for optimal eta transfer in the infinite model size limit, the optimal scaling behavior in the infinite data size limit remains unknown. We fill in this gap by observing for the first time an intricate dependence of optimal eta scaling on the pretraining token budget T, B and its relation to the critical batch size B_crit, which we measure to evolve as B_crit propto T. Furthermore, we show that the optimal batch size is positively correlated with B_crit: keeping it fixed becomes suboptimal over time even if learning rate is scaled optimally. Surprisingly, our results demonstrate that the observed optimal eta and B dynamics are preserved with muP model scaling, challenging the conventional view of B_crit dependence solely on loss value. Complementing optimality, we examine the sensitivity of loss to changes in learning rate, where we find the sensitivity to decrease with increase of T and to remain constant with muP model scaling. We hope our results make the first step towards a unified picture of the joint optimal data and model scaling.
Multi-scale fMRI time series analysis for understanding neurodegeneration in MCI
In this study, we present a technique that spans multi-scale views (global scale -- meaning brain network-level and local scale -- examining each individual ROI that constitutes the network) applied to resting-state fMRI volumes. Deep learning based classification is utilized in understanding neurodegeneration. The novelty of the proposed approach lies in utilizing two extreme scales of analysis. One branch considers the entire network within graph-analysis framework. Concurrently, the second branch scrutinizes each ROI within a network independently, focusing on evolution of dynamics. For each subject, graph-based approach employs partial correlation to profile the subject in a single graph where each ROI is a node, providing insights into differences in levels of participation. In contrast, non-linear analysis employs recurrence plots to profile a subject as a multichannel 2D image, revealing distinctions in underlying dynamics. The proposed approach is employed for classification of a cohort of 50 healthy control (HC) and 50 Mild Cognitive Impairment (MCI), sourced from ADNI dataset. Results point to: (1) reduced activity in ROIs such as PCC in MCI (2) greater activity in occipital in MCI, which is not seen in HC (3) when analysed for dynamics, all ROIs in MCI show greater predictability in time-series.
An Empirical Model of Large-Batch Training
In an increasing number of domains it has been demonstrated that deep learning models can be trained using relatively large batch sizes without sacrificing data efficiency. However the limits of this massive data parallelism seem to differ from domain to domain, ranging from batches of tens of thousands in ImageNet to batches of millions in RL agents that play the game Dota 2. To our knowledge there is limited conceptual understanding of why these limits to batch size differ or how we might choose the correct batch size in a new domain. In this paper, we demonstrate that a simple and easy-to-measure statistic called the gradient noise scale predicts the largest useful batch size across many domains and applications, including a number of supervised learning datasets (MNIST, SVHN, CIFAR-10, ImageNet, Billion Word), reinforcement learning domains (Atari and Dota), and even generative model training (autoencoders on SVHN). We find that the noise scale increases as the loss decreases over a training run and depends on the model size primarily through improved model performance. Our empirically-motivated theory also describes the tradeoff between compute-efficiency and time-efficiency, and provides a rough model of the benefits of adaptive batch-size training.
Early Warning Signals and the Prosecutor's Fallacy
Early warning signals have been proposed to forecast the possibility of a critical transition, such as the eutrophication of a lake, the collapse of a coral reef, or the end of a glacial period. Because such transitions often unfold on temporal and spatial scales that can be difficult to approach by experimental manipulation, research has often relied on historical observations as a source of natural experiments. Here we examine a critical difference between selecting systems for study based on the fact that we have observed a critical transition and those systems for which we wish to forecast the approach of a transition. This difference arises by conditionally selecting systems known to experience a transition of some sort and failing to account for the bias this introduces -- a statistical error often known as the Prosecutor's Fallacy. By analysing simulated systems that have experienced transitions purely by chance, we reveal an elevated rate of false positives in common warning signal statistics. We further demonstrate a model-based approach that is less subject to this bias than these more commonly used summary statistics. We note that experimental studies with replicates avoid this pitfall entirely.
Compute Optimal Scaling of Skills: Knowledge vs Reasoning
Scaling laws are a critical component of the LLM development pipeline, most famously as a way to forecast training decisions such as 'compute-optimally' trading-off parameter count and dataset size, alongside a more recent growing list of other crucial decisions. In this work, we ask whether compute-optimal scaling behaviour can be skill-dependent. In particular, we examine knowledge and reasoning-based skills such as knowledge-based QA and code generation, and we answer this question in the affirmative: scaling laws are skill-dependent. Next, to understand whether skill-dependent scaling is an artefact of the pretraining datamix, we conduct an extensive ablation of different datamixes and find that, also when correcting for datamix differences, knowledge and code exhibit fundamental differences in scaling behaviour. We conclude with an analysis of how our findings relate to standard compute-optimal scaling using a validation set, and find that a misspecified validation set can impact compute-optimal parameter count by nearly 50%, depending on its skill composition.
Dissecting the Effects of SGD Noise in Distinct Regimes of Deep Learning
Understanding when the noise in stochastic gradient descent (SGD) affects generalization of deep neural networks remains a challenge, complicated by the fact that networks can operate in distinct training regimes. Here we study how the magnitude of this noise T affects performance as the size of the training set P and the scale of initialization alpha are varied. For gradient descent, alpha is a key parameter that controls if the network is `lazy'(alphagg1) or instead learns features (alphall1). For classification of MNIST and CIFAR10 images, our central results are: (i) obtaining phase diagrams for performance in the (alpha,T) plane. They show that SGD noise can be detrimental or instead useful depending on the training regime. Moreover, although increasing T or decreasing alpha both allow the net to escape the lazy regime, these changes can have opposite effects on performance. (ii) Most importantly, we find that the characteristic temperature T_c where the noise of SGD starts affecting the trained model (and eventually performance) is a power law of P. We relate this finding with the observation that key dynamical quantities, such as the total variation of weights during training, depend on both T and P as power laws. These results indicate that a key effect of SGD noise occurs late in training by affecting the stopping process whereby all data are fitted. Indeed, we argue that due to SGD noise, nets must develop a stronger `signal', i.e. larger informative weights, to fit the data, leading to a longer training time. A stronger signal and a longer training time are also required when the size of the training set P increases. We confirm these views in the perceptron model, where signal and noise can be precisely measured. Interestingly, exponents characterizing the effect of SGD depend on the density of data near the decision boundary, as we explain.
Scaling Test-Time Compute Without Verification or RL is Suboptimal
Despite substantial advances in scaling test-time compute, an ongoing debate in the community is how it should be scaled up to enable continued and efficient improvements with scaling. There are largely two approaches: first, distilling successful search or thinking traces; and second, using verification (e.g., 0/1 outcome rewards, reward models, or verifiers) to guide reinforcement learning (RL) and search algorithms. In this paper, we prove that finetuning LLMs with verifier-based (VB) methods based on RL or search is far superior to verifier-free (VF) approaches based on distilling or cloning search traces, given a fixed amount of compute/data budget. Further, we show that as we scale test-time compute (measured as the output token length) and training data, suboptimality of VF methods scales poorly compared to VB when the base pre-trained LLM presents a heterogeneous distribution over correct solution traces (e.g., different lengths, styles, etc.) and admits a non-sharp distribution over rewards on traces sampled from it. We formalize this condition using anti-concentration [Erdos, 1945]. This implies a stronger result that VB methods scale better asymptotically, with the performance gap between VB and VF methods widening as test-time budget grows. We corroborate our theory empirically on both didactic and math reasoning problems with 3/8/32B-sized pre-trained LLMs, where we find verification is crucial for scaling test-time compute.
Early warning signals: The charted and uncharted territories
The realization that complex systems such as ecological communities can collapse or shift regimes suddenly and without rapid external forcing poses a serious challenge to our understanding and management of the natural world. The potential to identify early warning signals that would allow researchers and managers to predict such events before they happen has therefore been an invaluable discovery that offers a way forward in spite of such seemingly unpredictable behavior. Research into early warning signals has demonstrated that it is possible to define and detect such early warning signals in advance of a transition in certain contexts. Here we describe the pattern emerging as research continues to explore just how far we can generalize these results. A core of examples emerges that shares three properties: the phenomenon of rapid regime shifts, a pattern of 'critical slowing down' that can be used to detect the approaching shift, and a mechanism of bifurcation driving the sudden change. As research has expanded beyond these core examples, it is becoming clear that not all systems that show regime shifts exhibit critical slowing down, or vice versa. Even when systems exhibit critical slowing down, statistical detection is a challenge. We review the literature that explores these edge cases and highlight the need for (a) new early warning behaviors that can be used in cases where rapid shifts do not exhibit critical slowing down, (b) the development of methods to identify which behavior might be an appropriate signal when encountering a novel system; bearing in mind that a positive indication for some systems is a negative indication in others, and (c) statistical methods that can distinguish between signatures of early warning behaviors and noise.
Width and Depth Limits Commute in Residual Networks
We show that taking the width and depth to infinity in a deep neural network with skip connections, when branches are scaled by 1/depth (the only nontrivial scaling), result in the same covariance structure no matter how that limit is taken. This explains why the standard infinite-width-then-depth approach provides practical insights even for networks with depth of the same order as width. We also demonstrate that the pre-activations, in this case, have Gaussian distributions which has direct applications in Bayesian deep learning. We conduct extensive simulations that show an excellent match with our theoretical findings.
Large-Scale Targeted Cause Discovery with Data-Driven Learning
We propose a novel machine learning approach for inferring causal variables of a target variable from observations. Our focus is on directly inferring a set of causal factors without requiring full causal graph reconstruction, which is computationally challenging in large-scale systems. The identified causal set consists of all potential regulators of the target variable under experimental settings, enabling efficient regulation when intervention costs and feasibility vary across variables. To achieve this, we train a neural network using supervised learning on simulated data to infer causality. By employing a local-inference strategy, our approach scales with linear complexity in the number of variables, efficiently scaling up to thousands of variables. Empirical results demonstrate superior performance in identifying causal relationships within large-scale gene regulatory networks, outperforming existing methods that emphasize full-graph discovery. We validate our model's generalization capability across out-of-distribution graph structures and generating mechanisms, including gene regulatory networks of E. coli and the human K562 cell line. Implementation codes are available at https://github.com/snu-mllab/Targeted-Cause-Discovery.
Scaling Optimal LR Across Token Horizons
State-of-the-art LLMs are powered by scaling -- scaling model size, dataset size and cluster size. It is economically infeasible to extensively tune hyperparameter for the largest runs. Instead, approximately optimal hyperparameters must be inferred or transferred from smaller experiments. Hyperparameter transfer across model sizes has been studied in Yang et al. However, hyperparameter transfer across dataset size -- or token horizon -- has not been studied yet. To remedy this we conduct a large scale empirical study on how optimal learning rate (LR) depends on token horizon in LLM training. We first demonstrate that the optimal LR changes significantly with token horizon -- longer training necessitates smaller LR. Secondly we demonstrate the the optimal LR follows a scaling law, and that the optimal LR for longer horizons can be accurately estimated from shorter horizons via such scaling laws. We also provide a rule-of-thumb for transferring LR across token horizons with zero overhead over current practices. Lastly we provide evidence that LLama-1 used too high LR, and estimate the performance hit from this. We thus argue that hyperparameter transfer across data size is an important and overlooked component of LLM training.
The Universality Lens: Why Even Highly Over-Parametrized Models Learn Well
A fundamental question in modern machine learning is why large, over-parameterized models, such as deep neural networks and transformers, tend to generalize well, even when their number of parameters far exceeds the number of training samples. We investigate this phenomenon through the lens of information theory, grounded in universal learning theory. Specifically, we study a Bayesian mixture learner with log-loss and (almost) uniform prior over an expansive hypothesis class. Our key result shows that the learner's regret is not determined by the overall size of the hypothesis class, but rather by the cumulative probability of all models that are close, in Kullback-Leibler divergence distance, to the true data-generating process. We refer to this cumulative probability as the weight of the hypothesis. This leads to a natural notion of model simplicity: simple models are those with large weight and thus require fewer samples to generalize, while complex models have small weight and need more data. This perspective provides a rigorous and intuitive explanation for why over-parameterized models often avoid overfitting: the presence of simple hypotheses allows the posterior to concentrate on them when supported by the data. We further bridge theory and practice by recalling that stochastic gradient descent with Langevin dynamics samples from the correct posterior distribution, enabling our theoretical learner to be approximated using standard machine learning methods combined with ensemble learning. Our analysis yields non-uniform regret bounds and aligns with key practical concepts such as flat minima and model distillation. The results apply broadly across online, batch, and supervised learning settings, offering a unified and principled understanding of the generalization behavior of modern AI systems.
How connectivity structure shapes rich and lazy learning in neural circuits
In theoretical neuroscience, recent work leverages deep learning tools to explore how some network attributes critically influence its learning dynamics. Notably, initial weight distributions with small (resp. large) variance may yield a rich (resp. lazy) regime, where significant (resp. minor) changes to network states and representation are observed over the course of learning. However, in biology, neural circuit connectivity could exhibit a low-rank structure and therefore differs markedly from the random initializations generally used for these studies. As such, here we investigate how the structure of the initial weights -- in particular their effective rank -- influences the network learning regime. Through both empirical and theoretical analyses, we discover that high-rank initializations typically yield smaller network changes indicative of lazier learning, a finding we also confirm with experimentally-driven initial connectivity in recurrent neural networks. Conversely, low-rank initialization biases learning towards richer learning. Importantly, however, as an exception to this rule, we find lazier learning can still occur with a low-rank initialization that aligns with task and data statistics. Our research highlights the pivotal role of initial weight structures in shaping learning regimes, with implications for metabolic costs of plasticity and risks of catastrophic forgetting.
Evaluating Prerequisite Qualities for Learning End-to-End Dialog Systems
A long-term goal of machine learning is to build intelligent conversational agents. One recent popular approach is to train end-to-end models on a large amount of real dialog transcripts between humans (Sordoni et al., 2015; Vinyals & Le, 2015; Shang et al., 2015). However, this approach leaves many questions unanswered as an understanding of the precise successes and shortcomings of each model is hard to assess. A contrasting recent proposal are the bAbI tasks (Weston et al., 2015b) which are synthetic data that measure the ability of learning machines at various reasoning tasks over toy language. Unfortunately, those tests are very small and hence may encourage methods that do not scale. In this work, we propose a suite of new tasks of a much larger scale that attempt to bridge the gap between the two regimes. Choosing the domain of movies, we provide tasks that test the ability of models to answer factual questions (utilizing OMDB), provide personalization (utilizing MovieLens), carry short conversations about the two, and finally to perform on natural dialogs from Reddit. We provide a dataset covering 75k movie entities and with 3.5M training examples. We present results of various models on these tasks, and evaluate their performance.
Universal Properties of Mythological Networks
As in statistical physics, the concept of universality plays an important, albeit qualitative, role in the field of comparative mythology. Here we apply statistical mechanical tools to analyse the networks underlying three iconic mythological narratives with a view to identifying common and distinguishing quantitative features. Of the three narratives, an Anglo-Saxon and a Greek text are mostly believed by antiquarians to be partly historically based while the third, an Irish epic, is often considered to be fictional. Here we show that network analysis is able to discriminate real from imaginary social networks and place mythological narratives on the spectrum between them. Moreover, the perceived artificiality of the Irish narrative can be traced back to anomalous features associated with six characters. Considering these as amalgams of several entities or proxies, renders the plausibility of the Irish text comparable to the others from a network-theoretic point of view.
Questioning the Survey Responses of Large Language Models
As large language models increase in capability, researchers have started to conduct surveys of all kinds on these models with varying scientific motivations. In this work, we examine what we can learn from a model's survey responses on the basis of the well-established American Community Survey (ACS) by the U.S. Census Bureau. Evaluating more than a dozen different models, varying in size from a few hundred million to ten billion parameters, hundreds of thousands of times each on questions from the ACS, we systematically establish two dominant patterns. First, smaller models have a significant position and labeling bias, for example, towards survey responses labeled with the letter "A". This A-bias diminishes, albeit slowly, as model size increases. Second, when adjusting for this labeling bias through randomized answer ordering, models still do not trend toward US population statistics or those of any cognizable population. Rather, models across the board trend toward uniformly random aggregate statistics over survey responses. This pattern is robust to various different ways of prompting the model, including what is the de-facto standard. Our findings demonstrate that aggregate statistics of a language model's survey responses lack the signals found in human populations. This absence of statistical signal cautions about the use of survey responses from large language models at present time.
ScaleLong: Towards More Stable Training of Diffusion Model via Scaling Network Long Skip Connection
In diffusion models, UNet is the most popular network backbone, since its long skip connects (LSCs) to connect distant network blocks can aggregate long-distant information and alleviate vanishing gradient. Unfortunately, UNet often suffers from unstable training in diffusion models which can be alleviated by scaling its LSC coefficients smaller. However, theoretical understandings of the instability of UNet in diffusion models and also the performance improvement of LSC scaling remain absent yet. To solve this issue, we theoretically show that the coefficients of LSCs in UNet have big effects on the stableness of the forward and backward propagation and robustness of UNet. Specifically, the hidden feature and gradient of UNet at any layer can oscillate and their oscillation ranges are actually large which explains the instability of UNet training. Moreover, UNet is also provably sensitive to perturbed input, and predicts an output distant from the desired output, yielding oscillatory loss and thus oscillatory gradient. Besides, we also observe the theoretical benefits of the LSC coefficient scaling of UNet in the stableness of hidden features and gradient and also robustness. Finally, inspired by our theory, we propose an effective coefficient scaling framework ScaleLong that scales the coefficients of LSC in UNet and better improves the training stability of UNet. Experimental results on four famous datasets show that our methods are superior to stabilize training and yield about 1.5x training acceleration on different diffusion models with UNet or UViT backbones. Code: https://github.com/sail-sg/ScaleLong
The Effect of Intrinsic Dataset Properties on Generalization: Unraveling Learning Differences Between Natural and Medical Images
This paper investigates discrepancies in how neural networks learn from different imaging domains, which are commonly overlooked when adopting computer vision techniques from the domain of natural images to other specialized domains such as medical images. Recent works have found that the generalization error of a trained network typically increases with the intrinsic dimension (d_{data}) of its training set. Yet, the steepness of this relationship varies significantly between medical (radiological) and natural imaging domains, with no existing theoretical explanation. We address this gap in knowledge by establishing and empirically validating a generalization scaling law with respect to d_{data}, and propose that the substantial scaling discrepancy between the two considered domains may be at least partially attributed to the higher intrinsic ``label sharpness'' (K_F) of medical imaging datasets, a metric which we propose. Next, we demonstrate an additional benefit of measuring the label sharpness of a training set: it is negatively correlated with the trained model's adversarial robustness, which notably leads to models for medical images having a substantially higher vulnerability to adversarial attack. Finally, we extend our d_{data} formalism to the related metric of learned representation intrinsic dimension (d_{repr}), derive a generalization scaling law with respect to d_{repr}, and show that d_{data} serves as an upper bound for d_{repr}. Our theoretical results are supported by thorough experiments with six models and eleven natural and medical imaging datasets over a range of training set sizes. Our findings offer insights into the influence of intrinsic dataset properties on generalization, representation learning, and robustness in deep neural networks. Code link: https://github.com/mazurowski-lab/intrinsic-properties
Treatment Effects Estimation by Uniform Transformer
In observational studies, balancing covariates in different treatment groups is essential to estimate treatment effects. One of the most commonly used methods for such purposes is weighting. The performance of this class of methods usually depends on strong regularity conditions for the underlying model, which might not hold in practice. In this paper, we investigate weighting methods from a functional estimation perspective and argue that the weights needed for covariate balancing could differ from those needed for treatment effects estimation under low regularity conditions. Motivated by this observation, we introduce a new framework of weighting that directly targets the treatment effects estimation. Unlike existing methods, the resulting estimator for a treatment effect under this new framework is a simple kernel-based U-statistic after applying a data-driven transformation to the observed covariates. We characterize the theoretical properties of the new estimators of treatment effects under a nonparametric setting and show that they are able to work robustly under low regularity conditions. The new framework is also applied to several numerical examples to demonstrate its practical merits.
MAGIC: Near-Optimal Data Attribution for Deep Learning
The goal of predictive data attribution is to estimate how adding or removing a given set of training datapoints will affect model predictions. In convex settings, this goal is straightforward (i.e., via the infinitesimal jackknife). In large-scale (non-convex) settings, however, existing methods are far less successful -- current methods' estimates often only weakly correlate with ground truth. In this work, we present a new data attribution method (MAGIC) that combines classical methods and recent advances in metadifferentiation to (nearly) optimally estimate the effect of adding or removing training data on model predictions.
How to Scale Your EMA
Preserving training dynamics across batch sizes is an important tool for practical machine learning as it enables the trade-off between batch size and wall-clock time. This trade-off is typically enabled by a scaling rule, for example, in stochastic gradient descent, one should scale the learning rate linearly with the batch size. Another important tool for practical machine learning is the model Exponential Moving Average (EMA), which is a model copy that does not receive gradient information, but instead follows its target model with some momentum. This model EMA can improve the robustness and generalization properties of supervised learning, stabilize pseudo-labeling, and provide a learning signal for Self-Supervised Learning (SSL). Prior works have treated the model EMA separately from optimization, leading to different training dynamics across batch sizes and lower model performance. In this work, we provide a scaling rule for optimization in the presence of model EMAs and demonstrate its validity across a range of architectures, optimizers, and data modalities. We also show the rule's validity where the model EMA contributes to the optimization of the target model, enabling us to train EMA-based pseudo-labeling and SSL methods at small and large batch sizes. For SSL, we enable training of BYOL up to batch size 24,576 without sacrificing performance, optimally a 6times wall-clock time reduction.
Human-Timescale Adaptation in an Open-Ended Task Space
Foundation models have shown impressive adaptation and scalability in supervised and self-supervised learning problems, but so far these successes have not fully translated to reinforcement learning (RL). In this work, we demonstrate that training an RL agent at scale leads to a general in-context learning algorithm that can adapt to open-ended novel embodied 3D problems as quickly as humans. In a vast space of held-out environment dynamics, our adaptive agent (AdA) displays on-the-fly hypothesis-driven exploration, efficient exploitation of acquired knowledge, and can successfully be prompted with first-person demonstrations. Adaptation emerges from three ingredients: (1) meta-reinforcement learning across a vast, smooth and diverse task distribution, (2) a policy parameterised as a large-scale attention-based memory architecture, and (3) an effective automated curriculum that prioritises tasks at the frontier of an agent's capabilities. We demonstrate characteristic scaling laws with respect to network size, memory length, and richness of the training task distribution. We believe our results lay the foundation for increasingly general and adaptive RL agents that perform well across ever-larger open-ended domains.
Topological Singularity Detection at Multiple Scales
The manifold hypothesis, which assumes that data lies on or close to an unknown manifold of low intrinsic dimension, is a staple of modern machine learning research. However, recent work has shown that real-world data exhibits distinct non-manifold structures, i.e. singularities, that can lead to erroneous findings. Detecting such singularities is therefore crucial as a precursor to interpolation and inference tasks. We address this issue by developing a topological framework that (i) quantifies the local intrinsic dimension, and (ii) yields a Euclidicity score for assessing the 'manifoldness' of a point along multiple scales. Our approach identifies singularities of complex spaces, while also capturing singular structures and local geometric complexity in image data.
Scaling Laws for Associative Memories
Learning arguably involves the discovery and memorization of abstract rules. The aim of this paper is to study associative memory mechanisms. Our model is based on high-dimensional matrices consisting of outer products of embeddings, which relates to the inner layers of transformer language models. We derive precise scaling laws with respect to sample size and parameter size, and discuss the statistical efficiency of different estimators, including optimization-based algorithms. We provide extensive numerical experiments to validate and interpret theoretical results, including fine-grained visualizations of the stored memory associations.
Causal de Finetti: On the Identification of Invariant Causal Structure in Exchangeable Data
Learning causal structure from observational data often assumes that we observe independent and identically distributed (i.\,i.\,d) data. The traditional approach aims to find a graphical representation that encodes the same set of conditional independence relationships as those present in the observed distribution. It is known that under i.\,i.\,d assumption, even with infinite data, there is a limit to how fine-grained a causal structure we can identify. To overcome this limitation, recent work has explored using data originating from different, related environments to learn richer causal structure. These approaches implicitly rely on the independent causal mechanisms (ICM) principle, which postulates that the mechanism giving rise to an effect given its causes and the mechanism which generates the causes do not inform or influence each other. Thus, components of the causal model can independently change from environment to environment. Despite its wide application in machine learning and causal inference, there is a lack of statistical formalization of the ICM principle and how it enables identification of richer causal structures from grouped data. Here we present new causal de Finetti theorems which offer a first statistical formalization of ICM principle and show how causal structure identification is possible from exchangeable data. Our work provides theoretical justification for a broad range of techniques leveraging multi-environment data to learn causal structure.
Depthwise Hyperparameter Transfer in Residual Networks: Dynamics and Scaling Limit
The cost of hyperparameter tuning in deep learning has been rising with model sizes, prompting practitioners to find new tuning methods using a proxy of smaller networks. One such proposal uses muP parameterized networks, where the optimal hyperparameters for small width networks transfer to networks with arbitrarily large width. However, in this scheme, hyperparameters do not transfer across depths. As a remedy, we study residual networks with a residual branch scale of 1/text{depth} in combination with the muP parameterization. We provide experiments demonstrating that residual architectures including convolutional ResNets and Vision Transformers trained with this parameterization exhibit transfer of optimal hyperparameters across width and depth on CIFAR-10 and ImageNet. Furthermore, our empirical findings are supported and motivated by theory. Using recent developments in the dynamical mean field theory (DMFT) description of neural network learning dynamics, we show that this parameterization of ResNets admits a well-defined feature learning joint infinite-width and infinite-depth limit and show convergence of finite-size network dynamics towards this limit.
Partial Correlations in Compositional Data Analysis
Partial correlations quantify linear association between two variables adjusting for the influence of the remaining variables. They form the backbone for graphical models and are readily obtained from the inverse of the covariance matrix. For compositional data, the covariance structure is specified from log ratios of variables, so unless we try to "open" the data via a normalization, this implies changes in the definition and interpretation of partial correlations. In the present work, we elucidate how results derived by Aitchison (1986) lead to a natural definition of partial correlation that has a number of advantages over current measures of association. For this, we show that the residuals of log-ratios between a variable with a reference, when adjusting for all remaining variables including the reference, are reference-independent. Since the reference itself can be controlled for, correlations between residuals are defined for the variables directly without the necessity to recur to ratios except when specifying which variables are partialled out. Thus, perhaps surprisingly, partial correlations do not have the problems commonly found with measures of pairwise association on compositional data. They are well-defined between two variables, are properly scaled, and allow for negative association. By design, they are subcompositionally incoherent, but they share this property with conventional partial correlations (where results change when adjusting for the influence of fewer variables). We discuss the equivalence with normalization-based approaches whenever the normalizing variables are controlled for. We also discuss the partial variances and correlations we obtain from a previously studied data set of Roman glass cups.
A Bayes Factor for Replications of ANOVA Results
With an increasing number of replication studies performed in psychological science, the question of how to evaluate the outcome of a replication attempt deserves careful consideration. Bayesian approaches allow to incorporate uncertainty and prior information into the analysis of the replication attempt by their design. The Replication Bayes Factor, introduced by Verhagen & Wagenmakers (2014), provides quantitative, relative evidence in favor or against a successful replication. In previous work by Verhagen & Wagenmakers (2014) it was limited to the case of t-tests. In this paper, the Replication Bayes Factor is extended to F-tests in multi-group, fixed-effect ANOVA designs. Simulations and examples are presented to facilitate the understanding and to demonstrate the usefulness of this approach. Finally, the Replication Bayes Factor is compared to other Bayesian and frequentist approaches and discussed in the context of replication attempts. R code to calculate Replication Bayes factors and to reproduce the examples in the paper is available at https://osf.io/jv39h/.
Fascinating Supervisory Signals and Where to Find Them: Deep Anomaly Detection with Scale Learning
Due to the unsupervised nature of anomaly detection, the key to fueling deep models is finding supervisory signals. Different from current reconstruction-guided generative models and transformation-based contrastive models, we devise novel data-driven supervision for tabular data by introducing a characteristic -- scale -- as data labels. By representing varied sub-vectors of data instances, we define scale as the relationship between the dimensionality of original sub-vectors and that of representations. Scales serve as labels attached to transformed representations, thus offering ample labeled data for neural network training. This paper further proposes a scale learning-based anomaly detection method. Supervised by the learning objective of scale distribution alignment, our approach learns the ranking of representations converted from varied subspaces of each data instance. Through this proxy task, our approach models inherent regularities and patterns within data, which well describes data "normality". Abnormal degrees of testing instances are obtained by measuring whether they fit these learned patterns. Extensive experiments show that our approach leads to significant improvement over state-of-the-art generative/contrastive anomaly detection methods.
Model Collapse Demystified: The Case of Regression
In the era of proliferation of large language and image generation models, the phenomenon of "model collapse" refers to the situation whereby as a model is trained recursively on data generated from previous generations of itself over time, its performance degrades until the model eventually becomes completely useless, i.e the model collapses. In this work, we study this phenomenon in the setting of high-dimensional regression and obtain analytic formulae which quantitatively outline this phenomenon in a broad range of regimes. In the special case of polynomial decaying spectral and source conditions, we obtain modified scaling laws which exhibit new crossover phenomena from fast to slow rates. We also propose a simple strategy based on adaptive regularization to mitigate model collapse. Our theoretical results are validated with experiments.
AlphaOne: Reasoning Models Thinking Slow and Fast at Test Time
This paper presents AlphaOne (alpha1), a universal framework for modulating reasoning progress in large reasoning models (LRMs) at test time. alpha1 first introduces alpha moment, which represents the scaled thinking phase with a universal parameter alpha. Within this scaled pre-alpha moment phase, it dynamically schedules slow thinking transitions by modeling the insertion of reasoning transition tokens as a Bernoulli stochastic process. After the alpha moment, alpha1 deterministically terminates slow thinking with the end-of-thinking token, thereby fostering fast reasoning and efficient answer generation. This approach unifies and generalizes existing monotonic scaling methods by enabling flexible and dense slow-to-fast reasoning modulation. Extensive empirical studies on various challenging benchmarks across mathematical, coding, and scientific domains demonstrate alpha1's superior reasoning capability and efficiency. Project page: https://alphaone-project.github.io/
Learning Rates as a Function of Batch Size: A Random Matrix Theory Approach to Neural Network Training
We study the effect of mini-batching on the loss landscape of deep neural networks using spiked, field-dependent random matrix theory. We demonstrate that the magnitude of the extremal values of the batch Hessian are larger than those of the empirical Hessian. We also derive similar results for the Generalised Gauss-Newton matrix approximation of the Hessian. As a consequence of our theorems we derive an analytical expressions for the maximal learning rates as a function of batch size, informing practical training regimens for both stochastic gradient descent (linear scaling) and adaptive algorithms, such as Adam (square root scaling), for smooth, non-convex deep neural networks. Whilst the linear scaling for stochastic gradient descent has been derived under more restrictive conditions, which we generalise, the square root scaling rule for adaptive optimisers is, to our knowledge, completely novel. %For stochastic second-order methods and adaptive methods, we derive that the minimal damping coefficient is proportional to the ratio of the learning rate to batch size. We validate our claims on the VGG/WideResNet architectures on the CIFAR-100 and ImageNet datasets. Based on our investigations of the sub-sampled Hessian we develop a stochastic Lanczos quadrature based on the fly learning rate and momentum learner, which avoids the need for expensive multiple evaluations for these key hyper-parameters and shows good preliminary results on the Pre-Residual Architecure for CIFAR-100.
The Data Addition Dilemma
In many machine learning for healthcare tasks, standard datasets are constructed by amassing data across many, often fundamentally dissimilar, sources. But when does adding more data help, and when does it hinder progress on desired model outcomes in real-world settings? We identify this situation as the Data Addition Dilemma, demonstrating that adding training data in this multi-source scaling context can at times result in reduced overall accuracy, uncertain fairness outcomes, and reduced worst-subgroup performance. We find that this possibly arises from an empirically observed trade-off between model performance improvements due to data scaling and model deterioration from distribution shift. We thus establish baseline strategies for navigating this dilemma, introducing distribution shift heuristics to guide decision-making on which data sources to add in data scaling, in order to yield the expected model performance improvements. We conclude with a discussion of the required considerations for data collection and suggestions for studying data composition and scale in the age of increasingly larger models.
A Flexible Parametric Modelling Framework for Survival Analysis
We introduce a general, flexible, parametric survival modelling framework which encompasses key shapes of hazard function (constant, increasing, decreasing, up-then-down, down-then-up), various common survival distributions (log-logistic, Burr type XII, Weibull, Gompertz), and includes defective distributions (i.e., cure models). This generality is achieved using four basic distributional parameters: two scale-type parameters and two shape parameters. Generalising to covariate dependence, the scale-type regression components correspond to accelerated failure time (AFT) and proportional hazards (PH) models. Therefore, this general formulation unifies the most popular survival models which allows us to consider the practical value of possible modelling choices for survival data. Furthermore, in line with our proposed flexible baseline distribution, we advocate the use of multi-parameter regression in which more than one distributional parameter depends on covariates - rather than the usual convention of having a single covariate-dependent (scale) parameter. While many choices are available, we suggest introducing covariates through just one or other of the two scale parameters, which covers AFT and PH models, in combination with a `power' shape parameter, which allows for more complex non-AFT/non-PH effects, while the other shape parameter remains covariate-independent, and handles automatic selection of the baseline distribution. We explore inferential issues in simulations, both with and without a covariate, with particular focus on evidence concerning the need, or otherwise, to include both AFT and PH parameters. We illustrate the efficacy of our modelling framework by investigating differences between treatment groups using data from a lung cancer study and a melanoma study. Censoring is accommodated throughout.
On the Complexity of Bayesian Generalization
We consider concept generalization at a large scale in the diverse and natural visual spectrum. Established computational modes (i.e., rule-based or similarity-based) are primarily studied isolated and focus on confined and abstract problem spaces. In this work, we study these two modes when the problem space scales up, and the complexity of concepts becomes diverse. Specifically, at the representational level, we seek to answer how the complexity varies when a visual concept is mapped to the representation space. Prior psychology literature has shown that two types of complexities (i.e., subjective complexity and visual complexity) (Griffiths and Tenenbaum, 2003) build an inverted-U relation (Donderi, 2006; Sun and Firestone, 2021). Leveraging Representativeness of Attribute (RoA), we computationally confirm the following observation: Models use attributes with high RoA to describe visual concepts, and the description length falls in an inverted-U relation with the increment in visual complexity. At the computational level, we aim to answer how the complexity of representation affects the shift between the rule- and similarity-based generalization. We hypothesize that category-conditioned visual modeling estimates the co-occurrence frequency between visual and categorical attributes, thus potentially serving as the prior for the natural visual world. Experimental results show that representations with relatively high subjective complexity outperform those with relatively low subjective complexity in the rule-based generalization, while the trend is the opposite in the similarity-based generalization.
Synaptic Weight Distributions Depend on the Geometry of Plasticity
A growing literature in computational neuroscience leverages gradient descent and learning algorithms that approximate it to study synaptic plasticity in the brain. However, the vast majority of this work ignores a critical underlying assumption: the choice of distance for synaptic changes - i.e. the geometry of synaptic plasticity. Gradient descent assumes that the distance is Euclidean, but many other distances are possible, and there is no reason that biology necessarily uses Euclidean geometry. Here, using the theoretical tools provided by mirror descent, we show that the distribution of synaptic weights will depend on the geometry of synaptic plasticity. We use these results to show that experimentally-observed log-normal weight distributions found in several brain areas are not consistent with standard gradient descent (i.e. a Euclidean geometry), but rather with non-Euclidean distances. Finally, we show that it should be possible to experimentally test for different synaptic geometries by comparing synaptic weight distributions before and after learning. Overall, our work shows that the current paradigm in theoretical work on synaptic plasticity that assumes Euclidean synaptic geometry may be misguided and that it should be possible to experimentally determine the true geometry of synaptic plasticity in the brain.
Forecasting Open-Weight AI Model Growth on Hugging Face
As the open-weight AI landscape continues to proliferate-with model development, significant investment, and user interest-it becomes increasingly important to predict which models will ultimately drive innovation and shape AI ecosystems. Building on parallels with citation dynamics in scientific literature, we propose a framework to quantify how an open-weight model's influence evolves. Specifically, we adapt the model introduced by Wang et al. for scientific citations, using three key parameters-immediacy, longevity, and relative fitness-to track the cumulative number of fine-tuned models of an open-weight model. Our findings reveal that this citation-style approach can effectively capture the diverse trajectories of open-weight model adoption, with most models fitting well and outliers indicating unique patterns or abrupt jumps in usage.
Response: Emergent analogical reasoning in large language models
In their recent Nature Human Behaviour paper, "Emergent analogical reasoning in large language models," (Webb, Holyoak, and Lu, 2023) the authors argue that "large language models such as GPT-3 have acquired an emergent ability to find zero-shot solutions to a broad range of analogy problems." In this response, we provide counterexamples of the letter string analogies. In our tests, GPT-3 fails to solve even the easiest variants of the problems presented in the original paper. Zero-shot reasoning is an extraordinary claim that requires extraordinary evidence. We do not see that evidence in our experiments. To strengthen claims of humanlike reasoning such as zero-shot reasoning, it is important that the field develop approaches that rule out data memorization.
Model-agnostic Measure of Generalization Difficulty
The measure of a machine learning algorithm is the difficulty of the tasks it can perform, and sufficiently difficult tasks are critical drivers of strong machine learning models. However, quantifying the generalization difficulty of machine learning benchmarks has remained challenging. We propose what is to our knowledge the first model-agnostic measure of the inherent generalization difficulty of tasks. Our inductive bias complexity measure quantifies the total information required to generalize well on a task minus the information provided by the data. It does so by measuring the fractional volume occupied by hypotheses that generalize on a task given that they fit the training data. It scales exponentially with the intrinsic dimensionality of the space over which the model must generalize but only polynomially in resolution per dimension, showing that tasks which require generalizing over many dimensions are drastically more difficult than tasks involving more detail in fewer dimensions. Our measure can be applied to compute and compare supervised learning, reinforcement learning and meta-learning generalization difficulties against each other. We show that applied empirically, it formally quantifies intuitively expected trends, e.g. that in terms of required inductive bias, MNIST < CIFAR10 < Imagenet and fully observable Markov decision processes (MDPs) < partially observable MDPs. Further, we show that classification of complex images < few-shot meta-learning with simple images. Our measure provides a quantitative metric to guide the construction of more complex tasks requiring greater inductive bias, and thereby encourages the development of more sophisticated architectures and learning algorithms with more powerful generalization capabilities.
Kinetics: Rethinking Test-Time Scaling Laws
We rethink test-time scaling laws from a practical efficiency perspective, revealing that the effectiveness of smaller models is significantly overestimated. Prior work, grounded in compute-optimality, overlooks critical memory access bottlenecks introduced by inference-time strategies (e.g., Best-of-N, long CoTs). Our holistic analysis, spanning models from 0.6B to 32B parameters, reveals a new Kinetics Scaling Law that better guides resource allocation by incorporating both computation and memory access costs. Kinetics Scaling Law suggests that test-time compute is more effective when used on models above a threshold than smaller ones. A key reason is that in TTS, attention, rather than parameter count, emerges as the dominant cost factor. Motivated by this, we propose a new scaling paradigm centered on sparse attention, which lowers per-token cost and enables longer generations and more parallel samples within the same resource budget. Empirically, we show that sparse attention models consistently outperform dense counterparts, achieving over 60 points gains in low-cost regimes and over 5 points gains in high-cost regimes for problem-solving accuracy on AIME, encompassing evaluations on state-of-the-art MoEs. These results suggest that sparse attention is essential for realizing the full potential of test-time scaling because, unlike training, where parameter scaling saturates, test-time accuracy continues to improve through increased generation. The code is available at https://github.com/Infini-AI-Lab/Kinetics.
A Systematic Paradigm for Detecting, Surfacing, and Characterizing Heterogeneous Treatment Effects (HTE)
To effectively optimize and personalize treatments, it is necessary to investigate the heterogeneity of treatment effects. With the wide range of users being treated over many online controlled experiments, the typical approach of manually investigating each dimension of heterogeneity becomes overly cumbersome and prone to subjective human biases. We need an efficient way to search through thousands of experiments with hundreds of target covariates and hundreds of breakdown dimensions. In this paper, we propose a systematic paradigm for detecting, surfacing and characterizing heterogeneous treatment effects. First, we detect if treatment effect variation is present in an experiment, prior to specifying any breakdowns. Second, we surface the most relevant dimensions for heterogeneity. Finally, we characterize the heterogeneity beyond just the conditional average treatment effects (CATE) by studying the conditional distributions of the estimated individual treatment effects. We show the effectiveness of our methods using simulated data and empirical studies.
Recurrent Neural Networks Learn to Store and Generate Sequences using Non-Linear Representations
The Linear Representation Hypothesis (LRH) states that neural networks learn to encode concepts as directions in activation space, and a strong version of the LRH states that models learn only such encodings. In this paper, we present a counterexample to this strong LRH: when trained to repeat an input token sequence, gated recurrent neural networks (RNNs) learn to represent the token at each position with a particular order of magnitude, rather than a direction. These representations have layered features that are impossible to locate in distinct linear subspaces. To show this, we train interventions to predict and manipulate tokens by learning the scaling factor corresponding to each sequence position. These interventions indicate that the smallest RNNs find only this magnitude-based solution, while larger RNNs have linear representations. These findings strongly indicate that interpretability research should not be confined by the LRH.
Amplifying Pathological Detection in EEG Signaling Pathways through Cross-Dataset Transfer Learning
Pathology diagnosis based on EEG signals and decoding brain activity holds immense importance in understanding neurological disorders. With the advancement of artificial intelligence methods and machine learning techniques, the potential for accurate data-driven diagnoses and effective treatments has grown significantly. However, applying machine learning algorithms to real-world datasets presents diverse challenges at multiple levels. The scarcity of labelled data, especially in low regime scenarios with limited availability of real patient cohorts due to high costs of recruitment, underscores the vital deployment of scaling and transfer learning techniques. In this study, we explore a real-world pathology classification task to highlight the effectiveness of data and model scaling and cross-dataset knowledge transfer. As such, we observe varying performance improvements through data scaling, indicating the need for careful evaluation and labelling. Additionally, we identify the challenges of possible negative transfer and emphasize the significance of some key components to overcome distribution shifts and potential spurious correlations and achieve positive transfer. We see improvement in the performance of the target model on the target (NMT) datasets by using the knowledge from the source dataset (TUAB) when a low amount of labelled data was available. Our findings indicate a small and generic model (e.g. ShallowNet) performs well on a single dataset, however, a larger model (e.g. TCN) performs better on transfer and learning from a larger and diverse dataset.
Preserving Statistical Validity in Adaptive Data Analysis
A great deal of effort has been devoted to reducing the risk of spurious scientific discoveries, from the use of sophisticated validation techniques, to deep statistical methods for controlling the false discovery rate in multiple hypothesis testing. However, there is a fundamental disconnect between the theoretical results and the practice of data analysis: the theory of statistical inference assumes a fixed collection of hypotheses to be tested, or learning algorithms to be applied, selected non-adaptively before the data are gathered, whereas in practice data is shared and reused with hypotheses and new analyses being generated on the basis of data exploration and the outcomes of previous analyses. In this work we initiate a principled study of how to guarantee the validity of statistical inference in adaptive data analysis. As an instance of this problem, we propose and investigate the question of estimating the expectations of m adaptively chosen functions on an unknown distribution given n random samples. We show that, surprisingly, there is a way to estimate an exponential in n number of expectations accurately even if the functions are chosen adaptively. This gives an exponential improvement over standard empirical estimators that are limited to a linear number of estimates. Our result follows from a general technique that counter-intuitively involves actively perturbing and coordinating the estimates, using techniques developed for privacy preservation. We give additional applications of this technique to our question.
LongNet: Scaling Transformers to 1,000,000,000 Tokens
Scaling sequence length has become a critical demand in the era of large language models. However, existing methods struggle with either computational complexity or model expressivity, rendering the maximum sequence length restricted. In this work, we introduce LongNet, a Transformer variant that can scale sequence length to more than 1 billion tokens, without sacrificing the performance on shorter sequences. Specifically, we propose dilated attention, which expands the attentive field exponentially as the distance grows. LongNet has significant advantages: 1) it has a linear computation complexity and a logarithm dependency between tokens; 2) it can be served as a distributed trainer for extremely long sequences; 3) its dilated attention is a drop-in replacement for standard attention, which can be seamlessly integrated with the existing Transformer-based optimization. Experiments results demonstrate that LongNet yields strong performance on both long-sequence modeling and general language tasks. Our work opens up new possibilities for modeling very long sequences, e.g., treating a whole corpus or even the entire Internet as a sequence.
Scaling TransNormer to 175 Billion Parameters
We present TransNormerLLM, the first linear attention-based Large Language Model (LLM) that outperforms conventional softmax attention-based models in terms of both accuracy and efficiency. TransNormerLLM evolves from the previous linear attention architecture TransNormer by making advanced modifications that include positional embedding, linear attention acceleration, gating mechanism, tensor normalization, inference acceleration and stabilization. Specifically, we use LRPE together with an exponential decay to avoid attention dilution issues while allowing the model to retain global interactions between tokens. Additionally, we propose Lightning Attention, a cutting-edge technique that accelerates linear attention by more than twice in runtime and reduces memory usage by a remarkable four times. To further enhance the performance of TransNormer, we leverage a gating mechanism to smooth training and a new tensor normalization scheme to accelerate the model, resulting in an impressive acceleration of over 20%. Furthermore, we have developed a robust inference algorithm that ensures numerical stability and consistent inference speed, regardless of the sequence length, showcasing superior efficiency during both training and inference stages. Scalability is at the heart of our model's design, enabling seamless deployment on large-scale clusters and facilitating expansion to even more extensive models, all while maintaining outstanding performance metrics. Rigorous validation of our model design is achieved through a series of comprehensive experiments on our self-collected corpus, boasting a size exceeding 6TB and containing over 2 trillion tokens. To ensure data quality and relevance, we implement a new self-cleaning strategy to filter our collected data. Our pre-trained models will be released to foster community advancements in efficient LLMs.
Scaling Data-Constrained Language Models
The current trend of scaling language models involves increasing both parameter count and training dataset size. Extrapolating this trend suggests that training dataset size may soon be limited by the amount of text data available on the internet. Motivated by this limit, we investigate scaling language models in data-constrained regimes. Specifically, we run a large set of experiments varying the extent of data repetition and compute budget, ranging up to 900 billion training tokens and 9 billion parameter models. We find that with constrained data for a fixed compute budget, training with up to 4 epochs of repeated data yields negligible changes to loss compared to having unique data. However, with more repetition, the value of adding compute eventually decays to zero. We propose and empirically validate a scaling law for compute optimality that accounts for the decreasing value of repeated tokens and excess parameters. Finally, we experiment with approaches mitigating data scarcity, including augmenting the training dataset with code data or removing commonly used filters. Models and datasets from our 400 training runs are publicly available at https://github.com/huggingface/datablations.
Scaling Up and Distilling Down: Language-Guided Robot Skill Acquisition
We present a framework for robot skill acquisition, which 1) efficiently scale up data generation of language-labelled robot data and 2) effectively distills this data down into a robust multi-task language-conditioned visuo-motor policy. For (1), we use a large language model (LLM) to guide high-level planning, and sampling-based robot planners (e.g. motion or grasp samplers) for generating diverse and rich manipulation trajectories. To robustify this data-collection process, the LLM also infers a code-snippet for the success condition of each task, simultaneously enabling the data-collection process to detect failure and retry as well as the automatic labeling of trajectories with success/failure. For (2), we extend the diffusion policy single-task behavior-cloning approach to multi-task settings with language conditioning. Finally, we propose a new multi-task benchmark with 18 tasks across five domains to test long-horizon behavior, common-sense reasoning, tool-use, and intuitive physics. We find that our distilled policy successfully learned the robust retrying behavior in its data collection policy, while improving absolute success rates by 34.8% on average across five domains. The benchmark, code, and qualitative results are on our website https://www.cs.columbia.edu/~huy/scalingup/
Scaling Open-Vocabulary Object Detection
Open-vocabulary object detection has benefited greatly from pretrained vision-language models, but is still limited by the amount of available detection training data. While detection training data can be expanded by using Web image-text pairs as weak supervision, this has not been done at scales comparable to image-level pretraining. Here, we scale up detection data with self-training, which uses an existing detector to generate pseudo-box annotations on image-text pairs. Major challenges in scaling self-training are the choice of label space, pseudo-annotation filtering, and training efficiency. We present the OWLv2 model and OWL-ST self-training recipe, which address these challenges. OWLv2 surpasses the performance of previous state-of-the-art open-vocabulary detectors already at comparable training scales (~10M examples). However, with OWL-ST, we can scale to over 1B examples, yielding further large improvement: With an L/14 architecture, OWL-ST improves AP on LVIS rare classes, for which the model has seen no human box annotations, from 31.2% to 44.6% (43% relative improvement). OWL-ST unlocks Web-scale training for open-world localization, similar to what has been seen for image classification and language modelling.
Scaling Speech Technology to 1,000+ Languages
Expanding the language coverage of speech technology has the potential to improve access to information for many more people. However, current speech technology is restricted to about one hundred languages which is a small fraction of the over 7,000 languages spoken around the world. The Massively Multilingual Speech (MMS) project increases the number of supported languages by 10-40x, depending on the task. The main ingredients are a new dataset based on readings of publicly available religious texts and effectively leveraging self-supervised learning. We built pre-trained wav2vec 2.0 models covering 1,406 languages, a single multilingual automatic speech recognition model for 1,107 languages, speech synthesis models for the same number of languages, as well as a language identification model for 4,017 languages. Experiments show that our multilingual speech recognition model more than halves the word error rate of Whisper on 54 languages of the FLEURS benchmark while being trained on a small fraction of the labeled data.
Scaling Laws for Neural Language Models
We study empirical scaling laws for language model performance on the cross-entropy loss. The loss scales as a power-law with model size, dataset size, and the amount of compute used for training, with some trends spanning more than seven orders of magnitude. Other architectural details such as network width or depth have minimal effects within a wide range. Simple equations govern the dependence of overfitting on model/dataset size and the dependence of training speed on model size. These relationships allow us to determine the optimal allocation of a fixed compute budget. Larger models are significantly more sample-efficient, such that optimally compute-efficient training involves training very large models on a relatively modest amount of data and stopping significantly before convergence.
Scaling Instruction-Finetuned Language Models
Finetuning language models on a collection of datasets phrased as instructions has been shown to improve model performance and generalization to unseen tasks. In this paper we explore instruction finetuning with a particular focus on (1) scaling the number of tasks, (2) scaling the model size, and (3) finetuning on chain-of-thought data. We find that instruction finetuning with the above aspects dramatically improves performance on a variety of model classes (PaLM, T5, U-PaLM), prompting setups (zero-shot, few-shot, CoT), and evaluation benchmarks (MMLU, BBH, TyDiQA, MGSM, open-ended generation). For instance, Flan-PaLM 540B instruction-finetuned on 1.8K tasks outperforms PALM 540B by a large margin (+9.4% on average). Flan-PaLM 540B achieves state-of-the-art performance on several benchmarks, such as 75.2% on five-shot MMLU. We also publicly release Flan-T5 checkpoints, which achieve strong few-shot performance even compared to much larger models, such as PaLM 62B. Overall, instruction finetuning is a general method for improving the performance and usability of pretrained language models.
Enhancing Chat Language Models by Scaling High-quality Instructional Conversations
Fine-tuning on instruction data has been widely validated as an effective practice for implementing chat language models like ChatGPT. Scaling the diversity and quality of such data, although straightforward, stands a great chance of leading to improved performance. This paper aims to improve the upper bound of open-source models further. We first provide a systematically designed, diverse, informative, large-scale dataset of instructional conversations, UltraChat, which does not involve human queries. Our objective is to capture the breadth of interactions that a human might have with an AI assistant and employs a comprehensive framework to generate multi-turn conversation iteratively. UltraChat contains 1.5 million high-quality multi-turn dialogues and covers a wide range of topics and instructions. Our statistical analysis of UltraChat reveals its superiority in various key metrics, including scale, average length, diversity, coherence, etc., solidifying its position as a leading open-source dataset. Building upon UltraChat, we fine-tune a LLaMA model to create a powerful conversational model, UltraLLaMA. Our evaluations indicate that UltraLLaMA consistently outperforms other open-source models, including Vicuna, the previously recognized state-of-the-art open-source model. The dataset and the model will be publicly released\url{https://github.com/thunlp/UltraChat}.
Scaling Transformer to 1M tokens and beyond with RMT
This technical report presents the application of a recurrent memory to extend the context length of BERT, one of the most effective Transformer-based models in natural language processing. By leveraging the Recurrent Memory Transformer architecture, we have successfully increased the model's effective context length to an unprecedented two million tokens, while maintaining high memory retrieval accuracy. Our method allows for the storage and processing of both local and global information and enables information flow between segments of the input sequence through the use of recurrence. Our experiments demonstrate the effectiveness of our approach, which holds significant potential to enhance long-term dependency handling in natural language understanding and generation tasks as well as enable large-scale context processing for memory-intensive applications.
Scaling Spherical CNNs
Spherical CNNs generalize CNNs to functions on the sphere, by using spherical convolutions as the main linear operation. The most accurate and efficient way to compute spherical convolutions is in the spectral domain (via the convolution theorem), which is still costlier than the usual planar convolutions. For this reason, applications of spherical CNNs have so far been limited to small problems that can be approached with low model capacity. In this work, we show how spherical CNNs can be scaled for much larger problems. To achieve this, we make critical improvements including novel variants of common model components, an implementation of core operations to exploit hardware accelerator characteristics, and application-specific input representations that exploit the properties of our model. Experiments show our larger spherical CNNs reach state-of-the-art on several targets of the QM9 molecular benchmark, which was previously dominated by equivariant graph neural networks, and achieve competitive performance on multiple weather forecasting tasks. Our code is available at https://github.com/google-research/spherical-cnn.
Scaling Expert Language Models with Unsupervised Domain Discovery
Large language models are typically trained densely: all parameters are updated with respect to all inputs. This requires synchronization of billions of parameters across thousands of GPUs. We introduce a simple but effective method to asynchronously train large, sparse language models on arbitrary text corpora. Our method clusters a corpus into sets of related documents, trains a separate expert language model on each cluster, and combines them in a sparse ensemble for inference. This approach generalizes embarrassingly parallel training by automatically discovering the domains for each expert, and eliminates nearly all the communication overhead of existing sparse language models. Our technique outperforms dense baselines on multiple corpora and few-shot tasks, and our analysis shows that specializing experts to meaningful clusters is key to these gains. Performance also improves with the number of experts and size of training data, suggesting this is a highly efficient and accessible approach to training large language models.
Scaling Vision Transformers to 22 Billion Parameters
The scaling of Transformers has driven breakthrough capabilities for language models. At present, the largest large language models (LLMs) contain upwards of 100B parameters. Vision Transformers (ViT) have introduced the same architecture to image and video modelling, but these have not yet been successfully scaled to nearly the same degree; the largest dense ViT contains 4B parameters (Chen et al., 2022). We present a recipe for highly efficient and stable training of a 22B-parameter ViT (ViT-22B) and perform a wide variety of experiments on the resulting model. When evaluated on downstream tasks (often with a lightweight linear model on frozen features), ViT-22B demonstrates increasing performance with scale. We further observe other interesting benefits of scale, including an improved tradeoff between fairness and performance, state-of-the-art alignment to human visual perception in terms of shape/texture bias, and improved robustness. ViT-22B demonstrates the potential for "LLM-like" scaling in vision, and provides key steps towards getting there.
Scaling Up Dataset Distillation to ImageNet-1K with Constant Memory
Dataset distillation methods aim to compress a large dataset into a small set of synthetic samples, such that when being trained on, competitive performances can be achieved compared to regular training on the entire dataset. Among recently proposed methods, Matching Training Trajectories (MTT) achieves state-of-the-art performance on CIFAR-10/100, while having difficulty scaling to ImageNet-1k dataset due to the large memory requirement when performing unrolled gradient computation through back-propagation. Surprisingly, we show that there exists a procedure to exactly calculate the gradient of the trajectory matching loss with constant GPU memory requirement (irrelevant to the number of unrolled steps). With this finding, the proposed memory-efficient trajectory matching method can easily scale to ImageNet-1K with 6x memory reduction while introducing only around 2% runtime overhead than original MTT. Further, we find that assigning soft labels for synthetic images is crucial for the performance when scaling to larger number of categories (e.g., 1,000) and propose a novel soft label version of trajectory matching that facilities better aligning of model training trajectories on large datasets. The proposed algorithm not only surpasses previous SOTA on ImageNet-1K under extremely low IPCs (Images Per Class), but also for the first time enables us to scale up to 50 IPCs on ImageNet-1K. Our method (TESLA) achieves 27.9% testing accuracy, a remarkable +18.2% margin over prior arts.
Scaling Up Models and Data with $\texttt{t5x}$ and $\texttt{seqio}$
Recent neural network-based language models have benefited greatly from scaling up the size of training datasets and the number of parameters in the models themselves. Scaling can be complicated due to various factors including the need to distribute computation on supercomputer clusters (e.g., TPUs), prevent bottlenecks when infeeding data, and ensure reproducible results. In this work, we present two software libraries that ease these issues: t5x simplifies the process of building and training large language models at scale while maintaining ease of use, and seqio provides a task-based API for simple creation of fast and reproducible training data and evaluation pipelines. These open-source libraries have been used to train models with hundreds of billions of parameters on datasets with multiple terabytes of training data. Along with the libraries, we release configurations and instructions for T5-like encoder-decoder models as well as GPT-like decoder-only architectures. t5x and seqio are open source and available at https://github.com/google-research/t5x and https://github.com/google/seqio, respectively.
Scaling Language Models: Methods, Analysis & Insights from Training Gopher
Language modelling provides a step towards intelligent communication systems by harnessing large repositories of written human knowledge to better predict and understand the world. In this paper, we present an analysis of Transformer-based language model performance across a wide range of model scales -- from models with tens of millions of parameters up to a 280 billion parameter model called Gopher. These models are evaluated on 152 diverse tasks, achieving state-of-the-art performance across the majority. Gains from scale are largest in areas such as reading comprehension, fact-checking, and the identification of toxic language, but logical and mathematical reasoning see less benefit. We provide a holistic analysis of the training dataset and model's behaviour, covering the intersection of model scale with bias and toxicity. Finally we discuss the application of language models to AI safety and the mitigation of downstream harms.
Fast and Accurate Model Scaling
In this work we analyze strategies for convolutional neural network scaling; that is, the process of scaling a base convolutional network to endow it with greater computational complexity and consequently representational power. Example scaling strategies may include increasing model width, depth, resolution, etc. While various scaling strategies exist, their tradeoffs are not fully understood. Existing analysis typically focuses on the interplay of accuracy and flops (floating point operations). Yet, as we demonstrate, various scaling strategies affect model parameters, activations, and consequently actual runtime quite differently. In our experiments we show the surprising result that numerous scaling strategies yield networks with similar accuracy but with widely varying properties. This leads us to propose a simple fast compound scaling strategy that encourages primarily scaling model width, while scaling depth and resolution to a lesser extent. Unlike currently popular scaling strategies, which result in about O(s) increase in model activation w.r.t. scaling flops by a factor of s, the proposed fast compound scaling results in close to O(s) increase in activations, while achieving excellent accuracy. This leads to comparable speedups on modern memory-limited hardware (e.g., GPU, TPU). More generally, we hope this work provides a framework for analyzing and selecting scaling strategies under various computational constraints.
Scaling Laws for Multilingual Neural Machine Translation
In this work, we provide a large-scale empirical study of the scaling properties of multilingual neural machine translation models. We examine how increases in the model size affect the model performance and investigate the role of the training mixture composition on the scaling behavior. We find that changing the weightings of the individual language pairs in the training mixture only affect the multiplicative factor of the scaling law. In particular, we observe that multilingual models trained using different mixing rates all exhibit the same scaling exponent. Through a novel joint scaling law formulation, we compute the effective number of parameters allocated to each language pair and examine the role of language similarity in the scaling behavior of our models. We find little evidence that language similarity has any impact. In contrast, the direction of the multilinguality plays a significant role, with models translating from multiple languages into English having a larger number of effective parameters per task than their reversed counterparts. Finally, we leverage our observations to predict the performance of multilingual models trained with any language weighting at any scale, significantly reducing efforts required for language balancing in large multilingual models. Our findings apply to both in-domain and out-of-domain test sets and to multiple evaluation metrics, such as ChrF and BLEURT.
Scaling Laws for Generative Mixed-Modal Language Models
Generative language models define distributions over sequences of tokens that can represent essentially any combination of data modalities (e.g., any permutation of image tokens from VQ-VAEs, speech tokens from HuBERT, BPE tokens for language or code, and so on). To better understand the scaling properties of such mixed-modal models, we conducted over 250 experiments using seven different modalities and model sizes ranging from 8 million to 30 billion, trained on 5-100 billion tokens. We report new mixed-modal scaling laws that unify the contributions of individual modalities and the interactions between them. Specifically, we explicitly model the optimal synergy and competition due to data and model size as an additive term to previous uni-modal scaling laws. We also find four empirical phenomena observed during the training, such as emergent coordinate-ascent style training that naturally alternates between modalities, guidelines for selecting critical hyper-parameters, and connections between mixed-modal competition and training stability. Finally, we test our scaling law by training a 30B speech-text model, which significantly outperforms the corresponding unimodal models. Overall, our research provides valuable insights into the design and training of mixed-modal generative models, an important new class of unified models that have unique distributional properties.
Scaling Laws for Reward Model Overoptimization
In reinforcement learning from human feedback, it is common to optimize against a reward model trained to predict human preferences. Because the reward model is an imperfect proxy, optimizing its value too much can hinder ground truth performance, in accordance with Goodhart's law. This effect has been frequently observed, but not carefully measured due to the expense of collecting human preference data. In this work, we use a synthetic setup in which a fixed "gold-standard" reward model plays the role of humans, providing labels used to train a proxy reward model. We study how the gold reward model score changes as we optimize against the proxy reward model using either reinforcement learning or best-of-n sampling. We find that this relationship follows a different functional form depending on the method of optimization, and that in both cases its coefficients scale smoothly with the number of reward model parameters. We also study the effect on this relationship of the size of the reward model dataset, the number of reward model and policy parameters, and the coefficient of the KL penalty added to the reward in the reinforcement learning setup. We explore the implications of these empirical results for theoretical considerations in AI alignment.
Scaling Local Self-Attention for Parameter Efficient Visual Backbones
Self-attention has the promise of improving computer vision systems due to parameter-independent scaling of receptive fields and content-dependent interactions, in contrast to parameter-dependent scaling and content-independent interactions of convolutions. Self-attention models have recently been shown to have encouraging improvements on accuracy-parameter trade-offs compared to baseline convolutional models such as ResNet-50. In this work, we aim to develop self-attention models that can outperform not just the canonical baseline models, but even the high-performing convolutional models. We propose two extensions to self-attention that, in conjunction with a more efficient implementation of self-attention, improve the speed, memory usage, and accuracy of these models. We leverage these improvements to develop a new self-attention model family, HaloNets, which reach state-of-the-art accuracies on the parameter-limited setting of the ImageNet classification benchmark. In preliminary transfer learning experiments, we find that HaloNet models outperform much larger models and have better inference performance. On harder tasks such as object detection and instance segmentation, our simple local self-attention and convolutional hybrids show improvements over very strong baselines. These results mark another step in demonstrating the efficacy of self-attention models on settings traditionally dominated by convolutional models.
Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision
Pre-trained representations are becoming crucial for many NLP and perception tasks. While representation learning in NLP has transitioned to training on raw text without human annotations, visual and vision-language representations still rely heavily on curated training datasets that are expensive or require expert knowledge. For vision applications, representations are mostly learned using datasets with explicit class labels such as ImageNet or OpenImages. For vision-language, popular datasets like Conceptual Captions, MSCOCO, or CLIP all involve a non-trivial data collection (and cleaning) process. This costly curation process limits the size of datasets and hence hinders the scaling of trained models. In this paper, we leverage a noisy dataset of over one billion image alt-text pairs, obtained without expensive filtering or post-processing steps in the Conceptual Captions dataset. A simple dual-encoder architecture learns to align visual and language representations of the image and text pairs using a contrastive loss. We show that the scale of our corpus can make up for its noise and leads to state-of-the-art representations even with such a simple learning scheme. Our visual representation achieves strong performance when transferred to classification tasks such as ImageNet and VTAB. The aligned visual and language representations enables zero-shot image classification and also set new state-of-the-art results on Flickr30K and MSCOCO image-text retrieval benchmarks, even when compared with more sophisticated cross-attention models. The representations also enable cross-modality search with complex text and text + image queries.