- Temporal Attack Pattern Detection in Multi-Agent AI Workflows: An Open Framework for Training Trace-Based Security Models We present an openly documented methodology for fine-tuning language models to detect temporal attack patterns in multi-agent AI workflows using OpenTelemetry trace analysis. We curate a dataset of 80,851 examples from 18 public cybersecurity sources and 35,026 synthetic OpenTelemetry traces. We apply iterative QLoRA fine-tuning on resource-constrained ARM64 hardware (NVIDIA DGX Spark) through three training iterations with strategic augmentation. Our custom benchmark accuracy improves from 42.86% to 74.29%, a statistically significant 31.4-point gain. Targeted examples addressing specific knowledge gaps outperform indiscriminate scaling. Key contributions include: (1) synthetic trace generation methodology for multi-agent coordination attacks and regulatory violations, (2) empirical evidence that training data composition fundamentally determines behavior, and (3) complete open release of datasets, training scripts, and evaluation benchmarks on HuggingFace. While practical deployment requires human oversight due to false positive rates, this work establishes the first reproducible framework enabling practitioners to build custom agentic security models adapted to their threat landscapes. 1 authors · Dec 29, 2025
- Temporal Context Awareness: A Defense Framework Against Multi-turn Manipulation Attacks on Large Language Models Large Language Models (LLMs) are increasingly vulnerable to sophisticated multi-turn manipulation attacks, where adversaries strategically build context through seemingly benign conversational turns to circumvent safety measures and elicit harmful or unauthorized responses. These attacks exploit the temporal nature of dialogue to evade single-turn detection methods, representing a critical security vulnerability with significant implications for real-world deployments. This paper introduces the Temporal Context Awareness (TCA) framework, a novel defense mechanism designed to address this challenge by continuously analyzing semantic drift, cross-turn intention consistency and evolving conversational patterns. The TCA framework integrates dynamic context embedding analysis, cross-turn consistency verification, and progressive risk scoring to detect and mitigate manipulation attempts effectively. Preliminary evaluations on simulated adversarial scenarios demonstrate the framework's potential to identify subtle manipulation patterns often missed by traditional detection techniques, offering a much-needed layer of security for conversational AI systems. In addition to outlining the design of TCA , we analyze diverse attack vectors and their progression across multi-turn conversation, providing valuable insights into adversarial tactics and their impact on LLM vulnerabilities. Our findings underscore the pressing need for robust, context-aware defenses in conversational AI systems and highlight TCA framework as a promising direction for securing LLMs while preserving their utility in legitimate applications. We make our implementation available to support further research in this emerging area of AI security. 2 authors · Mar 18, 2025