new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Sep 2

Are We There Yet? A Measurement Study of Efficiency for LLM Applications on Mobile Devices

Recent advancements in large language models (LLMs) have prompted interest in deploying these models on mobile devices to enable new applications without relying on cloud connectivity. However, the efficiency constraints of deploying LLMs on resource-limited devices present significant challenges. In this paper, we conduct a comprehensive measurement study to evaluate the efficiency tradeoffs between mobile-based, edge-based, and cloud-based deployments for LLM applications. We implement AutoLife-Lite, a simplified LLM-based application that analyzes smartphone sensor data to infer user location and activity contexts. Our experiments reveal that: (1) Only small-size LLMs (<4B parameters) can run successfully on powerful mobile devices, though they exhibit quality limitations compared to larger models; (2) Model compression is effective in lower the hardware requirement, but may lead to significant performance degradation; (3) The latency to run LLMs on mobile devices with meaningful output is significant (>30 seconds), while cloud services demonstrate better time efficiency (<10 seconds); (4) Edge deployments offer intermediate tradeoffs between latency and model capabilities, with different results on CPU-based and GPU-based settings. These findings provide valuable insights for system designers on the current limitations and future directions for on-device LLM applications.

A Kernel Method to Nonlinear Location Estimation with RSS-based Fingerprint

This paper presents a nonlinear location estimation to infer the position of a user holding a smartphone. We consider a large location with M number of grid points, each grid point is labeled with a unique fingerprint consisting of the received signal strength (RSS) values measured from N number of Bluetooth Low Energy (BLE) beacons. Given the fingerprint observed by the smartphone, the user's current location can be estimated by finding the top-k similar fingerprints from the list of fingerprints registered in the database. Besides the environmental factors, the dynamicity in holding the smartphone is another source to the variation in fingerprint measurements, yet there are not many studies addressing the fingerprint variability due to dynamic smartphone positions held by human hands during online detection. To this end, we propose a nonlinear location estimation using the kernel method. Specifically, our proposed method comprises of two steps: 1) a beacon selection strategy to select a subset of beacons that is insensitive to the subtle change of holding positions, and 2) a kernel method to compute the similarity between this subset of observed signals and all the fingerprints registered in the database. The experimental results based on large-scale data collected in a complex building indicate a substantial performance gain of our proposed approach in comparison to state-of-the-art methods. The dataset consisting of the signal information collected from the beacons is available online.

GazeGen: Gaze-Driven User Interaction for Visual Content Generation

We present GazeGen, a user interaction system that generates visual content (images and videos) for locations indicated by the user's eye gaze. GazeGen allows intuitive manipulation of visual content by targeting regions of interest with gaze. Using advanced techniques in object detection and generative AI, GazeGen performs gaze-controlled image adding/deleting, repositioning, and surface material changes of image objects, and converts static images into videos. Central to GazeGen is the DFT Gaze (Distilled and Fine-Tuned Gaze) agent, an ultra-lightweight model with only 281K parameters, performing accurate real-time gaze predictions tailored to individual users' eyes on small edge devices. GazeGen is the first system to combine visual content generation with real-time gaze estimation, made possible exclusively by DFT Gaze. This real-time gaze estimation enables various visual content generation tasks, all controlled by the user's gaze. The input for DFT Gaze is the user's eye images, while the inputs for visual content generation are the user's view and the predicted gaze point from DFT Gaze. To achieve efficient gaze predictions, we derive the small model from a large model (10x larger) via novel knowledge distillation and personal adaptation techniques. We integrate knowledge distillation with a masked autoencoder, developing a compact yet powerful gaze estimation model. This model is further fine-tuned with Adapters, enabling highly accurate and personalized gaze predictions with minimal user input. DFT Gaze ensures low-latency and precise gaze tracking, supporting a wide range of gaze-driven tasks. We validate the performance of DFT Gaze on AEA and OpenEDS2020 benchmarks, demonstrating low angular gaze error and low latency on the edge device (Raspberry Pi 4). Furthermore, we describe applications of GazeGen, illustrating its versatility and effectiveness in various usage scenarios.

GenUP: Generative User Profilers as In-Context Learners for Next POI Recommender Systems

Traditional POI recommendation systems often lack transparency, interpretability, and scrutability due to their reliance on dense vector-based user embeddings. Furthermore, the cold-start problem -- where systems have insufficient data for new users -- limits their ability to generate accurate recommendations. Existing methods often address this by leveraging similar trajectories from other users, but this approach can be computationally expensive and increases the context length for LLM-based methods, making them difficult to scale. To address these limitations, we propose a method that generates natural language (NL) user profiles from large-scale, location-based social network (LBSN) check-ins, utilizing robust personality assessments and behavioral theories. These NL profiles capture user preferences, routines, and behaviors, improving POI prediction accuracy while offering enhanced transparency. By incorporating NL profiles as system prompts to LLMs, our approach reduces reliance on extensive historical data, while remaining flexible, easily updated, and computationally efficient. Our method is not only competitive with other LLM-based and complex agentic frameworks but is also more scalable for real-world scenarios and on-device POI recommendations. Results demonstrate that our approach consistently outperforms baseline methods, offering a more interpretable and resource-efficient solution for POI recommendation systems. Our source code is available at: https://github.com/w11wo/GenUP.

GUI-G$^2$: Gaussian Reward Modeling for GUI Grounding

Graphical User Interface (GUI) grounding maps natural language instructions to precise interface locations for autonomous interaction. Current reinforcement learning approaches use binary rewards that treat elements as hit-or-miss targets, creating sparse signals that ignore the continuous nature of spatial interactions. Motivated by human clicking behavior that naturally forms Gaussian distributions centered on target elements, we introduce GUI Gaussian Grounding Rewards (GUI-G^2), a principled reward framework that models GUI elements as continuous Gaussian distributions across the interface plane. GUI-G^2 incorporates two synergistic mechanisms: Gaussian point rewards model precise localization through exponentially decaying distributions centered on element centroids, while coverage rewards assess spatial alignment by measuring the overlap between predicted Gaussian distributions and target regions. To handle diverse element scales, we develop an adaptive variance mechanism that calibrates reward distributions based on element dimensions. This framework transforms GUI grounding from sparse binary classification to dense continuous optimization, where Gaussian distributions generate rich gradient signals that guide models toward optimal interaction positions. Extensive experiments across ScreenSpot, ScreenSpot-v2, and ScreenSpot-Pro benchmarks demonstrate that GUI-G^2, substantially outperforms state-of-the-art method UI-TARS-72B, with the most significant improvement of 24.7% on ScreenSpot-Pro. Our analysis reveals that continuous modeling provides superior robustness to interface variations and enhanced generalization to unseen layouts, establishing a new paradigm for spatial reasoning in GUI interaction tasks.

Exploring the Convergence of HCI and Evolving Technologies in Information Systems

Modern technology driven information systems are part of our daily lives. However, this deep integration poses new challenges to the human computer interaction (HCI) professionals. With the rapid growth of mobile and cloud computing and the Internet of Things (IoT), the demand for HCI specialists to design user-friendly and adaptable interfaces has never been more pressing. Especially for diverse user groups such as children, the elderly and people with disabilities who need interfaces tailored to their needs regardless of time and location. This study reviewed 50 recent papers on HCI interface design for modern information systems. The goal is to see how well these methods address the demands of current technology. The findings show that most HCI design methods are still based on old desktop models and do not support mobile users and location-based services well. Most existing interface design guidelines do not align with the flexibility and dynamism of emerging technologies. The goal of this study is to improve interface design by combining agile methodologies with human-centered design principles. Future studies should also incorporate both qualitative and quantitative approaches, particularly in the context of cloud-based technologies and organizational information systems. This approach aims to bridge the gap between current interface design practices and the changing technological landscape.

Satellite Connectivity Prediction for Fast-Moving Platforms

Satellite connectivity is gaining increased attention as the demand for seamless internet access, especially in transportation and remote areas, continues to grow. For fast-moving objects such as aircraft, vehicles, or trains, satellite connectivity is critical due to their mobility and frequent presence in areas without terrestrial coverage. Maintaining reliable connectivity in these cases requires frequent switching between satellite beams, constellations, or orbits. To enhance user experience and address challenges like long switching times, Machine Learning (ML) algorithms can analyze historical connectivity data and predict network quality at specific locations. This allows for proactive measures, such as network switching before connectivity issues arise. In this paper, we analyze a real dataset of communication between a Geostationary Orbit (GEO) satellite and aircraft over multiple flights, using ML to predict signal quality. Our prediction model achieved an F1 score of 0.97 on the test data, demonstrating the accuracy of machine learning in predicting signal quality during flight. By enabling seamless broadband service, including roaming between different satellite constellations and providers, our model addresses the need for real-time predictions of signal quality. This approach can further be adapted to automate satellite and beam-switching mechanisms to improve overall communication efficiency. The model can also be retrained and applied to any moving object with satellite connectivity, using customized datasets, including connected vehicles and trains.

iColoriT: Towards Propagating Local Hint to the Right Region in Interactive Colorization by Leveraging Vision Transformer

Point-interactive image colorization aims to colorize grayscale images when a user provides the colors for specific locations. It is essential for point-interactive colorization methods to appropriately propagate user-provided colors (i.e., user hints) in the entire image to obtain a reasonably colorized image with minimal user effort. However, existing approaches often produce partially colorized results due to the inefficient design of stacking convolutional layers to propagate hints to distant relevant regions. To address this problem, we present iColoriT, a novel point-interactive colorization Vision Transformer capable of propagating user hints to relevant regions, leveraging the global receptive field of Transformers. The self-attention mechanism of Transformers enables iColoriT to selectively colorize relevant regions with only a few local hints. Our approach colorizes images in real-time by utilizing pixel shuffling, an efficient upsampling technique that replaces the decoder architecture. Also, in order to mitigate the artifacts caused by pixel shuffling with large upsampling ratios, we present the local stabilizing layer. Extensive quantitative and qualitative results demonstrate that our approach highly outperforms existing methods for point-interactive colorization, producing accurately colorized images with a user's minimal effort. Official codes are available at https://pmh9960.github.io/research/iColoriT

GAEA: A Geolocation Aware Conversational Model

Image geolocalization, in which, traditionally, an AI model predicts the precise GPS coordinates of an image is a challenging task with many downstream applications. However, the user cannot utilize the model to further their knowledge other than the GPS coordinate; the model lacks an understanding of the location and the conversational ability to communicate with the user. In recent days, with tremendous progress of large multimodal models (LMMs) proprietary and open-source researchers have attempted to geolocalize images via LMMs. However, the issues remain unaddressed; beyond general tasks, for more specialized downstream tasks, one of which is geolocalization, LMMs struggle. In this work, we propose to solve this problem by introducing a conversational model GAEA that can provide information regarding the location of an image, as required by a user. No large-scale dataset enabling the training of such a model exists. Thus we propose a comprehensive dataset GAEA with 800K images and around 1.6M question answer pairs constructed by leveraging OpenStreetMap (OSM) attributes and geographical context clues. For quantitative evaluation, we propose a diverse benchmark comprising 4K image-text pairs to evaluate conversational capabilities equipped with diverse question types. We consider 11 state-of-the-art open-source and proprietary LMMs and demonstrate that GAEA significantly outperforms the best open-source model, LLaVA-OneVision by 25.69% and the best proprietary model, GPT-4o by 8.28%. Our dataset, model and codes are available

Watch Out for Your Agents! Investigating Backdoor Threats to LLM-Based Agents

Leveraging the rapid development of Large Language Models LLMs, LLM-based agents have been developed to handle various real-world applications, including finance, healthcare, and shopping, etc. It is crucial to ensure the reliability and security of LLM-based agents during applications. However, the safety issues of LLM-based agents are currently under-explored. In this work, we take the first step to investigate one of the typical safety threats, backdoor attack, to LLM-based agents. We first formulate a general framework of agent backdoor attacks, then we present a thorough analysis on the different forms of agent backdoor attacks. Specifically, from the perspective of the final attacking outcomes, the attacker can either choose to manipulate the final output distribution, or only introduce malicious behavior in the intermediate reasoning process, while keeping the final output correct. Furthermore, the former category can be divided into two subcategories based on trigger locations: the backdoor trigger can be hidden either in the user query or in an intermediate observation returned by the external environment. We propose the corresponding data poisoning mechanisms to implement the above variations of agent backdoor attacks on two typical agent tasks, web shopping and tool utilization. Extensive experiments show that LLM-based agents suffer severely from backdoor attacks, indicating an urgent need for further research on the development of defenses against backdoor attacks on LLM-based agents. Warning: This paper may contain biased content.

Embodied Agents Meet Personalization: Exploring Memory Utilization for Personalized Assistance

Embodied agents empowered by large language models (LLMs) have shown strong performance in household object rearrangement tasks. However, these tasks primarily focus on single-turn interactions with simplified instructions, which do not truly reflect the challenges of providing meaningful assistance to users. To provide personalized assistance, embodied agents must understand the unique semantics that users assign to the physical world (e.g., favorite cup, breakfast routine) by leveraging prior interaction history to interpret dynamic, real-world instructions. Yet, the effectiveness of embodied agents in utilizing memory for personalized assistance remains largely underexplored. To address this gap, we present MEMENTO, a personalized embodied agent evaluation framework designed to comprehensively assess memory utilization capabilities to provide personalized assistance. Our framework consists of a two-stage memory evaluation process design that enables quantifying the impact of memory utilization on task performance. This process enables the evaluation of agents' understanding of personalized knowledge in object rearrangement tasks by focusing on its role in goal interpretation: (1) the ability to identify target objects based on personal meaning (object semantics), and (2) the ability to infer object-location configurations from consistent user patterns, such as routines (user patterns). Our experiments across various LLMs reveal significant limitations in memory utilization, with even frontier models like GPT-4o experiencing a 30.5% performance drop when required to reference multiple memories, particularly in tasks involving user patterns. These findings, along with our detailed analyses and case studies, provide valuable insights for future research in developing more effective personalized embodied agents. Project website: https://connoriginal.github.io/MEMENTO

3DTrajMaster: Mastering 3D Trajectory for Multi-Entity Motion in Video Generation

This paper aims to manipulate multi-entity 3D motions in video generation. Previous methods on controllable video generation primarily leverage 2D control signals to manipulate object motions and have achieved remarkable synthesis results. However, 2D control signals are inherently limited in expressing the 3D nature of object motions. To overcome this problem, we introduce 3DTrajMaster, a robust controller that regulates multi-entity dynamics in 3D space, given user-desired 6DoF pose (location and rotation) sequences of entities. At the core of our approach is a plug-and-play 3D-motion grounded object injector that fuses multiple input entities with their respective 3D trajectories through a gated self-attention mechanism. In addition, we exploit an injector architecture to preserve the video diffusion prior, which is crucial for generalization ability. To mitigate video quality degradation, we introduce a domain adaptor during training and employ an annealed sampling strategy during inference. To address the lack of suitable training data, we construct a 360-Motion Dataset, which first correlates collected 3D human and animal assets with GPT-generated trajectory and then captures their motion with 12 evenly-surround cameras on diverse 3D UE platforms. Extensive experiments show that 3DTrajMaster sets a new state-of-the-art in both accuracy and generalization for controlling multi-entity 3D motions. Project page: http://fuxiao0719.github.io/projects/3dtrajmaster

UI-E2I-Synth: Advancing GUI Grounding with Large-Scale Instruction Synthesis

Recent advancements in Large Vision-Language Models are accelerating the development of Graphical User Interface (GUI) agents that utilize human-like vision perception capabilities to enhance productivity on digital devices. Compared to approaches predicated on GUI metadata, which are platform-dependent and vulnerable to implementation variations, vision-based approaches offer broader applicability. In this vision-based paradigm, the GUI instruction grounding, which maps user instruction to the location of corresponding element on the given screenshot, remains a critical challenge, particularly due to limited public training dataset and resource-intensive manual instruction data annotation. In this paper, we delve into unexplored challenges in this task including element-to-screen ratio, unbalanced element type, and implicit instruction. To address these challenges, we introduce a large-scale data synthesis pipeline UI-E2I-Synth for generating varying complex instruction datasets using GPT-4o instead of human annotators. Furthermore, we propose a new GUI instruction grounding benchmark UI-I2E-Bench, which is designed to address the limitations of existing benchmarks by incorporating diverse annotation aspects. Our model, trained on the synthesized data, achieves superior performance in GUI instruction grounding, demonstrating the advancements of proposed data synthesis pipeline. The proposed benchmark, accompanied by extensive analyses, provides practical insights for future research in GUI grounding. We will release corresponding artifacts at https://colmon46.github.io/i2e-bench-leaderboard/ .

SEAGET: Seasonal and Active hours guided Graph Enhanced Transformer for the next POI recommendation

One of the most important challenges for improving personalized services in industries like tourism is predicting users' near-future movements based on prior behavior and current circumstances. Next POI (Point of Interest) recommendation is essential for helping users and service providers by providing personalized recommendations. The intricacy of this work, however, stems from the requirement to take into consideration several variables at once, such as user preferences, time contexts, and geographic locations. POI selection is also greatly influenced by elements like a POI's operational status during desired visit times, desirability for visiting during particular seasons, and its dynamic popularity over time. POI popularity is mostly determined by check-in frequency in recent studies, ignoring visitor volumes, operational constraints, and temporal dynamics. These restrictions result in recommendations that are less than ideal and do not take into account actual circumstances. We propose the Seasonal and Active hours-guided Graph-Enhanced Transformer (SEAGET) model as a solution to these problems. By integrating variations in the seasons, operational status, and temporal dynamics into a graph-enhanced transformer framework, SEAGET capitalizes on redefined POI popularity. This invention gives more accurate and context-aware next POI predictions, with potential applications for optimizing tourist experiences and enhancing location-based services in the tourism industry.

Enhancing Worldwide Image Geolocation by Ensembling Satellite-Based Ground-Level Attribute Predictors

Geolocating images of a ground-level scene entails estimating the location on Earth where the picture was taken, in absence of GPS or other location metadata. Typically, methods are evaluated by measuring the Great Circle Distance (GCD) between a predicted location and ground truth. However, this measurement is limited because it only evaluates a single point, not estimates of regions or score heatmaps. This is especially important in applications to rural, wilderness and under-sampled areas, where finding the exact location may not be possible, and when used in aggregate systems that progressively narrow down locations. In this paper, we introduce a novel metric, Recall vs Area (RvA), which measures the accuracy of estimated distributions of locations. RvA treats image geolocation results similarly to document retrieval, measuring recall as a function of area: For a ranked list of (possibly non-contiguous) predicted regions, we measure the accumulated area required for the region to contain the ground truth coordinate. This produces a curve similar to a precision-recall curve, where "precision" is replaced by square kilometers area, allowing evaluation of performance for different downstream search area budgets. Following directly from this view of the problem, we then examine a simple ensembling approach to global-scale image geolocation, which incorporates information from multiple sources to help address domain shift, and can readily incorporate multiple models, attribute predictors, and data sources. We study its effectiveness by combining the geolocation models GeoEstimation and the current SOTA GeoCLIP, with attribute predictors based on ORNL LandScan and ESA-CCI Land Cover. We find significant improvements in image geolocation for areas that are under-represented in the training set, particularly non-urban areas, on both Im2GPS3k and Street View images.

Geolocation with Real Human Gameplay Data: A Large-Scale Dataset and Human-Like Reasoning Framework

Geolocation, the task of identifying an image's location, requires complex reasoning and is crucial for navigation, monitoring, and cultural preservation. However, current methods often produce coarse, imprecise, and non-interpretable localization. A major challenge lies in the quality and scale of existing geolocation datasets. These datasets are typically small-scale and automatically constructed, leading to noisy data and inconsistent task difficulty, with images that either reveal answers too easily or lack sufficient clues for reliable inference. To address these challenges, we introduce a comprehensive geolocation framework with three key components: GeoComp, a large-scale dataset; GeoCoT, a novel reasoning method; and GeoEval, an evaluation metric, collectively designed to address critical challenges and drive advancements in geolocation research. At the core of this framework is GeoComp (Geolocation Competition Dataset), a large-scale dataset collected from a geolocation game platform involving 740K users over two years. It comprises 25 million entries of metadata and 3 million geo-tagged locations spanning much of the globe, with each location annotated thousands to tens of thousands of times by human users. The dataset offers diverse difficulty levels for detailed analysis and highlights key gaps in current models. Building on this dataset, we propose Geographical Chain-of-Thought (GeoCoT), a novel multi-step reasoning framework designed to enhance the reasoning capabilities of Large Vision Models (LVMs) in geolocation tasks. GeoCoT improves performance by integrating contextual and spatial cues through a multi-step process that mimics human geolocation reasoning. Finally, using the GeoEval metric, we demonstrate that GeoCoT significantly boosts geolocation accuracy by up to 25% while enhancing interpretability.

Sampling Is All You Need on Modeling Long-Term User Behaviors for CTR Prediction

Rich user behavior data has been proven to be of great value for Click-Through Rate (CTR) prediction applications, especially in industrial recommender, search, or advertising systems. However, it's non-trivial for real-world systems to make full use of long-term user behaviors due to the strict requirements of online serving time. Most previous works adopt the retrieval-based strategy, where a small number of user behaviors are retrieved first for subsequent attention. However, the retrieval-based methods are sub-optimal and would cause more or less information losses, and it's difficult to balance the effectiveness and efficiency of the retrieval algorithm. In this paper, we propose SDIM (Sampling-based Deep Interest Modeling), a simple yet effective sampling-based end-to-end approach for modeling long-term user behaviors. We sample from multiple hash functions to generate hash signatures of the candidate item and each item in the user behavior sequence, and obtain the user interest by directly gathering behavior items associated with the candidate item with the same hash signature. We show theoretically and experimentally that the proposed method performs on par with standard attention-based models on modeling long-term user behaviors, while being sizable times faster. We also introduce the deployment of SDIM in our system. Specifically, we decouple the behavior sequence hashing, which is the most time-consuming part, from the CTR model by designing a separate module named BSE (behavior Sequence Encoding). BSE is latency-free for the CTR server, enabling us to model extremely long user behaviors. Both offline and online experiments are conducted to demonstrate the effectiveness of SDIM. SDIM now has been deployed online in the search system of Meituan APP.