Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeSampleNet: Differentiable Point Cloud Sampling
There is a growing number of tasks that work directly on point clouds. As the size of the point cloud grows, so do the computational demands of these tasks. A possible solution is to sample the point cloud first. Classic sampling approaches, such as farthest point sampling (FPS), do not consider the downstream task. A recent work showed that learning a task-specific sampling can improve results significantly. However, the proposed technique did not deal with the non-differentiability of the sampling operation and offered a workaround instead. We introduce a novel differentiable relaxation for point cloud sampling that approximates sampled points as a mixture of points in the primary input cloud. Our approximation scheme leads to consistently good results on classification and geometry reconstruction applications. We also show that the proposed sampling method can be used as a front to a point cloud registration network. This is a challenging task since sampling must be consistent across two different point clouds for a shared downstream task. In all cases, our approach outperforms existing non-learned and learned sampling alternatives. Our code is publicly available at https://github.com/itailang/SampleNet.
Attention-based Point Cloud Edge Sampling
Point cloud sampling is a less explored research topic for this data representation. The most commonly used sampling methods are still classical random sampling and farthest point sampling. With the development of neural networks, various methods have been proposed to sample point clouds in a task-based learning manner. However, these methods are mostly generative-based, rather than selecting points directly using mathematical statistics. Inspired by the Canny edge detection algorithm for images and with the help of the attention mechanism, this paper proposes a non-generative Attention-based Point cloud Edge Sampling method (APES), which captures salient points in the point cloud outline. Both qualitative and quantitative experimental results show the superior performance of our sampling method on common benchmark tasks.
Gibbsian polar slice sampling
Polar slice sampling (Roberts & Rosenthal, 2002) is a Markov chain approach for approximate sampling of distributions that is difficult, if not impossible, to implement efficiently, but behaves provably well with respect to the dimension. By updating the directional and radial components of chain iterates separately, we obtain a family of samplers that mimic polar slice sampling, and yet can be implemented efficiently. Numerical experiments in a variety of settings indicate that our proposed algorithm outperforms the two most closely related approaches, elliptical slice sampling (Murray et al., 2010) and hit-and-run uniform slice sampling (MacKay, 2003). We prove the well-definedness and convergence of our methods under suitable assumptions on the target distribution.
Sampling Through the Lens of Sequential Decision Making
Sampling is ubiquitous in machine learning methodologies. Due to the growth of large datasets and model complexity, we want to learn and adapt the sampling process while training a representation. Towards achieving this grand goal, a variety of sampling techniques have been proposed. However, most of them either use a fixed sampling scheme or adjust the sampling scheme based on simple heuristics. They cannot choose the best sample for model training in different stages. Inspired by "Think, Fast and Slow" (System 1 and System 2) in cognitive science, we propose a reward-guided sampling strategy called Adaptive Sample with Reward (ASR) to tackle this challenge. To the best of our knowledge, this is the first work utilizing reinforcement learning (RL) to address the sampling problem in representation learning. Our approach optimally adjusts the sampling process to achieve optimal performance. We explore geographical relationships among samples by distance-based sampling to maximize overall cumulative reward. We apply ASR to the long-standing sampling problems in similarity-based loss functions. Empirical results in information retrieval and clustering demonstrate ASR's superb performance across different datasets. We also discuss an engrossing phenomenon which we name as "ASR gravity well" in experiments.
Learning to Sample
Processing large point clouds is a challenging task. Therefore, the data is often sampled to a size that can be processed more easily. The question is how to sample the data? A popular sampling technique is Farthest Point Sampling (FPS). However, FPS is agnostic to a downstream application (classification, retrieval, etc.). The underlying assumption seems to be that minimizing the farthest point distance, as done by FPS, is a good proxy to other objective functions. We show that it is better to learn how to sample. To do that, we propose a deep network to simplify 3D point clouds. The network, termed S-NET, takes a point cloud and produces a smaller point cloud that is optimized for a particular task. The simplified point cloud is not guaranteed to be a subset of the original point cloud. Therefore, we match it to a subset of the original points in a post-processing step. We contrast our approach with FPS by experimenting on two standard data sets and show significantly better results for a variety of applications. Our code is publicly available at: https://github.com/orendv/learning_to_sample
Weighted least-squares approximation with determinantal point processes and generalized volume sampling
We consider the problem of approximating a function from L^2 by an element of a given m-dimensional space V_m, associated with some feature map varphi, using evaluations of the function at random points x_1,dots,x_n. After recalling some results on optimal weighted least-squares using independent and identically distributed points, we consider weighted least-squares using projection determinantal point processes (DPP) or volume sampling. These distributions introduce dependence between the points that promotes diversity in the selected features varphi(x_i). We first provide a generalized version of volume-rescaled sampling yielding quasi-optimality results in expectation with a number of samples n = O(mlog(m)), that means that the expected L^2 error is bounded by a constant times the best approximation error in L^2. Also, further assuming that the function is in some normed vector space H continuously embedded in L^2, we further prove that the approximation is almost surely bounded by the best approximation error measured in the H-norm. This includes the cases of functions from L^infty or reproducing kernel Hilbert spaces. Finally, we present an alternative strategy consisting in using independent repetitions of projection DPP (or volume sampling), yielding similar error bounds as with i.i.d. or volume sampling, but in practice with a much lower number of samples. Numerical experiments illustrate the performance of the different strategies.
Chain of Log-Concave Markov Chains
We introduce a theoretical framework for sampling from unnormalized densities based on a smoothing scheme that uses an isotropic Gaussian kernel with a single fixed noise scale. We prove one can decompose sampling from a density (minimal assumptions made on the density) into a sequence of sampling from log-concave conditional densities via accumulation of noisy measurements with equal noise levels. Our construction is unique in that it keeps track of a history of samples, making it non-Markovian as a whole, but it is lightweight algorithmically as the history only shows up in the form of a running empirical mean of samples. Our sampling algorithm generalizes walk-jump sampling (Saremi & Hyv\"arinen, 2019). The "walk" phase becomes a (non-Markovian) chain of (log-concave) Markov chains. The "jump" from the accumulated measurements is obtained by empirical Bayes. We study our sampling algorithm quantitatively using the 2-Wasserstein metric and compare it with various Langevin MCMC algorithms. We also report a remarkable capacity of our algorithm to "tunnel" between modes of a distribution.
TrajFlow: Multi-modal Motion Prediction via Flow Matching
Efficient and accurate motion prediction is crucial for ensuring safety and informed decision-making in autonomous driving, particularly under dynamic real-world conditions that necessitate multi-modal forecasts. We introduce TrajFlow, a novel flow matching-based motion prediction framework that addresses the scalability and efficiency challenges of existing generative trajectory prediction methods. Unlike conventional generative approaches that employ i.i.d. sampling and require multiple inference passes to capture diverse outcomes, TrajFlow predicts multiple plausible future trajectories in a single pass, significantly reducing computational overhead while maintaining coherence across predictions. Moreover, we propose a ranking loss based on the Plackett-Luce distribution to improve uncertainty estimation of predicted trajectories. Additionally, we design a self-conditioning training technique that reuses the model's own predictions to construct noisy inputs during a second forward pass, thereby improving generalization and accelerating inference. Extensive experiments on the large-scale Waymo Open Motion Dataset (WOMD) demonstrate that TrajFlow achieves state-of-the-art performance across various key metrics, underscoring its effectiveness for safety-critical autonomous driving applications. The code and other details are available on the project website https://traj-flow.github.io/.
Massive-STEPS: Massive Semantic Trajectories for Understanding POI Check-ins -- Dataset and Benchmarks
Understanding human mobility through Point-of-Interest (POI) recommendation is increasingly important for applications such as urban planning, personalized services, and generative agent simulation. However, progress in this field is hindered by two key challenges: the over-reliance on older datasets from 2012-2013 and the lack of reproducible, city-level check-in datasets that reflect diverse global regions. To address these gaps, we present Massive-STEPS (Massive Semantic Trajectories for Understanding POI Check-ins), a large-scale, publicly available benchmark dataset built upon the Semantic Trails dataset and enriched with semantic POI metadata. Massive-STEPS spans 12 geographically and culturally diverse cities and features more recent (2017-2018) and longer-duration (24 months) check-in data than prior datasets. We benchmarked a wide range of POI recommendation models on Massive-STEPS using both supervised and zero-shot approaches, and evaluated their performance across multiple urban contexts. By releasing Massive-STEPS, we aim to facilitate reproducible and equitable research in human mobility and POI recommendation. The dataset and benchmarking code are available at: https://github.com/cruiseresearchgroup/Massive-STEPS
Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous Driving Research
Simulation is an essential tool to develop and benchmark autonomous vehicle planning software in a safe and cost-effective manner. However, realistic simulation requires accurate modeling of nuanced and complex multi-agent interactive behaviors. To address these challenges, we introduce Waymax, a new data-driven simulator for autonomous driving in multi-agent scenes, designed for large-scale simulation and testing. Waymax uses publicly-released, real-world driving data (e.g., the Waymo Open Motion Dataset) to initialize or play back a diverse set of multi-agent simulated scenarios. It runs entirely on hardware accelerators such as TPUs/GPUs and supports in-graph simulation for training, making it suitable for modern large-scale, distributed machine learning workflows. To support online training and evaluation, Waymax includes several learned and hard-coded behavior models that allow for realistic interaction within simulation. To supplement Waymax, we benchmark a suite of popular imitation and reinforcement learning algorithms with ablation studies on different design decisions, where we highlight the effectiveness of routes as guidance for planning agents and the ability of RL to overfit against simulated agents.
Hidden Biases of End-to-End Driving Models
End-to-end driving systems have recently made rapid progress, in particular on CARLA. Independent of their major contribution, they introduce changes to minor system components. Consequently, the source of improvements is unclear. We identify two biases that recur in nearly all state-of-the-art methods and are critical for the observed progress on CARLA: (1) lateral recovery via a strong inductive bias towards target point following, and (2) longitudinal averaging of multimodal waypoint predictions for slowing down. We investigate the drawbacks of these biases and identify principled alternatives. By incorporating our insights, we develop TF++, a simple end-to-end method that ranks first on the Longest6 and LAV benchmarks, gaining 14 driving score over the best prior work on Longest6.
MotionDiffuser: Controllable Multi-Agent Motion Prediction using Diffusion
We present MotionDiffuser, a diffusion based representation for the joint distribution of future trajectories over multiple agents. Such representation has several key advantages: first, our model learns a highly multimodal distribution that captures diverse future outcomes. Second, the simple predictor design requires only a single L2 loss training objective, and does not depend on trajectory anchors. Third, our model is capable of learning the joint distribution for the motion of multiple agents in a permutation-invariant manner. Furthermore, we utilize a compressed trajectory representation via PCA, which improves model performance and allows for efficient computation of the exact sample log probability. Subsequently, we propose a general constrained sampling framework that enables controlled trajectory sampling based on differentiable cost functions. This strategy enables a host of applications such as enforcing rules and physical priors, or creating tailored simulation scenarios. MotionDiffuser can be combined with existing backbone architectures to achieve top motion forecasting results. We obtain state-of-the-art results for multi-agent motion prediction on the Waymo Open Motion Dataset.
Center-based 3D Object Detection and Tracking
Three-dimensional objects are commonly represented as 3D boxes in a point-cloud. This representation mimics the well-studied image-based 2D bounding-box detection but comes with additional challenges. Objects in a 3D world do not follow any particular orientation, and box-based detectors have difficulties enumerating all orientations or fitting an axis-aligned bounding box to rotated objects. In this paper, we instead propose to represent, detect, and track 3D objects as points. Our framework, CenterPoint, first detects centers of objects using a keypoint detector and regresses to other attributes, including 3D size, 3D orientation, and velocity. In a second stage, it refines these estimates using additional point features on the object. In CenterPoint, 3D object tracking simplifies to greedy closest-point matching. The resulting detection and tracking algorithm is simple, efficient, and effective. CenterPoint achieved state-of-the-art performance on the nuScenes benchmark for both 3D detection and tracking, with 65.5 NDS and 63.8 AMOTA for a single model. On the Waymo Open Dataset, CenterPoint outperforms all previous single model method by a large margin and ranks first among all Lidar-only submissions. The code and pretrained models are available at https://github.com/tianweiy/CenterPoint.
WonderJourney: Going from Anywhere to Everywhere
We introduce WonderJourney, a modularized framework for perpetual 3D scene generation. Unlike prior work on view generation that focuses on a single type of scenes, we start at any user-provided location (by a text description or an image) and generate a journey through a long sequence of diverse yet coherently connected 3D scenes. We leverage an LLM to generate textual descriptions of the scenes in this journey, a text-driven point cloud generation pipeline to make a compelling and coherent sequence of 3D scenes, and a large VLM to verify the generated scenes. We show compelling, diverse visual results across various scene types and styles, forming imaginary "wonderjourneys". Project website: https://kovenyu.com/WonderJourney/
Incentivizing Exploration with Linear Contexts and Combinatorial Actions
We advance the study of incentivized bandit exploration, in which arm choices are viewed as recommendations and are required to be Bayesian incentive compatible. Recent work has shown under certain independence assumptions that after collecting enough initial samples, the popular Thompson sampling algorithm becomes incentive compatible. We give an analog of this result for linear bandits, where the independence of the prior is replaced by a natural convexity condition. This opens up the possibility of efficient and regret-optimal incentivized exploration in high-dimensional action spaces. In the semibandit model, we also improve the sample complexity for the pre-Thompson sampling phase of initial data collection.
Minimax estimation of discontinuous optimal transport maps: The semi-discrete case
We consider the problem of estimating the optimal transport map between two probability distributions, P and Q in mathbb R^d, on the basis of i.i.d. samples. All existing statistical analyses of this problem require the assumption that the transport map is Lipschitz, a strong requirement that, in particular, excludes any examples where the transport map is discontinuous. As a first step towards developing estimation procedures for discontinuous maps, we consider the important special case where the data distribution Q is a discrete measure supported on a finite number of points in mathbb R^d. We study a computationally efficient estimator initially proposed by Pooladian and Niles-Weed (2021), based on entropic optimal transport, and show in the semi-discrete setting that it converges at the minimax-optimal rate n^{-1/2}, independent of dimension. Other standard map estimation techniques both lack finite-sample guarantees in this setting and provably suffer from the curse of dimensionality. We confirm these results in numerical experiments, and provide experiments for other settings, not covered by our theory, which indicate that the entropic estimator is a promising methodology for other discontinuous transport map estimation problems.
On Sampling with Approximate Transport Maps
Transport maps can ease the sampling of distributions with non-trivial geometries by transforming them into distributions that are easier to handle. The potential of this approach has risen with the development of Normalizing Flows (NF) which are maps parameterized with deep neural networks trained to push a reference distribution towards a target. NF-enhanced samplers recently proposed blend (Markov chain) Monte Carlo methods with either (i) proposal draws from the flow or (ii) a flow-based reparametrization. In both cases, the quality of the learned transport conditions performance. The present work clarifies for the first time the relative strengths and weaknesses of these two approaches. Our study concludes that multimodal targets can be reliably handled with flow-based proposals up to moderately high dimensions. In contrast, methods relying on reparametrization struggle with multimodality but are more robust otherwise in high-dimensional settings and under poor training. To further illustrate the influence of target-proposal adequacy, we also derive a new quantitative bound for the mixing time of the Independent Metropolis-Hastings sampler.
Contrastive Energy Prediction for Exact Energy-Guided Diffusion Sampling in Offline Reinforcement Learning
Guided sampling is a vital approach for applying diffusion models in real-world tasks that embeds human-defined guidance during the sampling procedure. This paper considers a general setting where the guidance is defined by an (unnormalized) energy function. The main challenge for this setting is that the intermediate guidance during the diffusion sampling procedure, which is jointly defined by the sampling distribution and the energy function, is unknown and is hard to estimate. To address this challenge, we propose an exact formulation of the intermediate guidance as well as a novel training objective named contrastive energy prediction (CEP) to learn the exact guidance. Our method is guaranteed to converge to the exact guidance under unlimited model capacity and data samples, while previous methods can not. We demonstrate the effectiveness of our method by applying it to offline reinforcement learning (RL). Extensive experiments on D4RL benchmarks demonstrate that our method outperforms existing state-of-the-art algorithms. We also provide some examples of applying CEP for image synthesis to demonstrate the scalability of CEP on high-dimensional data.
Sense Less, Generate More: Pre-training LiDAR Perception with Masked Autoencoders for Ultra-Efficient 3D Sensing
In this work, we propose a disruptively frugal LiDAR perception dataflow that generates rather than senses parts of the environment that are either predictable based on the extensive training of the environment or have limited consequence to the overall prediction accuracy. Therefore, the proposed methodology trades off sensing energy with training data for low-power robotics and autonomous navigation to operate frugally with sensors, extending their lifetime on a single battery charge. Our proposed generative pre-training strategy for this purpose, called as radially masked autoencoding (R-MAE), can also be readily implemented in a typical LiDAR system by selectively activating and controlling the laser power for randomly generated angular regions during on-field operations. Our extensive evaluations show that pre-training with R-MAE enables focusing on the radial segments of the data, thereby capturing spatial relationships and distances between objects more effectively than conventional procedures. Therefore, the proposed methodology not only reduces sensing energy but also improves prediction accuracy. For example, our extensive evaluations on Waymo, nuScenes, and KITTI datasets show that the approach achieves over a 5% average precision improvement in detection tasks across datasets and over a 4% accuracy improvement in transferring domains from Waymo and nuScenes to KITTI. In 3D object detection, it enhances small object detection by up to 4.37% in AP at moderate difficulty levels in the KITTI dataset. Even with 90% radial masking, it surpasses baseline models by up to 5.59% in mAP/mAPH across all object classes in the Waymo dataset. Additionally, our method achieves up to 3.17% and 2.31% improvements in mAP and NDS, respectively, on the nuScenes dataset, demonstrating its effectiveness with both single and fused LiDAR-camera modalities. https://github.com/sinatayebati/Radial_MAE.
MSF: Motion-guided Sequential Fusion for Efficient 3D Object Detection from Point Cloud Sequences
Point cloud sequences are commonly used to accurately detect 3D objects in applications such as autonomous driving. Current top-performing multi-frame detectors mostly follow a Detect-and-Fuse framework, which extracts features from each frame of the sequence and fuses them to detect the objects in the current frame. However, this inevitably leads to redundant computation since adjacent frames are highly correlated. In this paper, we propose an efficient Motion-guided Sequential Fusion (MSF) method, which exploits the continuity of object motion to mine useful sequential contexts for object detection in the current frame. We first generate 3D proposals on the current frame and propagate them to preceding frames based on the estimated velocities. The points-of-interest are then pooled from the sequence and encoded as proposal features. A novel Bidirectional Feature Aggregation (BiFA) module is further proposed to facilitate the interactions of proposal features across frames. Besides, we optimize the point cloud pooling by a voxel-based sampling technique so that millions of points can be processed in several milliseconds. The proposed MSF method achieves not only better efficiency than other multi-frame detectors but also leading accuracy, with 83.12% and 78.30% mAP on the LEVEL1 and LEVEL2 test sets of Waymo Open Dataset, respectively. Codes can be found at https://github.com/skyhehe123/MSF.
Enhancing Worldwide Image Geolocation by Ensembling Satellite-Based Ground-Level Attribute Predictors
Geolocating images of a ground-level scene entails estimating the location on Earth where the picture was taken, in absence of GPS or other location metadata. Typically, methods are evaluated by measuring the Great Circle Distance (GCD) between a predicted location and ground truth. However, this measurement is limited because it only evaluates a single point, not estimates of regions or score heatmaps. This is especially important in applications to rural, wilderness and under-sampled areas, where finding the exact location may not be possible, and when used in aggregate systems that progressively narrow down locations. In this paper, we introduce a novel metric, Recall vs Area (RvA), which measures the accuracy of estimated distributions of locations. RvA treats image geolocation results similarly to document retrieval, measuring recall as a function of area: For a ranked list of (possibly non-contiguous) predicted regions, we measure the accumulated area required for the region to contain the ground truth coordinate. This produces a curve similar to a precision-recall curve, where "precision" is replaced by square kilometers area, allowing evaluation of performance for different downstream search area budgets. Following directly from this view of the problem, we then examine a simple ensembling approach to global-scale image geolocation, which incorporates information from multiple sources to help address domain shift, and can readily incorporate multiple models, attribute predictors, and data sources. We study its effectiveness by combining the geolocation models GeoEstimation and the current SOTA GeoCLIP, with attribute predictors based on ORNL LandScan and ESA-CCI Land Cover. We find significant improvements in image geolocation for areas that are under-represented in the training set, particularly non-urban areas, on both Im2GPS3k and Street View images.
LiDAR-CS Dataset: LiDAR Point Cloud Dataset with Cross-Sensors for 3D Object Detection
Over the past few years, there has been remarkable progress in research on 3D point clouds and their use in autonomous driving scenarios has become widespread. However, deep learning methods heavily rely on annotated data and often face domain generalization issues. Unlike 2D images whose domains usually pertain to the texture information present in them, the features derived from a 3D point cloud are affected by the distribution of the points. The lack of a 3D domain adaptation benchmark leads to the common practice of training a model on one benchmark (e.g. Waymo) and then assessing it on another dataset (e.g. KITTI). This setting results in two distinct domain gaps: scenarios and sensors, making it difficult to analyze and evaluate the method accurately. To tackle this problem, this paper presents LiDAR Dataset with Cross Sensors (LiDAR-CS Dataset), which contains large-scale annotated LiDAR point cloud under six groups of different sensors but with the same corresponding scenarios, captured from hybrid realistic LiDAR simulator. To our knowledge, LiDAR-CS Dataset is the first dataset that addresses the sensor-related gaps in the domain of 3D object detection in real traffic. Furthermore, we evaluate and analyze the performance using various baseline detectors and demonstrated its potential applications. Project page: https://opendriving.github.io/lidar-cs.
Truncating Trajectories in Monte Carlo Reinforcement Learning
In Reinforcement Learning (RL), an agent acts in an unknown environment to maximize the expected cumulative discounted sum of an external reward signal, i.e., the expected return. In practice, in many tasks of interest, such as policy optimization, the agent usually spends its interaction budget by collecting episodes of fixed length within a simulator (i.e., Monte Carlo simulation). However, given the discounted nature of the RL objective, this data collection strategy might not be the best option. Indeed, the rewards taken in early simulation steps weigh exponentially more than future rewards. Taking a cue from this intuition, in this paper, we design an a-priori budget allocation strategy that leads to the collection of trajectories of different lengths, i.e., truncated. The proposed approach provably minimizes the width of the confidence intervals around the empirical estimates of the expected return of a policy. After discussing the theoretical properties of our method, we make use of our trajectory truncation mechanism to extend Policy Optimization via Importance Sampling (POIS, Metelli et al., 2018) algorithm. Finally, we conduct a numerical comparison between our algorithm and POIS: the results are consistent with our theory and show that an appropriate truncation of the trajectories can succeed in improving performance.
Singapore Soundscape Site Selection Survey (S5): Identification of Characteristic Soundscapes of Singapore via Weighted k-means Clustering
The ecological validity of soundscape studies usually rests on a choice of soundscapes that are representative of the perceptual space under investigation. For example, a soundscape pleasantness study might investigate locations with soundscapes ranging from "pleasant" to "annoying". The choice of soundscapes is typically researcher-led, but a participant-led process can reduce selection bias and improve result reliability. Hence, we propose a robust participant-led method to pinpoint characteristic soundscapes possessing arbitrary perceptual attributes. We validate our method by identifying Singaporean soundscapes spanning the perceptual quadrants generated from the "Pleasantness" and "Eventfulness" axes of the ISO 12913-2 circumplex model of soundscape perception, as perceived by local experts. From memory and experience, 67 participants first selected locations corresponding to each perceptual quadrant in each major planning region of Singapore. We then performed weighted k-means clustering on the selected locations, with weights for each location derived from previous frequencies and durations spent in each location by each participant. Weights hence acted as proxies for participant confidence. In total, 62 locations were thereby identified as suitable locations with characteristic soundscapes for further research utilizing the ISO 12913-2 perceptual quadrants. Audio-visual recordings and acoustic characterization of the soundscapes will be made in a future study.
DPM-Solver++: Fast Solver for Guided Sampling of Diffusion Probabilistic Models
Diffusion probabilistic models (DPMs) have achieved impressive success in high-resolution image synthesis, especially in recent large-scale text-to-image generation applications. An essential technique for improving the sample quality of DPMs is guided sampling, which usually needs a large guidance scale to obtain the best sample quality. The commonly-used fast sampler for guided sampling is DDIM, a first-order diffusion ODE solver that generally needs 100 to 250 steps for high-quality samples. Although recent works propose dedicated high-order solvers and achieve a further speedup for sampling without guidance, their effectiveness for guided sampling has not been well-tested before. In this work, we demonstrate that previous high-order fast samplers suffer from instability issues, and they even become slower than DDIM when the guidance scale grows large. To further speed up guided sampling, we propose DPM-Solver++, a high-order solver for the guided sampling of DPMs. DPM-Solver++ solves the diffusion ODE with the data prediction model and adopts thresholding methods to keep the solution matches training data distribution. We further propose a multistep variant of DPM-Solver++ to address the instability issue by reducing the effective step size. Experiments show that DPM-Solver++ can generate high-quality samples within only 15 to 20 steps for guided sampling by pixel-space and latent-space DPMs.
Consistent3D: Towards Consistent High-Fidelity Text-to-3D Generation with Deterministic Sampling Prior
Score distillation sampling (SDS) and its variants have greatly boosted the development of text-to-3D generation, but are vulnerable to geometry collapse and poor textures yet. To solve this issue, we first deeply analyze the SDS and find that its distillation sampling process indeed corresponds to the trajectory sampling of a stochastic differential equation (SDE): SDS samples along an SDE trajectory to yield a less noisy sample which then serves as a guidance to optimize a 3D model. However, the randomness in SDE sampling often leads to a diverse and unpredictable sample which is not always less noisy, and thus is not a consistently correct guidance, explaining the vulnerability of SDS. Since for any SDE, there always exists an ordinary differential equation (ODE) whose trajectory sampling can deterministically and consistently converge to the desired target point as the SDE, we propose a novel and effective "Consistent3D" method that explores the ODE deterministic sampling prior for text-to-3D generation. Specifically, at each training iteration, given a rendered image by a 3D model, we first estimate its desired 3D score function by a pre-trained 2D diffusion model, and build an ODE for trajectory sampling. Next, we design a consistency distillation sampling loss which samples along the ODE trajectory to generate two adjacent samples and uses the less noisy sample to guide another more noisy one for distilling the deterministic prior into the 3D model. Experimental results show the efficacy of our Consistent3D in generating high-fidelity and diverse 3D objects and large-scale scenes, as shown in Fig. 1. The codes are available at https://github.com/sail-sg/Consistent3D.
Faster logconcave sampling from a cold start in high dimension
We present a faster algorithm to generate a warm start for sampling an arbitrary logconcave density specified by an evaluation oracle, leading to the first sub-cubic sampling algorithms for inputs in (near-)isotropic position. A long line of prior work incurred a warm-start penalty of at least linear in the dimension, hitting a cubic barrier, even for the special case of uniform sampling from convex bodies. Our improvement relies on two key ingredients of independent interest. (1) We show how to sample given a warm start in weaker notions of distance, in particular q-R\'enyi divergence for q=mathcal{O}(1), whereas previous analyses required stringent infty-R\'enyi divergence (with the exception of Hit-and-Run, whose known mixing time is higher). This marks the first improvement in the required warmness since Lov\'asz and Simonovits (1991). (2) We refine and generalize the log-Sobolev inequality of Lee and Vempala (2018), originally established for isotropic logconcave distributions in terms of the diameter of the support, to logconcave distributions in terms of a geometric average of the support diameter and the largest eigenvalue of the covariance matrix.
Thompson Sampling for High-Dimensional Sparse Linear Contextual Bandits
We consider the stochastic linear contextual bandit problem with high-dimensional features. We analyze the Thompson sampling algorithm using special classes of sparsity-inducing priors (e.g., spike-and-slab) to model the unknown parameter and provide a nearly optimal upper bound on the expected cumulative regret. To the best of our knowledge, this is the first work that provides theoretical guarantees of Thompson sampling in high-dimensional and sparse contextual bandits. For faster computation, we use variational inference instead of Markov Chain Monte Carlo (MCMC) to approximate the posterior distribution. Extensive simulations demonstrate the improved performance of our proposed algorithm over existing ones.
Efficient Failure Pattern Identification of Predictive Algorithms
Given a (machine learning) classifier and a collection of unlabeled data, how can we efficiently identify misclassification patterns presented in this dataset? To address this problem, we propose a human-machine collaborative framework that consists of a team of human annotators and a sequential recommendation algorithm. The recommendation algorithm is conceptualized as a stochastic sampler that, in each round, queries the annotators a subset of samples for their true labels and obtains the feedback information on whether the samples are misclassified. The sampling mechanism needs to balance between discovering new patterns of misclassification (exploration) and confirming the potential patterns of classification (exploitation). We construct a determinantal point process, whose intensity balances the exploration-exploitation trade-off through the weighted update of the posterior at each round to form the generator of the stochastic sampler. The numerical results empirically demonstrate the competitive performance of our framework on multiple datasets at various signal-to-noise ratios.
Provable and Practical: Efficient Exploration in Reinforcement Learning via Langevin Monte Carlo
We present a scalable and effective exploration strategy based on Thompson sampling for reinforcement learning (RL). One of the key shortcomings of existing Thompson sampling algorithms is the need to perform a Gaussian approximation of the posterior distribution, which is not a good surrogate in most practical settings. We instead directly sample the Q function from its posterior distribution, by using Langevin Monte Carlo, an efficient type of Markov Chain Monte Carlo (MCMC) method. Our method only needs to perform noisy gradient descent updates to learn the exact posterior distribution of the Q function, which makes our approach easy to deploy in deep RL. We provide a rigorous theoretical analysis for the proposed method and demonstrate that, in the linear Markov decision process (linear MDP) setting, it has a regret bound of O(d^{3/2}H^{3/2}T), where d is the dimension of the feature mapping, H is the planning horizon, and T is the total number of steps. We apply this approach to deep RL, by using Adam optimizer to perform gradient updates. Our approach achieves better or similar results compared with state-of-the-art deep RL algorithms on several challenging exploration tasks from the Atari57 suite.
On-Policy Policy Gradient Reinforcement Learning Without On-Policy Sampling
On-policy reinforcement learning (RL) algorithms perform policy updates using i.i.d. trajectories collected by the current policy. However, after observing only a finite number of trajectories, on-policy sampling may produce data that fails to match the expected on-policy data distribution. This sampling error leads to noisy updates and data inefficient on-policy learning. Recent work in the policy evaluation setting has shown that non-i.i.d., off-policy sampling can produce data with lower sampling error than on-policy sampling can produce. Motivated by this observation, we introduce an adaptive, off-policy sampling method to improve the data efficiency of on-policy policy gradient algorithms. Our method, Proximal Robust On-Policy Sampling (PROPS), reduces sampling error by collecting data with a behavior policy that increases the probability of sampling actions that are under-sampled with respect to the current policy. Rather than discarding data from old policies -- as is commonly done in on-policy algorithms -- PROPS uses data collection to adjust the distribution of previously collected data to be approximately on-policy. We empirically evaluate PROPS on both continuous-action MuJoCo benchmark tasks as well as discrete-action tasks and demonstrate that (1) PROPS decreases sampling error throughout training and (2) improves the data efficiency of on-policy policy gradient algorithms. Our work improves the RL community's understanding of a nuance in the on-policy vs off-policy dichotomy: on-policy learning requires on-policy data, not on-policy sampling.
Self-Guided Generation of Minority Samples Using Diffusion Models
We present a novel approach for generating minority samples that live on low-density regions of a data manifold. Our framework is built upon diffusion models, leveraging the principle of guided sampling that incorporates an arbitrary energy-based guidance during inference time. The key defining feature of our sampler lies in its self-contained nature, \ie, implementable solely with a pretrained model. This distinguishes our sampler from existing techniques that require expensive additional components (like external classifiers) for minority generation. Specifically, we first estimate the likelihood of features within an intermediate latent sample by evaluating a reconstruction loss w.r.t. its posterior mean. The generation then proceeds with the minimization of the estimated likelihood, thereby encouraging the emergence of minority features in the latent samples of subsequent timesteps. To further improve the performance of our sampler, we provide several time-scheduling techniques that properly manage the influence of guidance over inference steps. Experiments on benchmark real datasets demonstrate that our approach can greatly improve the capability of creating realistic low-likelihood minority instances over the existing techniques without the reliance on costly additional elements. Code is available at https://github.com/soobin-um/sg-minority.
DualFast: Dual-Speedup Framework for Fast Sampling of Diffusion Models
Diffusion probabilistic models (DPMs) have achieved impressive success in visual generation. While, they suffer from slow inference speed due to iterative sampling. Employing fewer sampling steps is an intuitive solution, but this will also introduces discretization error. Existing fast samplers make inspiring efforts to reduce discretization error through the adoption of high-order solvers, potentially reaching a plateau in terms of optimization. This raises the question: can the sampling process be accelerated further? In this paper, we re-examine the nature of sampling errors, discerning that they comprise two distinct elements: the widely recognized discretization error and the less explored approximation error. Our research elucidates the dynamics between these errors and the step by implementing a dual-error disentanglement strategy. Building on these foundations, we introduce an unified and training-free acceleration framework, DualFast, designed to enhance the speed of DPM sampling by concurrently accounting for both error types, thereby minimizing the total sampling error. DualFast is seamlessly compatible with existing samplers and significantly boost their sampling quality and speed, particularly in extremely few sampling steps. We substantiate the effectiveness of our framework through comprehensive experiments, spanning both unconditional and conditional sampling domains, across both pixel-space and latent-space DPMs.
The Unreasonable Effectiveness of Gaussian Score Approximation for Diffusion Models and its Applications
By learning the gradient of smoothed data distributions, diffusion models can iteratively generate samples from complex distributions. The learned score function enables their generalization capabilities, but how the learned score relates to the score of the underlying data manifold remains largely unclear. Here, we aim to elucidate this relationship by comparing learned neural scores to the scores of two kinds of analytically tractable distributions: Gaussians and Gaussian mixtures. The simplicity of the Gaussian model makes it theoretically attractive, and we show that it admits a closed-form solution and predicts many qualitative aspects of sample generation dynamics. We claim that the learned neural score is dominated by its linear (Gaussian) approximation for moderate to high noise scales, and supply both theoretical and empirical arguments to support this claim. Moreover, the Gaussian approximation empirically works for a larger range of noise scales than naive theory suggests it should, and is preferentially learned early in training. At smaller noise scales, we observe that learned scores are better described by a coarse-grained (Gaussian mixture) approximation of training data than by the score of the training distribution, a finding consistent with generalization. Our findings enable us to precisely predict the initial phase of trained models' sampling trajectories through their Gaussian approximations. We show that this allows the skipping of the first 15-30% of sampling steps while maintaining high sample quality (with a near state-of-the-art FID score of 1.93 on CIFAR-10 unconditional generation). This forms the foundation of a novel hybrid sampling method, termed analytical teleportation, which can seamlessly integrate with and accelerate existing samplers, including DPM-Solver-v3 and UniPC. Our findings suggest ways to improve the design and training of diffusion models.
GPS as a Control Signal for Image Generation
We show that the GPS tags contained in photo metadata provide a useful control signal for image generation. We train GPS-to-image models and use them for tasks that require a fine-grained understanding of how images vary within a city. In particular, we train a diffusion model to generate images conditioned on both GPS and text. The learned model generates images that capture the distinctive appearance of different neighborhoods, parks, and landmarks. We also extract 3D models from 2D GPS-to-image models through score distillation sampling, using GPS conditioning to constrain the appearance of the reconstruction from each viewpoint. Our evaluations suggest that our GPS-conditioned models successfully learn to generate images that vary based on location, and that GPS conditioning improves estimated 3D structure.
CartoMark: a benchmark dataset for map pattern recognition and 1 map content retrieval with machine intelligence
Maps are fundamental medium to visualize and represent the real word in a simple and 16 philosophical way. The emergence of the 3rd wave information has made a proportion of maps are available to be generated ubiquitously, which would significantly enrich the dimensions and perspectives to understand the characteristics of the real world. However, a majority of map dataset have never been discovered, acquired and effectively used, and the map data used in many applications might not be completely fitted for the authentic demands of these applications. This challenge is emerged due to the lack of numerous well-labelled benchmark datasets for implementing the deep learning approaches into identifying complicated map content. Thus, we develop a large-scale benchmark dataset that includes well-labelled dataset for map text annotation recognition, map scene classification, map super-resolution reconstruction, and map style transferring. Furthermore, these well-labelled datasets would facilitate the state-of-the-art machine intelligence technologies to conduct map feature detection, map pattern recognition and map content retrieval. We hope our efforts would be useful for AI-enhanced cartographical applications.
MV-JAR: Masked Voxel Jigsaw and Reconstruction for LiDAR-Based Self-Supervised Pre-Training
This paper introduces the Masked Voxel Jigsaw and Reconstruction (MV-JAR) method for LiDAR-based self-supervised pre-training and a carefully designed data-efficient 3D object detection benchmark on the Waymo dataset. Inspired by the scene-voxel-point hierarchy in downstream 3D object detectors, we design masking and reconstruction strategies accounting for voxel distributions in the scene and local point distributions within the voxel. We employ a Reversed-Furthest-Voxel-Sampling strategy to address the uneven distribution of LiDAR points and propose MV-JAR, which combines two techniques for modeling the aforementioned distributions, resulting in superior performance. Our experiments reveal limitations in previous data-efficient experiments, which uniformly sample fine-tuning splits with varying data proportions from each LiDAR sequence, leading to similar data diversity across splits. To address this, we propose a new benchmark that samples scene sequences for diverse fine-tuning splits, ensuring adequate model convergence and providing a more accurate evaluation of pre-training methods. Experiments on our Waymo benchmark and the KITTI dataset demonstrate that MV-JAR consistently and significantly improves 3D detection performance across various data scales, achieving up to a 6.3% increase in mAPH compared to training from scratch. Codes and the benchmark will be available at https://github.com/SmartBot-PJLab/MV-JAR .
Dynamic Slate Recommendation with Gated Recurrent Units and Thompson Sampling
We consider the problem of recommending relevant content to users of an internet platform in the form of lists of items, called slates. We introduce a variational Bayesian Recurrent Neural Net recommender system that acts on time series of interactions between the internet platform and the user, and which scales to real world industrial situations. The recommender system is tested both online on real users, and on an offline dataset collected from a Norwegian web-based marketplace, FINN.no, that is made public for research. This is one of the first publicly available datasets which includes all the slates that are presented to users as well as which items (if any) in the slates were clicked on. Such a data set allows us to move beyond the common assumption that implicitly assumes that users are considering all possible items at each interaction. Instead we build our likelihood using the items that are actually in the slate, and evaluate the strengths and weaknesses of both approaches theoretically and in experiments. We also introduce a hierarchical prior for the item parameters based on group memberships. Both item parameters and user preferences are learned probabilistically. Furthermore, we combine our model with bandit strategies to ensure learning, and introduce `in-slate Thompson Sampling' which makes use of the slates to maximise explorative opportunities. We show experimentally that explorative recommender strategies perform on par or above their greedy counterparts. Even without making use of exploration to learn more effectively, click rates increase simply because of improved diversity in the recommended slates.
DPM-OT: A New Diffusion Probabilistic Model Based on Optimal Transport
Sampling from diffusion probabilistic models (DPMs) can be viewed as a piecewise distribution transformation, which generally requires hundreds or thousands of steps of the inverse diffusion trajectory to get a high-quality image. Recent progress in designing fast samplers for DPMs achieves a trade-off between sampling speed and sample quality by knowledge distillation or adjusting the variance schedule or the denoising equation. However, it can't be optimal in both aspects and often suffer from mode mixture in short steps. To tackle this problem, we innovatively regard inverse diffusion as an optimal transport (OT) problem between latents at different stages and propose the DPM-OT, a unified learning framework for fast DPMs with a direct expressway represented by OT map, which can generate high-quality samples within around 10 function evaluations. By calculating the semi-discrete optimal transport map between the data latents and the white noise, we obtain an expressway from the prior distribution to the data distribution, while significantly alleviating the problem of mode mixture. In addition, we give the error bound of the proposed method, which theoretically guarantees the stability of the algorithm. Extensive experiments validate the effectiveness and advantages of DPM-OT in terms of speed and quality (FID and mode mixture), thus representing an efficient solution for generative modeling. Source codes are available at https://github.com/cognaclee/DPM-OT
StreetCrafter: Street View Synthesis with Controllable Video Diffusion Models
This paper aims to tackle the problem of photorealistic view synthesis from vehicle sensor data. Recent advancements in neural scene representation have achieved notable success in rendering high-quality autonomous driving scenes, but the performance significantly degrades as the viewpoint deviates from the training trajectory. To mitigate this problem, we introduce StreetCrafter, a novel controllable video diffusion model that utilizes LiDAR point cloud renderings as pixel-level conditions, which fully exploits the generative prior for novel view synthesis, while preserving precise camera control. Moreover, the utilization of pixel-level LiDAR conditions allows us to make accurate pixel-level edits to target scenes. In addition, the generative prior of StreetCrafter can be effectively incorporated into dynamic scene representations to achieve real-time rendering. Experiments on Waymo Open Dataset and PandaSet demonstrate that our model enables flexible control over viewpoint changes, enlarging the view synthesis regions for satisfying rendering, which outperforms existing methods.
Enhancing Score-Based Sampling Methods with Ensembles
We introduce ensembles within score-based sampling methods to develop gradient-free approximate sampling techniques that leverage the collective dynamics of particle ensembles to compute approximate reverse diffusion drifts. We introduce the underlying methodology, emphasizing its relationship with generative diffusion models and the previously introduced F\"ollmer sampler. We demonstrate the efficacy of ensemble strategies through various examples, ranging from low- to medium-dimensionality sampling problems, including multi-modal and highly non-Gaussian probability distributions, and provide comparisons to traditional methods like NUTS. Our findings highlight the potential of ensemble strategies for modeling complex probability distributions in situations where gradients are unavailable. Finally, we showcase its application in the context of Bayesian inversion problems within the geophysical sciences.
A Landmark-Aware Visual Navigation Dataset
Map representation learned by expert demonstrations has shown promising research value. However, recent advancements in the visual navigation field face challenges due to the lack of human datasets in the real world for efficient supervised representation learning of the environments. We present a Landmark-Aware Visual Navigation (LAVN) dataset to allow for supervised learning of human-centric exploration policies and map building. We collect RGB observation and human point-click pairs as a human annotator explores virtual and real-world environments with the goal of full coverage exploration of the space. The human annotators also provide distinct landmark examples along each trajectory, which we intuit will simplify the task of map or graph building and localization. These human point-clicks serve as direct supervision for waypoint prediction when learning to explore in environments. Our dataset covers a wide spectrum of scenes, including rooms in indoor environments, as well as walkways outdoors. Dataset is available at DOI: 10.5281/zenodo.10608067.
PTT: Point-Trajectory Transformer for Efficient Temporal 3D Object Detection
Recent temporal LiDAR-based 3D object detectors achieve promising performance based on the two-stage proposal-based approach. They generate 3D box candidates from the first-stage dense detector, followed by different temporal aggregation methods. However, these approaches require per-frame objects or whole point clouds, posing challenges related to memory bank utilization. Moreover, point clouds and trajectory features are combined solely based on concatenation, which may neglect effective interactions between them. In this paper, we propose a point-trajectory transformer with long short-term memory for efficient temporal 3D object detection. To this end, we only utilize point clouds of current-frame objects and their historical trajectories as input to minimize the memory bank storage requirement. Furthermore, we introduce modules to encode trajectory features, focusing on long short-term and future-aware perspectives, and then effectively aggregate them with point cloud features. We conduct extensive experiments on the large-scale Waymo dataset to demonstrate that our approach performs well against state-of-the-art methods. Code and models will be made publicly available at https://github.com/kuanchihhuang/PTT.
GBlobs: Explicit Local Structure via Gaussian Blobs for Improved Cross-Domain LiDAR-based 3D Object Detection
LiDAR-based 3D detectors need large datasets for training, yet they struggle to generalize to novel domains. Domain Generalization (DG) aims to mitigate this by training detectors that are invariant to such domain shifts. Current DG approaches exclusively rely on global geometric features (point cloud Cartesian coordinates) as input features. Over-reliance on these global geometric features can, however, cause 3D detectors to prioritize object location and absolute position, resulting in poor cross-domain performance. To mitigate this, we propose to exploit explicit local point cloud structure for DG, in particular by encoding point cloud neighborhoods with Gaussian blobs, GBlobs. Our proposed formulation is highly efficient and requires no additional parameters. Without any bells and whistles, simply by integrating GBlobs in existing detectors, we beat the current state-of-the-art in challenging single-source DG benchmarks by over 21 mAP (Waymo->KITTI), 13 mAP (KITTI->Waymo), and 12 mAP (nuScenes->KITTI), without sacrificing in-domain performance. Additionally, GBlobs demonstrate exceptional performance in multi-source DG, surpassing the current state-of-the-art by 17, 12, and 5 mAP on Waymo, KITTI, and ONCE, respectively.
Sample, Scrutinize and Scale: Effective Inference-Time Search by Scaling Verification
Sampling-based search, a simple paradigm for utilizing test-time compute, involves generating multiple candidate responses and selecting the best one -- typically by verifying each response for correctness. In this paper, we study the scaling trends governing sampling-based search. Among our findings is that simply scaling up a minimalist implementation that uses only random sampling and direct self-verification results in sustained performance improvements that, for example, elevate the Gemini v1.5 Pro model's reasoning capabilities past that of o1-Preview on popular benchmarks. We partially attribute the scalability of sampling-based search to a phenomenon of implicit scaling, where sampling a larger pool of responses in turn improves verification accuracy. We further identify two useful principles for improving self-verification capabilities with test-time compute: (1) comparing across responses provides helpful signals about the locations of errors and hallucinations, and (2) different model output styles are useful for different contexts -- chains of thought are useful for reasoning but harder to verify. We also find that, though accurate verification can be elicited, frontier models demonstrate remarkably weak out-of-box verification capabilities and introduce a benchmark to measure progress on these deficiencies.
FRACTAL: An Ultra-Large-Scale Aerial Lidar Dataset for 3D Semantic Segmentation of Diverse Landscapes
Mapping agencies are increasingly adopting Aerial Lidar Scanning (ALS) as a new tool to monitor territory and support public policies. Processing ALS data at scale requires efficient point classification methods that perform well over highly diverse territories. To evaluate them, researchers need large annotated Lidar datasets, however, current Lidar benchmark datasets have restricted scope and often cover a single urban area. To bridge this data gap, we present the FRench ALS Clouds from TArgeted Landscapes (FRACTAL) dataset: an ultra-large-scale aerial Lidar dataset made of 100,000 dense point clouds with high-quality labels for 7 semantic classes and spanning 250 km^2. FRACTAL is built upon France's nationwide open Lidar data. It achieves spatial and semantic diversity via a sampling scheme that explicitly concentrates rare classes and challenging landscapes from five French regions. It should support the development of 3D deep learning approaches for large-scale land monitoring. We describe the nature of the source data, the sampling workflow, the content of the resulting dataset, and provide an initial evaluation of segmentation performance using a performant 3D neural architecture.
3D-SPS: Single-Stage 3D Visual Grounding via Referred Point Progressive Selection
3D visual grounding aims to locate the referred target object in 3D point cloud scenes according to a free-form language description. Previous methods mostly follow a two-stage paradigm, i.e., language-irrelevant detection and cross-modal matching, which is limited by the isolated architecture. In such a paradigm, the detector needs to sample keypoints from raw point clouds due to the inherent properties of 3D point clouds (irregular and large-scale), to generate the corresponding object proposal for each keypoint. However, sparse proposals may leave out the target in detection, while dense proposals may confuse the matching model. Moreover, the language-irrelevant detection stage can only sample a small proportion of keypoints on the target, deteriorating the target prediction. In this paper, we propose a 3D Single-Stage Referred Point Progressive Selection (3D-SPS) method, which progressively selects keypoints with the guidance of language and directly locates the target. Specifically, we propose a Description-aware Keypoint Sampling (DKS) module to coarsely focus on the points of language-relevant objects, which are significant clues for grounding. Besides, we devise a Target-oriented Progressive Mining (TPM) module to finely concentrate on the points of the target, which is enabled by progressive intra-modal relation modeling and inter-modal target mining. 3D-SPS bridges the gap between detection and matching in the 3D visual grounding task, localizing the target at a single stage. Experiments demonstrate that 3D-SPS achieves state-of-the-art performance on both ScanRefer and Nr3D/Sr3D datasets.
Towards A Fairer Landmark Recognition Dataset
We introduce a new landmark recognition dataset, which is created with a focus on fair worldwide representation. While previous work proposes to collect as many images as possible from web repositories, we instead argue that such approaches can lead to biased data. To create a more comprehensive and equitable dataset, we start by defining the fair relevance of a landmark to the world population. These relevances are estimated by combining anonymized Google Maps user contribution statistics with the contributors' demographic information. We present a stratification approach and analysis which leads to a much fairer coverage of the world, compared to existing datasets. The resulting datasets are used to evaluate computer vision models as part of the the Google Landmark Recognition and RetrievalChallenges 2021.
Streetscapes: Large-scale Consistent Street View Generation Using Autoregressive Video Diffusion
We present a method for generating Streetscapes-long sequences of views through an on-the-fly synthesized city-scale scene. Our generation is conditioned by language input (e.g., city name, weather), as well as an underlying map/layout hosting the desired trajectory. Compared to recent models for video generation or 3D view synthesis, our method can scale to much longer-range camera trajectories, spanning several city blocks, while maintaining visual quality and consistency. To achieve this goal, we build on recent work on video diffusion, used within an autoregressive framework that can easily scale to long sequences. In particular, we introduce a new temporal imputation method that prevents our autoregressive approach from drifting from the distribution of realistic city imagery. We train our Streetscapes system on a compelling source of data-posed imagery from Google Street View, along with contextual map data-which allows users to generate city views conditioned on any desired city layout, with controllable camera poses. Please see more results at our project page at https://boyangdeng.com/streetscapes.
Multi-Draft Speculative Sampling: Canonical Architectures and Theoretical Limits
We consider multi-draft speculative sampling, where the proposal sequences are sampled independently from different draft models. At each step, a token-level draft selection scheme takes a list of valid tokens as input and produces an output token whose distribution matches that of the target model. Previous works have demonstrated that the optimal scheme (which maximizes the probability of accepting one of the input tokens) can be cast as a solution to a linear program. In this work we show that the optimal scheme can be decomposed into a two-step solution: in the first step an importance sampling (IS) type scheme is used to select one intermediate token; in the second step (single-draft) speculative sampling is applied to generate the output token. For the case of two identical draft models we further 1) establish a necessary and sufficient condition on the distributions of the target and draft models for the acceptance probability to equal one and 2) provide an explicit expression for the optimal acceptance probability. Our theoretical analysis also motives a new class of token-level selection scheme based on weighted importance sampling. Our experimental results demonstrate consistent improvements in the achievable block efficiency and token rates over baseline schemes in a number of scenarios.
Trajeglish: Learning the Language of Driving Scenarios
A longstanding challenge for self-driving development is simulating dynamic driving scenarios seeded from recorded driving logs. In pursuit of this functionality, we apply tools from discrete sequence modeling to model how vehicles, pedestrians and cyclists interact in driving scenarios. Using a simple data-driven tokenization scheme, we discretize trajectories to centimeter-level resolution using a small vocabulary. We then model the multi-agent sequence of motion tokens with a GPT-like encoder-decoder that is autoregressive in time and takes into account intra-timestep interaction between agents. Scenarios sampled from our model exhibit state-of-the-art realism; our model tops the Waymo Sim Agents Benchmark, surpassing prior work along the realism meta metric by 3.3% and along the interaction metric by 9.9%. We ablate our modeling choices in full autonomy and partial autonomy settings, and show that the representations learned by our model can quickly be adapted to improve performance on nuScenes. We additionally evaluate the scalability of our model with respect to parameter count and dataset size, and use density estimates from our model to quantify the saliency of context length and intra-timestep interaction for the traffic modeling task.
SAM2Point: Segment Any 3D as Videos in Zero-shot and Promptable Manners
We introduce SAM2Point, a preliminary exploration adapting Segment Anything Model 2 (SAM 2) for zero-shot and promptable 3D segmentation. SAM2Point interprets any 3D data as a series of multi-directional videos, and leverages SAM 2 for 3D-space segmentation, without further training or 2D-3D projection. Our framework supports various prompt types, including 3D points, boxes, and masks, and can generalize across diverse scenarios, such as 3D objects, indoor scenes, outdoor environments, and raw sparse LiDAR. Demonstrations on multiple 3D datasets, e.g., Objaverse, S3DIS, ScanNet, Semantic3D, and KITTI, highlight the robust generalization capabilities of SAM2Point. To our best knowledge, we present the most faithful implementation of SAM in 3D, which may serve as a starting point for future research in promptable 3D segmentation. Online Demo: https://huggingface.co/spaces/ZiyuG/SAM2Point . Code: https://github.com/ZiyuGuo99/SAM2Point .
Large Language Models for Next Point-of-Interest Recommendation
The next Point of Interest (POI) recommendation task is to predict users' immediate next POI visit given their historical data. Location-Based Social Network (LBSN) data, which is often used for the next POI recommendation task, comes with challenges. One frequently disregarded challenge is how to effectively use the abundant contextual information present in LBSN data. Previous methods are limited by their numerical nature and fail to address this challenge. In this paper, we propose a framework that uses pretrained Large Language Models (LLMs) to tackle this challenge. Our framework allows us to preserve heterogeneous LBSN data in its original format, hence avoiding the loss of contextual information. Furthermore, our framework is capable of comprehending the inherent meaning of contextual information due to the inclusion of commonsense knowledge. In experiments, we test our framework on three real-world LBSN datasets. Our results show that the proposed framework outperforms the state-of-the-art models in all three datasets. Our analysis demonstrates the effectiveness of the proposed framework in using contextual information as well as alleviating the commonly encountered cold-start and short trajectory problems.
DreamScene: 3D Gaussian-based Text-to-3D Scene Generation via Formation Pattern Sampling
Text-to-3D scene generation holds immense potential for the gaming, film, and architecture sectors. Despite significant progress, existing methods struggle with maintaining high quality, consistency, and editing flexibility. In this paper, we propose DreamScene, a 3D Gaussian-based novel text-to-3D scene generation framework, to tackle the aforementioned three challenges mainly via two strategies. First, DreamScene employs Formation Pattern Sampling (FPS), a multi-timestep sampling strategy guided by the formation patterns of 3D objects, to form fast, semantically rich, and high-quality representations. FPS uses 3D Gaussian filtering for optimization stability, and leverages reconstruction techniques to generate plausible textures. Second, DreamScene employs a progressive three-stage camera sampling strategy, specifically designed for both indoor and outdoor settings, to effectively ensure object-environment integration and scene-wide 3D consistency. Last, DreamScene enhances scene editing flexibility by integrating objects and environments, enabling targeted adjustments. Extensive experiments validate DreamScene's superiority over current state-of-the-art techniques, heralding its wide-ranging potential for diverse applications. Code and demos will be released at https://dreamscene-project.github.io .
GenUP: Generative User Profilers as In-Context Learners for Next POI Recommender Systems
Traditional POI recommendation systems often lack transparency, interpretability, and scrutability due to their reliance on dense vector-based user embeddings. Furthermore, the cold-start problem -- where systems have insufficient data for new users -- limits their ability to generate accurate recommendations. Existing methods often address this by leveraging similar trajectories from other users, but this approach can be computationally expensive and increases the context length for LLM-based methods, making them difficult to scale. To address these limitations, we propose a method that generates natural language (NL) user profiles from large-scale, location-based social network (LBSN) check-ins, utilizing robust personality assessments and behavioral theories. These NL profiles capture user preferences, routines, and behaviors, improving POI prediction accuracy while offering enhanced transparency. By incorporating NL profiles as system prompts to LLMs, our approach reduces reliance on extensive historical data, while remaining flexible, easily updated, and computationally efficient. Our method is not only competitive with other LLM-based and complex agentic frameworks but is also more scalable for real-world scenarios and on-device POI recommendations. Results demonstrate that our approach consistently outperforms baseline methods, offering a more interpretable and resource-efficient solution for POI recommendation systems. Our source code is available at: https://github.com/w11wo/GenUP.
EPiC: Ensemble of Partial Point Clouds for Robust Classification
Robust point cloud classification is crucial for real-world applications, as consumer-type 3D sensors often yield partial and noisy data, degraded by various artifacts. In this work we propose a general ensemble framework, based on partial point cloud sampling. Each ensemble member is exposed to only partial input data. Three sampling strategies are used jointly, two local ones, based on patches and curves, and a global one of random sampling. We demonstrate the robustness of our method to various local and global degradations. We show that our framework significantly improves the robustness of top classification netowrks by a large margin. Our experimental setting uses the recently introduced ModelNet-C database by Ren et al.[24], where we reach SOTA both on unaugmented and on augmented data. Our unaugmented mean Corruption Error (mCE) is 0.64 (current SOTA is 0.86) and 0.50 for augmented data (current SOTA is 0.57). We analyze and explain these remarkable results through diversity analysis. Our code is available at: https://github.com/yossilevii100/EPiC
Geometry of Sample Spaces
In statistics, independent, identically distributed random samples do not carry a natural ordering, and their statistics are typically invariant with respect to permutations of their order. Thus, an n-sample in a space M can be considered as an element of the quotient space of M^n modulo the permutation group. The present paper takes this definition of sample space and the related concept of orbit types as a starting point for developing a geometric perspective on statistics. We aim at deriving a general mathematical setting for studying the behavior of empirical and population means in spaces ranging from smooth Riemannian manifolds to general stratified spaces. We fully describe the orbifold and path-metric structure of the sample space when M is a manifold or path-metric space, respectively. These results are non-trivial even when M is Euclidean. We show that the infinite sample space exists in a Gromov-Hausdorff type sense and coincides with the Wasserstein space of probability distributions on M. We exhibit Fr\'echet means and k-means as metric projections onto 1-skeleta or k-skeleta in Wasserstein space, and we define a new and more general notion of polymeans. This geometric characterization via metric projections applies equally to sample and population means, and we use it to establish asymptotic properties of polymeans such as consistency and asymptotic normality.
Varifocal Question Generation for Fact-checking
Fact-checking requires retrieving evidence related to a claim under investigation. The task can be formulated as question generation based on a claim, followed by question answering. However, recent question generation approaches assume that the answer is known and typically contained in a passage given as input, whereas such passages are what is being sought when verifying a claim. In this paper, we present {\it Varifocal}, a method that generates questions based on different focal points within a given claim, i.e.\ different spans of the claim and its metadata, such as its source and date. Our method outperforms previous work on a fact-checking question generation dataset on a wide range of automatic evaluation metrics. These results are corroborated by our manual evaluation, which indicates that our method generates more relevant and informative questions. We further demonstrate the potential of focal points in generating sets of clarification questions for product descriptions.
φ-Decoding: Adaptive Foresight Sampling for Balanced Inference-Time Exploration and Exploitation
Inference-time optimization scales computation to derive deliberate reasoning steps for effective performance. While previous search-based strategies address the short-sightedness of auto-regressive generation, the vast search space leads to excessive exploration and insufficient exploitation. To strike an efficient balance to derive the optimal step, we frame the decoding strategy as foresight sampling, leveraging simulated future steps to obtain globally optimal step estimation. Built on it, we propose a novel decoding strategy, named phi-Decoding. To provide a precise and expressive estimation of step value, phi-Decoding approximates two distributions via foresight and clustering. Sampling from the joint distribution, the optimal steps can be selected for exploitation. To support adaptive computation allocation, we propose in-width and in-depth pruning strategies, featuring a light-weight solution to achieve inference efficiency. Extensive experiments across seven benchmarks show phi-Decoding outperforms strong baselines in both performance and efficiency. Additional analysis demonstrates its generalization across various LLMs and scalability across a wide range of computing budgets. The code will be released at https://github.com/xufangzhi/phi-Decoding, and the open-source PyPI package is coming soon.
Split Gibbs Discrete Diffusion Posterior Sampling
We study the problem of posterior sampling in discrete-state spaces using discrete diffusion models. While posterior sampling methods for continuous diffusion models have achieved remarkable progress, analogous methods for discrete diffusion models remain challenging. In this work, we introduce a principled plug-and-play discrete diffusion posterior sampling algorithm based on split Gibbs sampling, which we call SG-DPS. Our algorithm enables reward-guided generation and solving inverse problems in discrete-state spaces. We demonstrate that SG-DPS converges to the true posterior distribution on synthetic benchmarks, and enjoys state-of-the-art posterior sampling performance on a range of benchmarks for discrete data, achieving up to 2x improved performance compared to existing baselines.
Improved Active Learning via Dependent Leverage Score Sampling
We show how to obtain improved active learning methods in the agnostic (adversarial noise) setting by combining marginal leverage score sampling with non-independent sampling strategies that promote spatial coverage. In particular, we propose an easily implemented method based on the pivotal sampling algorithm, which we test on problems motivated by learning-based methods for parametric PDEs and uncertainty quantification. In comparison to independent sampling, our method reduces the number of samples needed to reach a given target accuracy by up to 50%. We support our findings with two theoretical results. First, we show that any non-independent leverage score sampling method that obeys a weak one-sided ell_{infty} independence condition (which includes pivotal sampling) can actively learn d dimensional linear functions with O(dlog d) samples, matching independent sampling. This result extends recent work on matrix Chernoff bounds under ell_{infty} independence, and may be of interest for analyzing other sampling strategies beyond pivotal sampling. Second, we show that, for the important case of polynomial regression, our pivotal method obtains an improved bound of O(d) samples.
Leveraging Demonstrations to Improve Online Learning: Quality Matters
We investigate the extent to which offline demonstration data can improve online learning. It is natural to expect some improvement, but the question is how, and by how much? We show that the degree of improvement must depend on the quality of the demonstration data. To generate portable insights, we focus on Thompson sampling (TS) applied to a multi-armed bandit as a prototypical online learning algorithm and model. The demonstration data is generated by an expert with a given competence level, a notion we introduce. We propose an informed TS algorithm that utilizes the demonstration data in a coherent way through Bayes' rule and derive a prior-dependent Bayesian regret bound. This offers insight into how pretraining can greatly improve online performance and how the degree of improvement increases with the expert's competence level. We also develop a practical, approximate informed TS algorithm through Bayesian bootstrapping and show substantial empirical regret reduction through experiments.
Urban Mobility Assessment Using LLMs
Understanding urban mobility patterns and analyzing how people move around cities helps improve the overall quality of life and supports the development of more livable, efficient, and sustainable urban areas. A challenging aspect of this work is the collection of mobility data by means of user tracking or travel surveys, given the associated privacy concerns, noncompliance, and high cost. This work proposes an innovative AI-based approach for synthesizing travel surveys by prompting large language models (LLMs), aiming to leverage their vast amount of relevant background knowledge and text generation capabilities. Our study evaluates the effectiveness of this approach across various U.S. metropolitan areas by comparing the results against existing survey data at different granularity levels. These levels include (i) pattern level, which compares aggregated metrics like the average number of locations traveled and travel time, (ii) trip level, which focuses on comparing trips as whole units using transition probabilities, and (iii) activity chain level, which examines the sequence of locations visited by individuals. Our work covers several proprietary and open-source LLMs, revealing that open-source base models like Llama-2, when fine-tuned on even a limited amount of actual data, can generate synthetic data that closely mimics the actual travel survey data, and as such provides an argument for using such data in mobility studies.
Improved Policy Evaluation for Randomized Trials of Algorithmic Resource Allocation
We consider the task of evaluating policies of algorithmic resource allocation through randomized controlled trials (RCTs). Such policies are tasked with optimizing the utilization of limited intervention resources, with the goal of maximizing the benefits derived. Evaluation of such allocation policies through RCTs proves difficult, notwithstanding the scale of the trial, because the individuals' outcomes are inextricably interlinked through resource constraints controlling the policy decisions. Our key contribution is to present a new estimator leveraging our proposed novel concept, that involves retrospective reshuffling of participants across experimental arms at the end of an RCT. We identify conditions under which such reassignments are permissible and can be leveraged to construct counterfactual trials, whose outcomes can be accurately ascertained, for free. We prove theoretically that such an estimator is more accurate than common estimators based on sample means -- we show that it returns an unbiased estimate and simultaneously reduces variance. We demonstrate the value of our approach through empirical experiments on synthetic, semi-synthetic as well as real case study data and show improved estimation accuracy across the board.
Exploiting Causal Graph Priors with Posterior Sampling for Reinforcement Learning
Posterior sampling allows the exploitation of prior knowledge of the environment's transition dynamics to improve the sample efficiency of reinforcement learning. The prior is typically specified as a class of parametric distributions, a task that can be cumbersome in practice, often resulting in the choice of uninformative priors. In this work, we propose a novel posterior sampling approach in which the prior is given as a (partial) causal graph over the environment's variables. The latter is often more natural to design, such as listing known causal dependencies between biometric features in a medical treatment study. Specifically, we propose a hierarchical Bayesian procedure, called C-PSRL, simultaneously learning the full causal graph at the higher level and the parameters of the resulting factored dynamics at the lower level. For this procedure, we provide an analysis of its Bayesian regret, which explicitly connects the regret rate with the degree of prior knowledge. Our numerical evaluation conducted in illustrative domains confirms that C-PSRL strongly improves the efficiency of posterior sampling with an uninformative prior while performing close to posterior sampling with the full causal graph.
On the Creation of Representative Samples of Software Repositories
Software repositories is one of the sources of data in Empirical Software Engineering, primarily in the Mining Software Repositories field, aimed at extracting knowledge from the dynamics and practice of software projects. With the emergence of social coding platforms such as GitHub, researchers have now access to millions of software repositories to use as source data for their studies. With this massive amount of data, sampling techniques are needed to create more manageable datasets. The creation of these datasets is a crucial step, and researchers have to carefully select the repositories to create representative samples according to a set of variables of interest. However, current sampling methods are often based on random selection or rely on variables which may not be related to the research study (e.g., popularity or activity). In this paper, we present a methodology for creating representative samples of software repositories, where such representativeness is properly aligned with both the characteristics of the population of repositories and the requirements of the empirical study. We illustrate our approach with use cases based on Hugging Face repositories.
Reprompting: Automated Chain-of-Thought Prompt Inference Through Gibbs Sampling
We introduce Reprompting, an iterative sampling algorithm that searches for the Chain-of-Thought (CoT) recipes for a given task without human intervention. Through Gibbs sampling, we infer CoT recipes that work consistently well for a set of training samples. Our method iteratively samples new recipes using previously sampled solutions as parent prompts to solve other training problems. On five Big-Bench Hard tasks that require multi-step reasoning, Reprompting achieves consistently better performance than the zero-shot, few-shot, and human-written CoT baselines. Reprompting can also facilitate transfer of knowledge from a stronger model to a weaker model leading to substantially improved performance of the weaker model. Overall, Reprompting brings up to +17 point improvements over the previous state-of-the-art method that uses human-written CoT prompts.
Hitchhiking Rides Dataset: Two decades of crowd-sourced records on stochastic traveling
Hitchhiking, a spontaneous and decentralized mode of travel, has long eluded systematic study due to its informal nature. This paper presents and analyzes the largest known structured dataset of hitchhiking rides, comprising over 63,000 entries collected over nearly two decades through platforms associated with hitchwiki.org and lately on hitchmap.com. By leveraging crowd-sourced contributions, the dataset captures key spatiotemporal and strategic aspects of hitchhiking. This work documents the dataset's origins, evolution, and community-driven maintenance, highlighting its Europe-centric distribution, seasonal patterns, and reliance on a small number of highly active contributors. Through exploratory analyses, I examine waiting times, user behavior, and comment metadata, shedding light on the lived realities of hitchhikers. While the dataset has inherent biases and limitations - such as demographic skew and unverifiable entries it offers a rare and valuable window into an alternative form of mobility. I conclude by outlining future directions for enriching the dataset and advancing research on hitchhiking as both a transportation practice and cultural phenomenon.
Charting New Territories: Exploring the Geographic and Geospatial Capabilities of Multimodal LLMs
Multimodal large language models (MLLMs) have shown remarkable capabilities across a broad range of tasks but their knowledge and abilities in the geographic and geospatial domains are yet to be explored, despite potential wide-ranging benefits to navigation, environmental research, urban development, and disaster response. We conduct a series of experiments exploring various vision capabilities of MLLMs within these domains, particularly focusing on the frontier model GPT-4V, and benchmark its performance against open-source counterparts. Our methodology involves challenging these models with a small-scale geographic benchmark consisting of a suite of visual tasks, testing their abilities across a spectrum of complexity. The analysis uncovers not only where such models excel, including instances where they outperform humans, but also where they falter, providing a balanced view of their capabilities in the geographic domain. To enable the comparison and evaluation of future models, our benchmark will be publicly released.
Repelling Random Walks
We present a novel quasi-Monte Carlo mechanism to improve graph-based sampling, coined repelling random walks. By inducing correlations between the trajectories of an interacting ensemble such that their marginal transition probabilities are unmodified, we are able to explore the graph more efficiently, improving the concentration of statistical estimators whilst leaving them unbiased. The mechanism has a trivial drop-in implementation. We showcase the effectiveness of repelling random walks in a range of settings including estimation of graph kernels, the PageRank vector and graphlet concentrations. We provide detailed experimental evaluation and robust theoretical guarantees. To our knowledge, repelling random walks constitute the first rigorously studied quasi-Monte Carlo scheme correlating the directions of walkers on a graph, inviting new research in this exciting nascent domain.
EdgeGaussians -- 3D Edge Mapping via Gaussian Splatting
With their meaningful geometry and their omnipresence in the 3D world, edges are extremely useful primitives in computer vision. 3D edges comprise of lines and curves, and methods to reconstruct them use either multi-view images or point clouds as input. State-of-the-art image-based methods first learn a 3D edge point cloud then fit 3D edges to it. The edge point cloud is obtained by learning a 3D neural implicit edge field from which the 3D edge points are sampled on a specific level set (0 or 1). However, such methods present two important drawbacks: i) it is not realistic to sample points on exact level sets due to float imprecision and training inaccuracies. Instead, they are sampled within a range of levels so the points do not lie accurately on the 3D edges and require further processing. ii) Such implicit representations are computationally expensive and require long training times. In this paper, we address these two limitations and propose a 3D edge mapping that is simpler, more efficient, and preserves accuracy. Our method learns explicitly the 3D edge points and their edge direction hence bypassing the need for point sampling. It casts a 3D edge point as the center of a 3D Gaussian and the edge direction as the principal axis of the Gaussian. Such a representation has the advantage of being not only geometrically meaningful but also compatible with the efficient training optimization defined in Gaussian Splatting. Results show that the proposed method produces edges as accurate and complete as the state-of-the-art while being an order of magnitude faster. Code is released at https://github.com/kunalchelani/EdgeGaussians.
DELFlow: Dense Efficient Learning of Scene Flow for Large-Scale Point Clouds
Point clouds are naturally sparse, while image pixels are dense. The inconsistency limits feature fusion from both modalities for point-wise scene flow estimation. Previous methods rarely predict scene flow from the entire point clouds of the scene with one-time inference due to the memory inefficiency and heavy overhead from distance calculation and sorting involved in commonly used farthest point sampling, KNN, and ball query algorithms for local feature aggregation. To mitigate these issues in scene flow learning, we regularize raw points to a dense format by storing 3D coordinates in 2D grids. Unlike the sampling operation commonly used in existing works, the dense 2D representation 1) preserves most points in the given scene, 2) brings in a significant boost of efficiency, and 3) eliminates the density gap between points and pixels, allowing us to perform effective feature fusion. We also present a novel warping projection technique to alleviate the information loss problem resulting from the fact that multiple points could be mapped into one grid during projection when computing cost volume. Sufficient experiments demonstrate the efficiency and effectiveness of our method, outperforming the prior-arts on the FlyingThings3D and KITTI dataset.
BANSAC: A dynamic BAyesian Network for adaptive SAmple Consensus
RANSAC-based algorithms are the standard techniques for robust estimation in computer vision. These algorithms are iterative and computationally expensive; they alternate between random sampling of data, computing hypotheses, and running inlier counting. Many authors tried different approaches to improve efficiency. One of the major improvements is having a guided sampling, letting the RANSAC cycle stop sooner. This paper presents a new adaptive sampling process for RANSAC. Previous methods either assume no prior information about the inlier/outlier classification of data points or use some previously computed scores in the sampling. In this paper, we derive a dynamic Bayesian network that updates individual data points' inlier scores while iterating RANSAC. At each iteration, we apply weighted sampling using the updated scores. Our method works with or without prior data point scorings. In addition, we use the updated inlier/outlier scoring for deriving a new stopping criterion for the RANSAC loop. We test our method in multiple real-world datasets for several applications and obtain state-of-the-art results. Our method outperforms the baselines in accuracy while needing less computational time.
Less is More: Reducing Task and Model Complexity for 3D Point Cloud Semantic Segmentation
Whilst the availability of 3D LiDAR point cloud data has significantly grown in recent years, annotation remains expensive and time-consuming, leading to a demand for semi-supervised semantic segmentation methods with application domains such as autonomous driving. Existing work very often employs relatively large segmentation backbone networks to improve segmentation accuracy, at the expense of computational costs. In addition, many use uniform sampling to reduce ground truth data requirements for learning needed, often resulting in sub-optimal performance. To address these issues, we propose a new pipeline that employs a smaller architecture, requiring fewer ground-truth annotations to achieve superior segmentation accuracy compared to contemporary approaches. This is facilitated via a novel Sparse Depthwise Separable Convolution module that significantly reduces the network parameter count while retaining overall task performance. To effectively sub-sample our training data, we propose a new Spatio-Temporal Redundant Frame Downsampling (ST-RFD) method that leverages knowledge of sensor motion within the environment to extract a more diverse subset of training data frame samples. To leverage the use of limited annotated data samples, we further propose a soft pseudo-label method informed by LiDAR reflectivity. Our method outperforms contemporary semi-supervised work in terms of mIoU, using less labeled data, on the SemanticKITTI (59.5@5%) and ScribbleKITTI (58.1@5%) benchmark datasets, based on a 2.3x reduction in model parameters and 641x fewer multiply-add operations whilst also demonstrating significant performance improvement on limited training data (i.e., Less is More).
Data-Driven Traffic Simulation for an Intersection in a Metropolis
We present a novel data-driven simulation environment for modeling traffic in metropolitan street intersections. Using real-world tracking data collected over an extended period of time, we train trajectory forecasting models to learn agent interactions and environmental constraints that are difficult to capture conventionally. Trajectories of new agents are first coarsely generated by sampling from the spatial and temporal generative distributions, then refined using state-of-the-art trajectory forecasting models. The simulation can run either autonomously, or under explicit human control conditioned on the generative distributions. We present the experiments for a variety of model configurations. Under an iterative prediction scheme, the way-point-supervised TrajNet++ model obtained 0.36 Final Displacement Error (FDE) in 20 FPS on an NVIDIA A100 GPU.
Combinatorial Neural Bandits
We consider a contextual combinatorial bandit problem where in each round a learning agent selects a subset of arms and receives feedback on the selected arms according to their scores. The score of an arm is an unknown function of the arm's feature. Approximating this unknown score function with deep neural networks, we propose algorithms: Combinatorial Neural UCB (CN-UCB) and Combinatorial Neural Thompson Sampling (CN-TS). We prove that CN-UCB achieves mathcal{O}(d T) or mathcal{O}(tilde{d T K}) regret, where d is the effective dimension of a neural tangent kernel matrix, K is the size of a subset of arms, and T is the time horizon. For CN-TS, we adapt an optimistic sampling technique to ensure the optimism of the sampled combinatorial action, achieving a worst-case (frequentist) regret of mathcal{O}(d TK). To the best of our knowledge, these are the first combinatorial neural bandit algorithms with regret performance guarantees. In particular, CN-TS is the first Thompson sampling algorithm with the worst-case regret guarantees for the general contextual combinatorial bandit problem. The numerical experiments demonstrate the superior performances of our proposed algorithms.
Inspecting the Geographical Representativeness of Images from Text-to-Image Models
Recent progress in generative models has resulted in models that produce both realistic as well as relevant images for most textual inputs. These models are being used to generate millions of images everyday, and hold the potential to drastically impact areas such as generative art, digital marketing and data augmentation. Given their outsized impact, it is important to ensure that the generated content reflects the artifacts and surroundings across the globe, rather than over-representing certain parts of the world. In this paper, we measure the geographical representativeness of common nouns (e.g., a house) generated through DALL.E 2 and Stable Diffusion models using a crowdsourced study comprising 540 participants across 27 countries. For deliberately underspecified inputs without country names, the generated images most reflect the surroundings of the United States followed by India, and the top generations rarely reflect surroundings from all other countries (average score less than 3 out of 5). Specifying the country names in the input increases the representativeness by 1.44 points on average for DALL.E 2 and 0.75 for Stable Diffusion, however, the overall scores for many countries still remain low, highlighting the need for future models to be more geographically inclusive. Lastly, we examine the feasibility of quantifying the geographical representativeness of generated images without conducting user studies.
UBSoft: A Simulation Platform for Robotic Skill Learning in Unbounded Soft Environments
It is desired to equip robots with the capability of interacting with various soft materials as they are ubiquitous in the real world. While physics simulations are one of the predominant methods for data collection and robot training, simulating soft materials presents considerable challenges. Specifically, it is significantly more costly than simulating rigid objects in terms of simulation speed and storage requirements. These limitations typically restrict the scope of studies on soft materials to small and bounded areas, thereby hindering the learning of skills in broader spaces. To address this issue, we introduce UBSoft, a new simulation platform designed to support unbounded soft environments for robot skill acquisition. Our platform utilizes spatially adaptive resolution scales, where simulation resolution dynamically adjusts based on proximity to active robotic agents. Our framework markedly reduces the demand for extensive storage space and computation costs required for large-scale scenarios involving soft materials. We also establish a set of benchmark tasks in our platform, including both locomotion and manipulation tasks, and conduct experiments to evaluate the efficacy of various reinforcement learning algorithms and trajectory optimization techniques, both gradient-based and sampling-based. Preliminary results indicate that sampling-based trajectory optimization generally achieves better results for obtaining one trajectory to solve the task. Additionally, we conduct experiments in real-world environments to demonstrate that advancements made in our UBSoft simulator could translate to improved robot interactions with large-scale soft material. More videos can be found at https://vis-www.cs.umass.edu/ubsoft/.
Should we trust web-scraped data?
The increasing adoption of econometric and machine-learning approaches by empirical researchers has led to a widespread use of one data collection method: web scraping. Web scraping refers to the use of automated computer programs to access websites and download their content. The key argument of this paper is that na\"ive web scraping procedures can lead to sampling bias in the collected data. This article describes three sources of sampling bias in web-scraped data. More specifically, sampling bias emerges from web content being volatile (i.e., being subject to change), personalized (i.e., presented in response to request characteristics), and unindexed (i.e., abundance of a population register). In a series of examples, I illustrate the prevalence and magnitude of sampling bias. To support researchers and reviewers, this paper provides recommendations on anticipating, detecting, and overcoming sampling bias in web-scraped data.
Geolocation with Real Human Gameplay Data: A Large-Scale Dataset and Human-Like Reasoning Framework
Geolocation, the task of identifying an image's location, requires complex reasoning and is crucial for navigation, monitoring, and cultural preservation. However, current methods often produce coarse, imprecise, and non-interpretable localization. A major challenge lies in the quality and scale of existing geolocation datasets. These datasets are typically small-scale and automatically constructed, leading to noisy data and inconsistent task difficulty, with images that either reveal answers too easily or lack sufficient clues for reliable inference. To address these challenges, we introduce a comprehensive geolocation framework with three key components: GeoComp, a large-scale dataset; GeoCoT, a novel reasoning method; and GeoEval, an evaluation metric, collectively designed to address critical challenges and drive advancements in geolocation research. At the core of this framework is GeoComp (Geolocation Competition Dataset), a large-scale dataset collected from a geolocation game platform involving 740K users over two years. It comprises 25 million entries of metadata and 3 million geo-tagged locations spanning much of the globe, with each location annotated thousands to tens of thousands of times by human users. The dataset offers diverse difficulty levels for detailed analysis and highlights key gaps in current models. Building on this dataset, we propose Geographical Chain-of-Thought (GeoCoT), a novel multi-step reasoning framework designed to enhance the reasoning capabilities of Large Vision Models (LVMs) in geolocation tasks. GeoCoT improves performance by integrating contextual and spatial cues through a multi-step process that mimics human geolocation reasoning. Finally, using the GeoEval metric, we demonstrate that GeoCoT significantly boosts geolocation accuracy by up to 25% while enhancing interpretability.
SAMPLING: Scene-adaptive Hierarchical Multiplane Images Representation for Novel View Synthesis from a Single Image
Recent novel view synthesis methods obtain promising results for relatively small scenes, e.g., indoor environments and scenes with a few objects, but tend to fail for unbounded outdoor scenes with a single image as input. In this paper, we introduce SAMPLING, a Scene-adaptive Hierarchical Multiplane Images Representation for Novel View Synthesis from a Single Image based on improved multiplane images (MPI). Observing that depth distribution varies significantly for unbounded outdoor scenes, we employ an adaptive-bins strategy for MPI to arrange planes in accordance with each scene image. To represent intricate geometry and multi-scale details, we further introduce a hierarchical refinement branch, which results in high-quality synthesized novel views. Our method demonstrates considerable performance gains in synthesizing large-scale unbounded outdoor scenes using a single image on the KITTI dataset and generalizes well to the unseen Tanks and Temples dataset.The code and models will soon be made available.
Adjoint Sampling: Highly Scalable Diffusion Samplers via Adjoint Matching
We introduce Adjoint Sampling, a highly scalable and efficient algorithm for learning diffusion processes that sample from unnormalized densities, or energy functions. It is the first on-policy approach that allows significantly more gradient updates than the number of energy evaluations and model samples, allowing us to scale to much larger problem settings than previously explored by similar methods. Our framework is theoretically grounded in stochastic optimal control and shares the same theoretical guarantees as Adjoint Matching, being able to train without the need for corrective measures that push samples towards the target distribution. We show how to incorporate key symmetries, as well as periodic boundary conditions, for modeling molecules in both cartesian and torsional coordinates. We demonstrate the effectiveness of our approach through extensive experiments on classical energy functions, and further scale up to neural network-based energy models where we perform amortized conformer generation across many molecular systems. To encourage further research in developing highly scalable sampling methods, we plan to open source these challenging benchmarks, where successful methods can directly impact progress in computational chemistry.
Gaussian in the Wild: 3D Gaussian Splatting for Unconstrained Image Collections
Novel view synthesis from unconstrained in-the-wild images remains a meaningful but challenging task. The photometric variation and transient occluders in those unconstrained images make it difficult to reconstruct the original scene accurately. Previous approaches tackle the problem by introducing a global appearance feature in Neural Radiance Fields (NeRF). However, in the real world, the unique appearance of each tiny point in a scene is determined by its independent intrinsic material attributes and the varying environmental impacts it receives. Inspired by this fact, we propose Gaussian in the wild (GS-W), a method that uses 3D Gaussian points to reconstruct the scene and introduces separated intrinsic and dynamic appearance feature for each point, capturing the unchanged scene appearance along with dynamic variation like illumination and weather. Additionally, an adaptive sampling strategy is presented to allow each Gaussian point to focus on the local and detailed information more effectively. We also reduce the impact of transient occluders using a 2D visibility map. More experiments have demonstrated better reconstruction quality and details of GS-W compared to NeRF-based methods, with a faster rendering speed. Video results and code are available at https://eastbeanzhang.github.io/GS-W/.
SEAGET: Seasonal and Active hours guided Graph Enhanced Transformer for the next POI recommendation
One of the most important challenges for improving personalized services in industries like tourism is predicting users' near-future movements based on prior behavior and current circumstances. Next POI (Point of Interest) recommendation is essential for helping users and service providers by providing personalized recommendations. The intricacy of this work, however, stems from the requirement to take into consideration several variables at once, such as user preferences, time contexts, and geographic locations. POI selection is also greatly influenced by elements like a POI's operational status during desired visit times, desirability for visiting during particular seasons, and its dynamic popularity over time. POI popularity is mostly determined by check-in frequency in recent studies, ignoring visitor volumes, operational constraints, and temporal dynamics. These restrictions result in recommendations that are less than ideal and do not take into account actual circumstances. We propose the Seasonal and Active hours-guided Graph-Enhanced Transformer (SEAGET) model as a solution to these problems. By integrating variations in the seasons, operational status, and temporal dynamics into a graph-enhanced transformer framework, SEAGET capitalizes on redefined POI popularity. This invention gives more accurate and context-aware next POI predictions, with potential applications for optimizing tourist experiences and enhancing location-based services in the tourism industry.
Affordances-Oriented Planning using Foundation Models for Continuous Vision-Language Navigation
LLM-based agents have demonstrated impressive zero-shot performance in vision-language navigation (VLN) task. However, existing LLM-based methods often focus only on solving high-level task planning by selecting nodes in predefined navigation graphs for movements, overlooking low-level control in navigation scenarios. To bridge this gap, we propose AO-Planner, a novel Affordances-Oriented Planner for continuous VLN task. Our AO-Planner integrates various foundation models to achieve affordances-oriented low-level motion planning and high-level decision-making, both performed in a zero-shot setting. Specifically, we employ a Visual Affordances Prompting (VAP) approach, where the visible ground is segmented by SAM to provide navigational affordances, based on which the LLM selects potential candidate waypoints and plans low-level paths towards selected waypoints. We further propose a high-level PathAgent which marks planned paths into the image input and reasons the most probable path by comprehending all environmental information. Finally, we convert the selected path into 3D coordinates using camera intrinsic parameters and depth information, avoiding challenging 3D predictions for LLMs. Experiments on the challenging R2R-CE and RxR-CE datasets show that AO-Planner achieves state-of-the-art zero-shot performance (8.8% improvement on SPL). Our method can also serve as a data annotator to obtain pseudo-labels, distilling its waypoint prediction ability into a learning-based predictor. This new predictor does not require any waypoint data from the simulator and achieves 47% SR competing with supervised methods. We establish an effective connection between LLM and 3D world, presenting novel prospects for employing foundation models in low-level motion control.
Trajectory Consistency Distillation
Latent Consistency Model (LCM) extends the Consistency Model to the latent space and leverages the guided consistency distillation technique to achieve impressive performance in accelerating text-to-image synthesis. However, we observed that LCM struggles to generate images with both clarity and detailed intricacy. To address this limitation, we initially delve into and elucidate the underlying causes. Our investigation identifies that the primary issue stems from errors in three distinct areas. Consequently, we introduce Trajectory Consistency Distillation (TCD), which encompasses trajectory consistency function and strategic stochastic sampling. The trajectory consistency function diminishes the distillation errors by broadening the scope of the self-consistency boundary condition and endowing the TCD with the ability to accurately trace the entire trajectory of the Probability Flow ODE. Additionally, strategic stochastic sampling is specifically designed to circumvent the accumulated errors inherent in multi-step consistency sampling, which is meticulously tailored to complement the TCD model. Experiments demonstrate that TCD not only significantly enhances image quality at low NFEs but also yields more detailed results compared to the teacher model at high NFEs.
Quasi-Monte Carlo for 3D Sliced Wasserstein
Monte Carlo (MC) integration has been employed as the standard approximation method for the Sliced Wasserstein (SW) distance, whose analytical expression involves an intractable expectation. However, MC integration is not optimal in terms of absolute approximation error. To provide a better class of empirical SW, we propose quasi-sliced Wasserstein (QSW) approximations that rely on Quasi-Monte Carlo (QMC) methods. For a comprehensive investigation of QMC for SW, we focus on the 3D setting, specifically computing the SW between probability measures in three dimensions. In greater detail, we empirically evaluate various methods to construct QMC point sets on the 3D unit-hypersphere, including the Gaussian-based and equal area mappings, generalized spiral points, and optimizing discrepancy energies. Furthermore, to obtain an unbiased estimator for stochastic optimization, we extend QSW to Randomized Quasi-Sliced Wasserstein (RQSW) by introducing randomness in the discussed point sets. Theoretically, we prove the asymptotic convergence of QSW and the unbiasedness of RQSW. Finally, we conduct experiments on various 3D tasks, such as point-cloud comparison, point-cloud interpolation, image style transfer, and training deep point-cloud autoencoders, to demonstrate the favorable performance of the proposed QSW and RQSW variants.
Berlin V2X: A Machine Learning Dataset from Multiple Vehicles and Radio Access Technologies
The evolution of wireless communications into 6G and beyond is expected to rely on new machine learning (ML)-based capabilities. These can enable proactive decisions and actions from wireless-network components to sustain quality-of-service (QoS) and user experience. Moreover, new use cases in the area of vehicular and industrial communications will emerge. Specifically in the area of vehicle communication, vehicle-to-everything (V2X) schemes will benefit strongly from such advances. With this in mind, we have conducted a detailed measurement campaign that paves the way to a plethora of diverse ML-based studies. The resulting datasets offer GPS-located wireless measurements across diverse urban environments for both cellular (with two different operators) and sidelink radio access technologies, thus enabling a variety of different studies towards V2X. The datasets are labeled and sampled with a high time resolution. Furthermore, we make the data publicly available with all the necessary information to support the onboarding of new researchers. We provide an initial analysis of the data showing some of the challenges that ML needs to overcome and the features that ML can leverage, as well as some hints at potential research studies.
Sparse Multilevel Roadmaps for High-Dimensional Robot Motion Planning
Sparse roadmaps are important to compactly represent state spaces, to determine problems to be infeasible and to terminate in finite time. However, sparse roadmaps do not scale well to high-dimensional planning problems. In prior work, we showed improved planning performance on high-dimensional planning problems by using multilevel abstractions to simplify state spaces. In this work, we generalize sparse roadmaps to multilevel abstractions by developing a novel algorithm, the sparse multilevel roadmap planner (SMLR). To this end, we represent multilevel abstractions using the language of fiber bundles, and generalize sparse roadmap planners by using the concept of restriction sampling with visibility regions. We argue SMLR to be probabilistically complete and asymptotically near-optimal by inheritance from sparse roadmap planners. In evaluations, we outperform sparse roadmap planners on challenging planning problems, in particular problems which are high-dimensional, contain narrow passages or are infeasible. We thereby demonstrate sparse multilevel roadmaps as an efficient tool for feasible and infeasible high-dimensional planning problems.
Continuous 3D Perception Model with Persistent State
We present a unified framework capable of solving a broad range of 3D tasks. Our approach features a stateful recurrent model that continuously updates its state representation with each new observation. Given a stream of images, this evolving state can be used to generate metric-scale pointmaps (per-pixel 3D points) for each new input in an online fashion. These pointmaps reside within a common coordinate system, and can be accumulated into a coherent, dense scene reconstruction that updates as new images arrive. Our model, called CUT3R (Continuous Updating Transformer for 3D Reconstruction), captures rich priors of real-world scenes: not only can it predict accurate pointmaps from image observations, but it can also infer unseen regions of the scene by probing at virtual, unobserved views. Our method is simple yet highly flexible, naturally accepting varying lengths of images that may be either video streams or unordered photo collections, containing both static and dynamic content. We evaluate our method on various 3D/4D tasks and demonstrate competitive or state-of-the-art performance in each. Project Page: https://cut3r.github.io/
SelfCheckGPT: Zero-Resource Black-Box Hallucination Detection for Generative Large Language Models
Generative Large Language Models (LLMs) such as GPT-3 are capable of generating highly fluent responses to a wide variety of user prompts. However, LLMs are known to hallucinate facts and make non-factual statements which can undermine trust in their output. Existing fact-checking approaches either require access to token-level output probability distribution (which may not be available for systems such as ChatGPT) or external databases that are interfaced via separate, often complex, modules. In this work, we propose "SelfCheckGPT", a simple sampling-based approach that can be used to fact-check black-box models in a zero-resource fashion, i.e. without an external database. SelfCheckGPT leverages the simple idea that if a LLM has knowledge of a given concept, sampled responses are likely to be similar and contain consistent facts. However, for hallucinated facts, stochastically sampled responses are likely to diverge and contradict one another. We investigate this approach by using GPT-3 to generate passages about individuals from the WikiBio dataset, and manually annotate the factuality of the generated passages. We demonstrate that SelfCheckGPT can: i) detect non-factual and factual sentences; and ii) rank passages in terms of factuality. We compare our approach to several existing baselines and show that in sentence hallucination detection, our approach has AUC-PR scores comparable to grey-box methods, while SelfCheckGPT is best at passage factuality assessment.
Uncertainty-Instructed Structure Injection for Generalizable HD Map Construction
Reliable high-definition (HD) map construction is crucial for the driving safety of autonomous vehicles. Although recent studies demonstrate improved performance, their generalization capability across unfamiliar driving scenes remains unexplored. To tackle this issue, we propose UIGenMap, an uncertainty-instructed structure injection approach for generalizable HD map vectorization, which concerns the uncertainty resampling in statistical distribution and employs explicit instance features to reduce excessive reliance on training data. Specifically, we introduce the perspective-view (PV) detection branch to obtain explicit structural features, in which the uncertainty-aware decoder is designed to dynamically sample probability distributions considering the difference in scenes. With probabilistic embedding and selection, UI2DPrompt is proposed to construct PV-learnable prompts. These PV prompts are integrated into the map decoder by designed hybrid injection to compensate for neglected instance structures. To ensure real-time inference, a lightweight Mimic Query Distillation is designed to learn from PV prompts, which can serve as an efficient alternative to the flow of PV branches. Extensive experiments on challenging geographically disjoint (geo-based) data splits demonstrate that our UIGenMap achieves superior performance, with +5.7 mAP improvement on the nuScenes dataset. Source code will be available at https://github.com/xiaolul2/UIGenMap.
Accelerating Distributed Stochastic Optimization via Self-Repellent Random Walks
We study a family of distributed stochastic optimization algorithms where gradients are sampled by a token traversing a network of agents in random-walk fashion. Typically, these random-walks are chosen to be Markov chains that asymptotically sample from a desired target distribution, and play a critical role in the convergence of the optimization iterates. In this paper, we take a novel approach by replacing the standard linear Markovian token by one which follows a nonlinear Markov chain - namely the Self-Repellent Radom Walk (SRRW). Defined for any given 'base' Markov chain, the SRRW, parameterized by a positive scalar {\alpha}, is less likely to transition to states that were highly visited in the past, thus the name. In the context of MCMC sampling on a graph, a recent breakthrough in Doshi et al. (2023) shows that the SRRW achieves O(1/{\alpha}) decrease in the asymptotic variance for sampling. We propose the use of a 'generalized' version of the SRRW to drive token algorithms for distributed stochastic optimization in the form of stochastic approximation, termed SA-SRRW. We prove that the optimization iterate errors of the resulting SA-SRRW converge to zero almost surely and prove a central limit theorem, deriving the explicit form of the resulting asymptotic covariance matrix corresponding to iterate errors. This asymptotic covariance is always smaller than that of an algorithm driven by the base Markov chain and decreases at rate O(1/{\alpha}^2) - the performance benefit of using SRRW thereby amplified in the stochastic optimization context. Empirical results support our theoretical findings.
Multi-marginal Schrödinger Bridges with Iterative Reference Refinement
Practitioners frequently aim to infer an unobserved population trajectory using sample snapshots at multiple time points. For instance, in single-cell sequencing, scientists would like to learn how gene expression evolves over time. But sequencing any cell destroys that cell. So we cannot access any cell's full trajectory, but we can access snapshot samples from many cells. Stochastic differential equations are commonly used to analyze systems with full individual-trajectory access; since here we have only sample snapshots, these methods are inapplicable. The deep learning community has recently explored using Schr\"odinger bridges (SBs) and their extensions to estimate these dynamics. However, these methods either (1) interpolate between just two time points or (2) require a single fixed reference dynamic within the SB, which is often just set to be Brownian motion. But learning piecewise from adjacent time points can fail to capture long-term dependencies. And practitioners are typically able to specify a model class for the reference dynamic but not the exact values of the parameters within it. So we propose a new method that (1) learns the unobserved trajectories from sample snapshots across multiple time points and (2) requires specification only of a class of reference dynamics, not a single fixed one. In particular, we suggest an iterative projection method inspired by Schr\"odinger bridges; we alternate between learning a piecewise SB on the unobserved trajectories and using the learned SB to refine our best guess for the dynamics within the reference class. We demonstrate the advantages of our method via a well-known simulated parametric model from ecology, simulated and real data from systems biology, and real motion-capture data.
The OPNV Data Collection: A Dataset for Infrastructure-Supported Perception Research with Focus on Public Transportation
This paper we present our vision and ongoing work for a novel dataset designed to advance research into the interoperability of intelligent vehicles and infrastructure, specifically aimed at enhancing cooperative perception and interaction in the realm of public transportation. Unlike conventional datasets centered on ego-vehicle data, this approach encompasses both a stationary sensor tower and a moving vehicle, each equipped with cameras, LiDARs, and GNSS, while the vehicle additionally includes an inertial navigation system. Our setup features comprehensive calibration and time synchronization, ensuring seamless and accurate sensor data fusion crucial for studying complex, dynamic scenes. Emphasizing public transportation, the dataset targets to include scenes like bus station maneuvers and driving on dedicated bus lanes, reflecting the specifics of small public buses. We introduce the open-source ".4mse" file format for the new dataset, accompanied by a research kit. This kit provides tools such as ego-motion compensation or LiDAR-to-camera projection enabling advanced research on intelligent vehicle-infrastructure integration. Our approach does not include annotations; however, we plan to implement automatically generated labels sourced from state-of-the-art public repositories. Several aspects are still up for discussion, and timely feedback from the community would be greatly appreciated. A sneak preview on one data frame will be available at a Google Colab Notebook. Moreover, we will use the related GitHub Repository to collect remarks and suggestions.
trajdata: A Unified Interface to Multiple Human Trajectory Datasets
The field of trajectory forecasting has grown significantly in recent years, partially owing to the release of numerous large-scale, real-world human trajectory datasets for autonomous vehicles (AVs) and pedestrian motion tracking. While such datasets have been a boon for the community, they each use custom and unique data formats and APIs, making it cumbersome for researchers to train and evaluate methods across multiple datasets. To remedy this, we present trajdata: a unified interface to multiple human trajectory datasets. At its core, trajdata provides a simple, uniform, and efficient representation and API for trajectory and map data. As a demonstration of its capabilities, in this work we conduct a comprehensive empirical evaluation of existing trajectory datasets, providing users with a rich understanding of the data underpinning much of current pedestrian and AV motion forecasting research, and proposing suggestions for future datasets from these insights. trajdata is permissively licensed (Apache 2.0) and can be accessed online at https://github.com/NVlabs/trajdata
Can Prompt Probe Pretrained Language Models? Understanding the Invisible Risks from a Causal View
Prompt-based probing has been widely used in evaluating the abilities of pretrained language models (PLMs). Unfortunately, recent studies have discovered such an evaluation may be inaccurate, inconsistent and unreliable. Furthermore, the lack of understanding its inner workings, combined with its wide applicability, has the potential to lead to unforeseen risks for evaluating and applying PLMs in real-world applications. To discover, understand and quantify the risks, this paper investigates the prompt-based probing from a causal view, highlights three critical biases which could induce biased results and conclusions, and proposes to conduct debiasing via causal intervention. This paper provides valuable insights for the design of unbiased datasets, better probing frameworks and more reliable evaluations of pretrained language models. Furthermore, our conclusions also echo that we need to rethink the criteria for identifying better pretrained language models. We openly released the source code and data at https://github.com/c-box/causalEval.
Data-Efficient Learning via Clustering-Based Sensitivity Sampling: Foundation Models and Beyond
We study the data selection problem, whose aim is to select a small representative subset of data that can be used to efficiently train a machine learning model. We present a new data selection approach based on k-means clustering and sensitivity sampling. Assuming access to an embedding representation of the data with respect to which the model loss is H\"older continuous, our approach provably allows selecting a set of ``typical'' k + 1/varepsilon^2 elements whose average loss corresponds to the average loss of the whole dataset, up to a multiplicative (1pmvarepsilon) factor and an additive varepsilon lambda Phi_k, where Phi_k represents the k-means cost for the input embeddings and lambda is the H\"older constant. We furthermore demonstrate the performance and scalability of our approach on fine-tuning foundation models and show that it outperforms state-of-the-art methods. We also show how it can be applied on linear regression, leading to a new sampling strategy that surprisingly matches the performances of leverage score sampling, while being conceptually simpler and more scalable.
SLAM for Visually Impaired Navigation: A Systematic Literature Review of the Current State of Research
In recent decades, several assistive technologies have been developed for visually impaired and blind (VIB) individuals to improve their ability to navigate independently and safely. At the same time, simultaneous localization and mapping (SLAM) techniques have become sufficiently robust and efficient to be adopted in the development of these assistive technologies. In this paper, we first report the results of an anonymous worldwide survey conducted with VIB people to understand their experiences, needs, and challenges in navigation, differentiating our approach from prior work that often has a limited geographic scope and focuses on specific challenges. We then present a systematic literature review of recent studies on SLAM-based solutions for VIB people. This review explores various SLAM techniques employed in this context. We discuss the advantages and limitations of these techniques for VIB navigation. Moreover, we examined a range of challenging situations addressed in the studies included in this review. We explain how SLAM-based solutions offer potential to improve the ability of visually impaired individuals to navigate effectively. Finally, we present future opportunities and challenges in this domain.
Representation Learning with Multi-Step Inverse Kinematics: An Efficient and Optimal Approach to Rich-Observation RL
We study the design of sample-efficient algorithms for reinforcement learning in the presence of rich, high-dimensional observations, formalized via the Block MDP problem. Existing algorithms suffer from either 1) computational intractability, 2) strong statistical assumptions that are not necessarily satisfied in practice, or 3) suboptimal sample complexity. We address these issues by providing the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level, with minimal statistical assumptions. Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics, a learning objective in which the aim is to predict the learner's own action from the current observation and observations in the (potentially distant) future. MusIK is simple and flexible, and can efficiently take advantage of general-purpose function approximation. Our analysis leverages several new techniques tailored to non-optimistic exploration algorithms, which we anticipate will find broader use.
Fast Point Cloud Generation with Straight Flows
Diffusion models have emerged as a powerful tool for point cloud generation. A key component that drives the impressive performance for generating high-quality samples from noise is iteratively denoise for thousands of steps. While beneficial, the complexity of learning steps has limited its applications to many 3D real-world. To address this limitation, we propose Point Straight Flow (PSF), a model that exhibits impressive performance using one step. Our idea is based on the reformulation of the standard diffusion model, which optimizes the curvy learning trajectory into a straight path. Further, we develop a distillation strategy to shorten the straight path into one step without a performance loss, enabling applications to 3D real-world with latency constraints. We perform evaluations on multiple 3D tasks and find that our PSF performs comparably to the standard diffusion model, outperforming other efficient 3D point cloud generation methods. On real-world applications such as point cloud completion and training-free text-guided generation in a low-latency setup, PSF performs favorably.
Effect Heterogeneity with Earth Observation in Randomized Controlled Trials: Exploring the Role of Data, Model, and Evaluation Metric Choice
Many social and environmental phenomena are associated with macroscopic changes in the built environment, captured by satellite imagery on a global scale and with daily temporal resolution. While widely used for prediction, these images and especially image sequences remain underutilized for causal inference, especially in the context of randomized controlled trials (RCTs), where causal identification is established by design. In this paper, we develop and compare a set of general tools for analyzing Conditional Average Treatment Effects (CATEs) from temporal satellite data that can be applied to any RCT where geographical identifiers are available. Through a simulation study, we analyze different modeling strategies for estimating CATE in sequences of satellite images. We find that image sequence representation models with more parameters generally yield a greater ability to detect heterogeneity. To explore the role of model and data choice in practice, we apply the approaches to two influential RCTs -- Banerjee et al. (2015), a poverty study in Cusco, Peru, and Bolsen et al. (2014), a water conservation experiment in Georgia, USA. We benchmark our image sequence models against image-only, tabular-only, and combined image-tabular data sources, summarizing practical implications for investigators in a multivariate analysis. Land cover classifications over satellite images facilitate interpretation of what image features drive heterogeneity. We also show robustness to data and model choice of satellite-based generalization of the RCT results to larger geographical areas outside the original. Overall, this paper shows how satellite sequence data can be incorporated into the analysis of RCTs, and provides evidence about the implications of data, model, and evaluation metric choice for causal analysis.
Home Run: Finding Your Way Home by Imagining Trajectories
When studying unconstrained behaviour and allowing mice to leave their cage to navigate a complex labyrinth, the mice exhibit foraging behaviour in the labyrinth searching for rewards, returning to their home cage now and then, e.g. to drink. Surprisingly, when executing such a ``home run'', the mice do not follow the exact reverse path, in fact, the entry path and home path have very little overlap. Recent work proposed a hierarchical active inference model for navigation, where the low level model makes inferences about hidden states and poses that explain sensory inputs, whereas the high level model makes inferences about moving between locations, effectively building a map of the environment. However, using this ``map'' for planning, only allows the agent to find trajectories that it previously explored, far from the observed mice's behaviour. In this paper, we explore ways of incorporating before-unvisited paths in the planning algorithm, by using the low level generative model to imagine potential, yet undiscovered paths. We demonstrate a proof of concept in a grid-world environment, showing how an agent can accurately predict a new, shorter path in the map leading to its starting point, using a generative model learnt from pixel-based observations.
Evaluating Binary Decision Biases in Large Language Models: Implications for Fair Agent-Based Financial Simulations
Large Language Models (LLMs) are increasingly being used to simulate human-like decision making in agent-based financial market models (ABMs). As models become more powerful and accessible, researchers can now incorporate individual LLM decisions into ABM environments. However, integration may introduce inherent biases that need careful evaluation. In this paper we test three state-of-the-art GPT models for bias using two model sampling approaches: one-shot and few-shot API queries. We observe significant variations in distributions of outputs between specific models, and model sub versions, with GPT-4o-Mini-2024-07-18 showing notably better performance (32-43% yes responses) compared to GPT-4-0125-preview's extreme bias (98-99% yes responses). We show that sampling methods and model sub-versions significantly impact results: repeated independent API calls produce different distributions compared to batch sampling within a single call. While no current GPT model can simultaneously achieve a uniform distribution and Markovian properties in one-shot testing, few-shot sampling can approach uniform distributions under certain conditions. We explore the Temperature parameter, providing a definition and comparative results. We further compare our results to true random binary series and test specifically for the common human bias of Negative Recency - finding LLMs have a mixed ability to 'beat' humans in this one regard. These findings emphasise the critical importance of careful LLM integration into ABMs for financial markets and more broadly.
Monitoring Decoding: Mitigating Hallucination via Evaluating the Factuality of Partial Response during Generation
While large language models have demonstrated exceptional performance across a wide range of tasks, they remain susceptible to hallucinations -- generating plausible yet factually incorrect contents. Existing methods to mitigating such risk often rely on sampling multiple full-length generations, which introduces significant response latency and becomes ineffective when the model consistently produces hallucinated outputs with high confidence. To address these limitations, we introduce Monitoring Decoding (MD), a novel framework that dynamically monitors the generation process and selectively applies in-process interventions, focusing on revising crucial tokens responsible for hallucinations. Instead of waiting until completion of multiple full-length generations, we identify hallucination-prone tokens during generation using a monitor function, and further refine these tokens through a tree-based decoding strategy. This approach ensures an enhanced factual accuracy and coherence in the generated output while maintaining efficiency. Experimental results demonstrate that MD consistently outperforms self-consistency-based approaches in both effectiveness and efficiency, achieving higher factual accuracy while significantly reducing computational overhead.
Uncertainty-Aware DNN for Multi-Modal Camera Localization
Camera localization, i.e., camera pose regression, represents an important task in computer vision since it has many practical applications such as in the context of intelligent vehicles and their localization. Having reliable estimates of the regression uncertainties is also important, as it would allow us to catch dangerous localization failures. In the literature, uncertainty estimation in Deep Neural Networks (DNNs) is often performed through sampling methods, such as Monte Carlo Dropout (MCD) and Deep Ensemble (DE), at the expense of undesirable execution time or an increase in hardware resources. In this work, we considered an uncertainty estimation approach named Deep Evidential Regression (DER) that avoids any sampling technique, providing direct uncertainty estimates. Our goal is to provide a systematic approach to intercept localization failures of camera localization systems based on DNNs architectures, by analyzing the generated uncertainties. We propose to exploit CMRNet, a DNN approach for multi-modal image to LiDAR map registration, by modifying its internal configuration to allow for extensive experimental activity on the KITTI dataset. The experimental section highlights CMRNet's major flaws and proves that our proposal does not compromise the original localization performances but also provides, at the same time, the necessary introspection measures that would allow end-users to act accordingly.
Tri-MipRF: Tri-Mip Representation for Efficient Anti-Aliasing Neural Radiance Fields
Despite the tremendous progress in neural radiance fields (NeRF), we still face a dilemma of the trade-off between quality and efficiency, e.g., MipNeRF presents fine-detailed and anti-aliased renderings but takes days for training, while Instant-ngp can accomplish the reconstruction in a few minutes but suffers from blurring or aliasing when rendering at various distances or resolutions due to ignoring the sampling area. To this end, we propose a novel Tri-Mip encoding that enables both instant reconstruction and anti-aliased high-fidelity rendering for neural radiance fields. The key is to factorize the pre-filtered 3D feature spaces in three orthogonal mipmaps. In this way, we can efficiently perform 3D area sampling by taking advantage of 2D pre-filtered feature maps, which significantly elevates the rendering quality without sacrificing efficiency. To cope with the novel Tri-Mip representation, we propose a cone-casting rendering technique to efficiently sample anti-aliased 3D features with the Tri-Mip encoding considering both pixel imaging and observing distance. Extensive experiments on both synthetic and real-world datasets demonstrate our method achieves state-of-the-art rendering quality and reconstruction speed while maintaining a compact representation that reduces 25% model size compared against Instant-ngp.
TRIPS: Trilinear Point Splatting for Real-Time Radiance Field Rendering
Point-based radiance field rendering has demonstrated impressive results for novel view synthesis, offering a compelling blend of rendering quality and computational efficiency. However, also latest approaches in this domain are not without their shortcomings. 3D Gaussian Splatting [Kerbl and Kopanas et al. 2023] struggles when tasked with rendering highly detailed scenes, due to blurring and cloudy artifacts. On the other hand, ADOP [R\"uckert et al. 2022] can accommodate crisper images, but the neural reconstruction network decreases performance, it grapples with temporal instability and it is unable to effectively address large gaps in the point cloud. In this paper, we present TRIPS (Trilinear Point Splatting), an approach that combines ideas from both Gaussian Splatting and ADOP. The fundamental concept behind our novel technique involves rasterizing points into a screen-space image pyramid, with the selection of the pyramid layer determined by the projected point size. This approach allows rendering arbitrarily large points using a single trilinear write. A lightweight neural network is then used to reconstruct a hole-free image including detail beyond splat resolution. Importantly, our render pipeline is entirely differentiable, allowing for automatic optimization of both point sizes and positions. Our evaluation demonstrate that TRIPS surpasses existing state-of-the-art methods in terms of rendering quality while maintaining a real-time frame rate of 60 frames per second on readily available hardware. This performance extends to challenging scenarios, such as scenes featuring intricate geometry, expansive landscapes, and auto-exposed footage.
MoFlow: One-Step Flow Matching for Human Trajectory Forecasting via Implicit Maximum Likelihood Estimation based Distillation
In this paper, we address the problem of human trajectory forecasting, which aims to predict the inherently multi-modal future movements of humans based on their past trajectories and other contextual cues. We propose a novel motion prediction conditional flow matching model, termed MoFlow, to predict K-shot future trajectories for all agents in a given scene. We design a novel flow matching loss function that not only ensures at least one of the K sets of future trajectories is accurate but also encourages all K sets of future trajectories to be diverse and plausible. Furthermore, by leveraging the implicit maximum likelihood estimation (IMLE), we propose a novel distillation method for flow models that only requires samples from the teacher model. Extensive experiments on the real-world datasets, including SportVU NBA games, ETH-UCY, and SDD, demonstrate that both our teacher flow model and the IMLE-distilled student model achieve state-of-the-art performance. These models can generate diverse trajectories that are physically and socially plausible. Moreover, our one-step student model is 100 times faster than the teacher flow model during sampling. The code, model, and data are available at our project page: https://moflow-imle.github.io
Trajectory-Aware Eligibility Traces for Off-Policy Reinforcement Learning
Off-policy learning from multistep returns is crucial for sample-efficient reinforcement learning, but counteracting off-policy bias without exacerbating variance is challenging. Classically, off-policy bias is corrected in a per-decision manner: past temporal-difference errors are re-weighted by the instantaneous Importance Sampling (IS) ratio after each action via eligibility traces. Many off-policy algorithms rely on this mechanism, along with differing protocols for cutting the IS ratios to combat the variance of the IS estimator. Unfortunately, once a trace has been fully cut, the effect cannot be reversed. This has led to the development of credit-assignment strategies that account for multiple past experiences at a time. These trajectory-aware methods have not been extensively analyzed, and their theoretical justification remains uncertain. In this paper, we propose a multistep operator that can express both per-decision and trajectory-aware methods. We prove convergence conditions for our operator in the tabular setting, establishing the first guarantees for several existing methods as well as many new ones. Finally, we introduce Recency-Bounded Importance Sampling (RBIS), which leverages trajectory awareness to perform robustly across lambda-values in an off-policy control task.
A Geometric Perspective on Diffusion Models
Recent years have witnessed significant progress in developing efficient training and fast sampling approaches for diffusion models. A recent remarkable advancement is the use of stochastic differential equations (SDEs) to describe data perturbation and generative modeling in a unified mathematical framework. In this paper, we reveal several intriguing geometric structures of diffusion models and contribute a simple yet powerful interpretation to their sampling dynamics. Through carefully inspecting a popular variance-exploding SDE and its marginal-preserving ordinary differential equation (ODE) for sampling, we discover that the data distribution and the noise distribution are smoothly connected with an explicit, quasi-linear sampling trajectory, and another implicit denoising trajectory, which even converges faster in terms of visual quality. We also establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm, with which we can characterize the asymptotic behavior of diffusion models and identify the score deviation. These new geometric observations enable us to improve previous sampling algorithms, re-examine latent interpolation, as well as re-explain the working principles of distillation-based fast sampling techniques.
DC-Solver: Improving Predictor-Corrector Diffusion Sampler via Dynamic Compensation
Diffusion probabilistic models (DPMs) have shown remarkable performance in visual synthesis but are computationally expensive due to the need for multiple evaluations during the sampling. Recent predictor-corrector diffusion samplers have significantly reduced the required number of function evaluations (NFE), but inherently suffer from a misalignment issue caused by the extra corrector step, especially with a large classifier-free guidance scale (CFG). In this paper, we introduce a new fast DPM sampler called DC-Solver, which leverages dynamic compensation (DC) to mitigate the misalignment of the predictor-corrector samplers. The dynamic compensation is controlled by compensation ratios that are adaptive to the sampling steps and can be optimized on only 10 datapoints by pushing the sampling trajectory toward a ground truth trajectory. We further propose a cascade polynomial regression (CPR) which can instantly predict the compensation ratios on unseen sampling configurations. Additionally, we find that the proposed dynamic compensation can also serve as a plug-and-play module to boost the performance of predictor-only samplers. Extensive experiments on both unconditional sampling and conditional sampling demonstrate that our DC-Solver can consistently improve the sampling quality over previous methods on different DPMs with a wide range of resolutions up to 1024times1024. Notably, we achieve 10.38 FID (NFE=5) on unconditional FFHQ and 0.394 MSE (NFE=5, CFG=7.5) on Stable-Diffusion-2.1. Code is available at https://github.com/wl-zhao/DC-Solver
Euclid: Supercharging Multimodal LLMs with Synthetic High-Fidelity Visual Descriptions
Multimodal large language models (MLLMs) have made rapid progress in recent years, yet continue to struggle with low-level visual perception (LLVP) -- particularly the ability to accurately describe the geometric details of an image. This capability is crucial for applications in areas such as robotics, medical image analysis, and manufacturing. In this paper, we first introduce Geoperception, a benchmark designed to evaluate an MLLM's ability to accurately transcribe 2D geometric information from an image. Using this benchmark, we demonstrate the limitations of leading MLLMs, and then conduct a comprehensive empirical study to explore strategies for improving their performance on geometric tasks. Our findings highlight the benefits of certain model architectures, training techniques, and data strategies, including the use of high-fidelity synthetic data and multi-stage training with a data curriculum. Notably, we find that a data curriculum enables models to learn challenging geometry understanding tasks which they fail to learn from scratch. Leveraging these insights, we develop Euclid, a family of models specifically optimized for strong low-level geometric perception. Although purely trained on synthetic multimodal data, Euclid shows strong generalization ability to novel geometry shapes. For instance, Euclid outperforms the best closed-source model, Gemini-1.5-Pro, by up to 58.56% on certain Geoperception benchmark tasks and 10.65% on average across all tasks.
Hallucinations or Attention Misdirection? The Path to Strategic Value Extraction in Business Using Large Language Models
Large Language Models with transformer architecture have revolutionized the domain of text generation, setting unprecedented benchmarks. Despite their impressive capabilities, LLMs have been criticized for generating outcomes that deviate from factual accuracy or display logical inconsistencies, phenomena commonly referred to as hallucinations. This term, however, has often been misapplied to any results deviating from the instructor's expectations, which this paper defines as attention misdirection rather than true hallucinations. Understanding the distinction between hallucinations and attention misdirection becomes increasingly relevant in business contexts, where the ramifications of such errors can significantly impact the value extraction from these inherently pre-trained models. This paper highlights the best practices of the PGI, Persona, Grouping, and Intelligence, method, a strategic framework that achieved a remarkable error rate of only 3,15 percent across 4,000 responses generated by GPT in response to a real business challenge. It emphasizes that by equipping experimentation with knowledge, businesses can unlock opportunities for innovation through the use of these natively pre-trained models. This reinforces the notion that strategic application grounded in a skilled team can maximize the benefits of emergent technologies such as the LLMs.
Interaction Dataset of Autonomous Vehicles with Traffic Lights and Signs
This paper presents the development of a comprehensive dataset capturing interactions between Autonomous Vehicles (AVs) and traffic control devices, specifically traffic lights and stop signs. Derived from the Waymo Motion dataset, our work addresses a critical gap in the existing literature by providing real-world trajectory data on how AVs navigate these traffic control devices. We propose a methodology for identifying and extracting relevant interaction trajectory data from the Waymo Motion dataset, incorporating over 37,000 instances with traffic lights and 44,000 with stop signs. Our methodology includes defining rules to identify various interaction types, extracting trajectory data, and applying a wavelet-based denoising method to smooth the acceleration and speed profiles and eliminate anomalous values, thereby enhancing the trajectory quality. Quality assessment metrics indicate that trajectories obtained in this study have anomaly proportions in acceleration and jerk profiles reduced to near-zero levels across all interaction categories. By making this dataset publicly available, we aim to address the current gap in datasets containing AV interaction behaviors with traffic lights and signs. Based on the organized and published dataset, we can gain a more in-depth understanding of AVs' behavior when interacting with traffic lights and signs. This will facilitate research on AV integration into existing transportation infrastructures and networks, supporting the development of more accurate behavioral models and simulation tools.
NerfAcc: Efficient Sampling Accelerates NeRFs
Optimizing and rendering Neural Radiance Fields is computationally expensive due to the vast number of samples required by volume rendering. Recent works have included alternative sampling approaches to help accelerate their methods, however, they are often not the focus of the work. In this paper, we investigate and compare multiple sampling approaches and demonstrate that improved sampling is generally applicable across NeRF variants under an unified concept of transmittance estimator. To facilitate future experiments, we develop NerfAcc, a Python toolbox that provides flexible APIs for incorporating advanced sampling methods into NeRF related methods. We demonstrate its flexibility by showing that it can reduce the training time of several recent NeRF methods by 1.5x to 20x with minimal modifications to the existing codebase. Additionally, highly customized NeRFs, such as Instant-NGP, can be implemented in native PyTorch using NerfAcc.
KL-Divergence Guided Temperature Sampling
Temperature sampling is a conventional approach to diversify large language model predictions. As temperature increases, the prediction becomes diverse but also vulnerable to hallucinations -- generating tokens that are sensible but not factual. One common approach to mitigate hallucinations is to provide source/grounding documents and the model is trained to produce predictions that bind to and are attributable to the provided source. It appears that there is a trade-off between diversity and attribution. To mitigate any such trade-off, we propose to relax the constraint of having a fixed temperature over decoding steps, and a mechanism to guide the dynamic temperature according to its relevance to the source through KL-divergence. Our experiments justifies the trade-off, and shows that our sampling algorithm outperforms the conventional top-k and top-p algorithms in conversational question-answering and summarization tasks.
LucidDreamer: Towards High-Fidelity Text-to-3D Generation via Interval Score Matching
The recent advancements in text-to-3D generation mark a significant milestone in generative models, unlocking new possibilities for creating imaginative 3D assets across various real-world scenarios. While recent advancements in text-to-3D generation have shown promise, they often fall short in rendering detailed and high-quality 3D models. This problem is especially prevalent as many methods base themselves on Score Distillation Sampling (SDS). This paper identifies a notable deficiency in SDS, that it brings inconsistent and low-quality updating direction for the 3D model, causing the over-smoothing effect. To address this, we propose a novel approach called Interval Score Matching (ISM). ISM employs deterministic diffusing trajectories and utilizes interval-based score matching to counteract over-smoothing. Furthermore, we incorporate 3D Gaussian Splatting into our text-to-3D generation pipeline. Extensive experiments show that our model largely outperforms the state-of-the-art in quality and training efficiency.
PARTNER: Level up the Polar Representation for LiDAR 3D Object Detection
Recently, polar-based representation has shown promising properties in perceptual tasks. In addition to Cartesian-based approaches, which separate point clouds unevenly, representing point clouds as polar grids has been recognized as an alternative due to (1) its advantage in robust performance under different resolutions and (2) its superiority in streaming-based approaches. However, state-of-the-art polar-based detection methods inevitably suffer from the feature distortion problem because of the non-uniform division of polar representation, resulting in a non-negligible performance gap compared to Cartesian-based approaches. To tackle this issue, we present PARTNER, a novel 3D object detector in the polar coordinate. PARTNER alleviates the dilemma of feature distortion with global representation re-alignment and facilitates the regression by introducing instance-level geometric information into the detection head. Extensive experiments show overwhelming advantages in streaming-based detection and different resolutions. Furthermore, our method outperforms the previous polar-based works with remarkable margins of 3.68% and 9.15% on Waymo and ONCE validation set, thus achieving competitive results over the state-of-the-art methods.
Optimality of Thompson Sampling with Noninformative Priors for Pareto Bandits
In the stochastic multi-armed bandit problem, a randomized probability matching policy called Thompson sampling (TS) has shown excellent performance in various reward models. In addition to the empirical performance, TS has been shown to achieve asymptotic problem-dependent lower bounds in several models. However, its optimality has been mainly addressed under light-tailed or one-parameter models that belong to exponential families. In this paper, we consider the optimality of TS for the Pareto model that has a heavy tail and is parameterized by two unknown parameters. Specifically, we discuss the optimality of TS with probability matching priors that include the Jeffreys prior and the reference priors. We first prove that TS with certain probability matching priors can achieve the optimal regret bound. Then, we show the suboptimality of TS with other priors, including the Jeffreys and the reference priors. Nevertheless, we find that TS with the Jeffreys and reference priors can achieve the asymptotic lower bound if one uses a truncation procedure. These results suggest carefully choosing noninformative priors to avoid suboptimality and show the effectiveness of truncation procedures in TS-based policies.
Fluctuations of the connectivity threshold and largest nearest-neighbour link
Consider a random uniform sample of n points in a compact region A of Euclidean d-space, d geq 2, with a smooth or (when d=2) polygonal boundary. Fix k bf N. Let T_{n,k} be the threshold r at which the geometric graph on these n vertices with distance parameter r becomes k-connected. We show that if d=2 then n (pi/|A|) T_{n,1}^2 - log n is asymptotically standard Gumbel. For (d,k) neq (2,1), it is n (theta_d/|A|) T_{n,k}^d - (2-2/d) log n - (4-2k-2/d) log log n that converges in distribution to a nondegenerate limit, where theta_d is the volume of the unit ball. The limit is Gumbel with scale parameter 2 except when (d,k)=(2,2) where the limit is two component extreme value distributed. The different cases reflect the fact that boundary effects are more more important in some cases than others. We also give similar results for the largest k-nearest neighbour link U_{n,k} in the sample, and show T_{n,k}=U_{n,k} with high probability. We provide estimates on rates of convergence and give similar results for Poisson samples in A. Finally, we give similar results even for non-uniform samples, with a less explicit sequence of centring constants.
MixFlows: principled variational inference via mixed flows
This work presents mixed variational flows (MixFlows), a new variational family that consists of a mixture of repeated applications of a map to an initial reference distribution. First, we provide efficient algorithms for i.i.d. sampling, density evaluation, and unbiased ELBO estimation. We then show that MixFlows have MCMC-like convergence guarantees when the flow map is ergodic and measure-preserving, and provide bounds on the accumulation of error for practical implementations where the flow map is approximated. Finally, we develop an implementation of MixFlows based on uncorrected discretized Hamiltonian dynamics combined with deterministic momentum refreshment. Simulated and real data experiments show that MixFlows can provide more reliable posterior approximations than several black-box normalizing flows, as well as samples of comparable quality to those obtained from state-of-the-art MCMC methods.
Cascading Reinforcement Learning
Cascading bandits have gained popularity in recent years due to their applicability to recommendation systems and online advertising. In the cascading bandit model, at each timestep, an agent recommends an ordered subset of items (called an item list) from a pool of items, each associated with an unknown attraction probability. Then, the user examines the list, and clicks the first attractive item (if any), and after that, the agent receives a reward. The goal of the agent is to maximize the expected cumulative reward. However, the prior literature on cascading bandits ignores the influences of user states (e.g., historical behaviors) on recommendations and the change of states as the session proceeds. Motivated by this fact, we propose a generalized cascading RL framework, which considers the impact of user states and state transition into decisions. In cascading RL, we need to select items not only with large attraction probabilities but also leading to good successor states. This imposes a huge computational challenge due to the combinatorial action space. To tackle this challenge, we delve into the properties of value functions, and design an oracle BestPerm to efficiently find the optimal item list. Equipped with BestPerm, we develop two algorithms CascadingVI and CascadingBPI, which are both computationally-efficient and sample-efficient, and provide near-optimal regret and sample complexity guarantees. Furthermore, we present experiments to show the improved computational and sample efficiencies of our algorithms compared to straightforward adaptations of existing RL algorithms in practice.
Once Detected, Never Lost: Surpassing Human Performance in Offline LiDAR based 3D Object Detection
This paper aims for high-performance offline LiDAR-based 3D object detection. We first observe that experienced human annotators annotate objects from a track-centric perspective. They first label the objects with clear shapes in a track, and then leverage the temporal coherence to infer the annotations of obscure objects. Drawing inspiration from this, we propose a high-performance offline detector in a track-centric perspective instead of the conventional object-centric perspective. Our method features a bidirectional tracking module and a track-centric learning module. Such a design allows our detector to infer and refine a complete track once the object is detected at a certain moment. We refer to this characteristic as "onCe detecTed, neveR Lost" and name the proposed system CTRL. Extensive experiments demonstrate the remarkable performance of our method, surpassing the human-level annotating accuracy and the previous state-of-the-art methods in the highly competitive Waymo Open Dataset without model ensemble. The code will be made publicly available at https://github.com/tusen-ai/SST.
RefAV: Towards Planning-Centric Scenario Mining
Autonomous Vehicles (AVs) collect and pseudo-label terabytes of multi-modal data localized to HD maps during normal fleet testing. However, identifying interesting and safety-critical scenarios from uncurated driving logs remains a significant challenge. Traditional scenario mining techniques are error-prone and prohibitively time-consuming, often relying on hand-crafted structured queries. In this work, we revisit spatio-temporal scenario mining through the lens of recent vision-language models (VLMs) to detect whether a described scenario occurs in a driving log and, if so, precisely localize it in both time and space. To address this problem, we introduce RefAV, a large-scale dataset of 10,000 diverse natural language queries that describe complex multi-agent interactions relevant to motion planning derived from 1000 driving logs in the Argoverse 2 Sensor dataset. We evaluate several referential multi-object trackers and present an empirical analysis of our baselines. Notably, we find that naively repurposing off-the-shelf VLMs yields poor performance, suggesting that scenario mining presents unique challenges. Our code and dataset are available at https://github.com/CainanD/RefAV/ and https://argoverse.github.io/user-guide/tasks/scenario_mining.html
A Unified Sampling Framework for Solver Searching of Diffusion Probabilistic Models
Recent years have witnessed the rapid progress and broad application of diffusion probabilistic models (DPMs). Sampling from DPMs can be viewed as solving an ordinary differential equation (ODE). Despite the promising performance, the generation of DPMs usually consumes much time due to the large number of function evaluations (NFE). Though recent works have accelerated the sampling to around 20 steps with high-order solvers, the sample quality with less than 10 NFE can still be improved. In this paper, we propose a unified sampling framework (USF) to study the optional strategies for solver. Under this framework, we further reveal that taking different solving strategies at different timesteps may help further decrease the truncation error, and a carefully designed solver schedule has the potential to improve the sample quality by a large margin. Therefore, we propose a new sampling framework based on the exponential integral formulation that allows free choices of solver strategy at each step and design specific decisions for the framework. Moreover, we propose S^3, a predictor-based search method that automatically optimizes the solver schedule to get a better time-quality trade-off of sampling. We demonstrate that S^3 can find outstanding solver schedules which outperform the state-of-the-art sampling methods on CIFAR-10, CelebA, ImageNet, and LSUN-Bedroom datasets. Specifically, we achieve 2.69 FID with 10 NFE and 6.86 FID with 5 NFE on CIFAR-10 dataset, outperforming the SOTA method significantly. We further apply S^3 to Stable-Diffusion model and get an acceleration ratio of 2times, showing the feasibility of sampling in very few steps without retraining the neural network.
Reparameterization Gradients through Acceptance-Rejection Sampling Algorithms
Variational inference using the reparameterization trick has enabled large-scale approximate Bayesian inference in complex probabilistic models, leveraging stochastic optimization to sidestep intractable expectations. The reparameterization trick is applicable when we can simulate a random variable by applying a differentiable deterministic function on an auxiliary random variable whose distribution is fixed. For many distributions of interest (such as the gamma or Dirichlet), simulation of random variables relies on acceptance-rejection sampling. The discontinuity introduced by the accept-reject step means that standard reparameterization tricks are not applicable. We propose a new method that lets us leverage reparameterization gradients even when variables are outputs of a acceptance-rejection sampling algorithm. Our approach enables reparameterization on a larger class of variational distributions. In several studies of real and synthetic data, we show that the variance of the estimator of the gradient is significantly lower than other state-of-the-art methods. This leads to faster convergence of stochastic gradient variational inference.
Scalable Scene Flow from Point Clouds in the Real World
Autonomous vehicles operate in highly dynamic environments necessitating an accurate assessment of which aspects of a scene are moving and where they are moving to. A popular approach to 3D motion estimation, termed scene flow, is to employ 3D point cloud data from consecutive LiDAR scans, although such approaches have been limited by the small size of real-world, annotated LiDAR data. In this work, we introduce a new large-scale dataset for scene flow estimation derived from corresponding tracked 3D objects, which is sim1,000times larger than previous real-world datasets in terms of the number of annotated frames. We demonstrate how previous works were bounded based on the amount of real LiDAR data available, suggesting that larger datasets are required to achieve state-of-the-art predictive performance. Furthermore, we show how previous heuristics for operating on point clouds such as down-sampling heavily degrade performance, motivating a new class of models that are tractable on the full point cloud. To address this issue, we introduce the FastFlow3D architecture which provides real time inference on the full point cloud. Additionally, we design human-interpretable metrics that better capture real world aspects by accounting for ego-motion and providing breakdowns per object type. We hope that this dataset may provide new opportunities for developing real world scene flow systems.
Navigation World Models
Navigation is a fundamental skill of agents with visual-motor capabilities. We introduce a Navigation World Model (NWM), a controllable video generation model that predicts future visual observations based on past observations and navigation actions. To capture complex environment dynamics, NWM employs a Conditional Diffusion Transformer (CDiT), trained on a diverse collection of egocentric videos of both human and robotic agents, and scaled up to 1 billion parameters. In familiar environments, NWM can plan navigation trajectories by simulating them and evaluating whether they achieve the desired goal. Unlike supervised navigation policies with fixed behavior, NWM can dynamically incorporate constraints during planning. Experiments demonstrate its effectiveness in planning trajectories from scratch or by ranking trajectories sampled from an external policy. Furthermore, NWM leverages its learned visual priors to imagine trajectories in unfamiliar environments from a single input image, making it a flexible and powerful tool for next-generation navigation systems.
Do Language Models Know When They're Hallucinating References?
State-of-the-art language models (LMs) are notoriously susceptible to generating hallucinated information. Such inaccurate outputs not only undermine the reliability of these models but also limit their use and raise serious concerns about misinformation and propaganda. In this work, we focus on hallucinated book and article references and present them as the "model organism" of language model hallucination research, due to their frequent and easy-to-discern nature. We posit that if a language model cites a particular reference in its output, then it should ideally possess sufficient information about its authors and content, among other relevant details. Using this basic insight, we illustrate that one can identify hallucinated references without ever consulting any external resources, by asking a set of direct or indirect queries to the language model about the references. These queries can be considered as "consistency checks." Our findings highlight that while LMs, including GPT-4, often produce inconsistent author lists for hallucinated references, they also often accurately recall the authors of real references. In this sense, the LM can be said to "know" when it is hallucinating references. Furthermore, these findings show how hallucinated references can be dissected to shed light on their nature. Replication code and results can be found at https://github.com/microsoft/hallucinated-references.
Distributed Markov Chain Monte Carlo Sampling based on the Alternating Direction Method of Multipliers
Many machine learning applications require operating on a spatially distributed dataset. Despite technological advances, privacy considerations and communication constraints may prevent gathering the entire dataset in a central unit. In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers, which is commonly used in the optimization literature due to its fast convergence. In contrast to distributed optimization, distributed sampling allows for uncertainty quantification in Bayesian inference tasks. We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art. For our theoretical results, we use convex optimization tools to establish a fundamental inequality on the generated local sample iterates. This inequality enables us to show convergence of the distribution associated with these iterates to the underlying target distribution in Wasserstein distance. In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
City-scale Incremental Neural Mapping with Three-layer Sampling and Panoptic Representation
Neural implicit representations are drawing a lot of attention from the robotics community recently, as they are expressive, continuous and compact. However, city-scale continual implicit dense mapping based on sparse LiDAR input is still an under-explored challenge. To this end, we successfully build a city-scale continual neural mapping system with a panoptic representation that consists of environment-level and instance-level modelling. Given a stream of sparse LiDAR point cloud, it maintains a dynamic generative model that maps 3D coordinates to signed distance field (SDF) values. To address the difficulty of representing geometric information at different levels in city-scale space, we propose a tailored three-layer sampling strategy to dynamically sample the global, local and near-surface domains. Meanwhile, to realize high fidelity mapping of instance under incomplete observation, category-specific prior is introduced to better model the geometric details. We evaluate on the public SemanticKITTI dataset and demonstrate the significance of the newly proposed three-layer sampling strategy and panoptic representation, using both quantitative and qualitative results. Codes and model will be publicly available.
Conditional Generative Modeling is All You Need for Marked Temporal Point Processes
Recent advancements in generative modeling have made it possible to generate high-quality content from context information, but a key question remains: how to teach models to know when to generate content? To answer this question, this study proposes a novel event generative model that draws its statistical intuition from marked temporal point processes, and offers a clean, flexible, and computationally efficient solution for a wide range of applications involving multi-dimensional marks. We aim to capture the distribution of the point process without explicitly specifying the conditional intensity or probability density. Instead, we use a conditional generator that takes the history of events as input and generates the high-quality subsequent event that is likely to occur given the prior observations. The proposed framework offers a host of benefits, including exceptional efficiency in learning the model and generating samples, as well as considerable representational power to capture intricate dynamics in multi- or even high-dimensional event space. Our numerical results demonstrate superior performance compared to other state-of-the-art baselines.
Snapshot Reinforcement Learning: Leveraging Prior Trajectories for Efficiency
Deep reinforcement learning (DRL) algorithms require substantial samples and computational resources to achieve higher performance, which restricts their practical application and poses challenges for further development. Given the constraint of limited resources, it is essential to leverage existing computational work (e.g., learned policies, samples) to enhance sample efficiency and reduce the computational resource consumption of DRL algorithms. Previous works to leverage existing computational work require intrusive modifications to existing algorithms and models, designed specifically for specific algorithms, lacking flexibility and universality. In this paper, we present the Snapshot Reinforcement Learning (SnapshotRL) framework, which enhances sample efficiency by simply altering environments, without making any modifications to algorithms and models. By allowing student agents to choose states in teacher trajectories as the initial state to sample, SnapshotRL can effectively utilize teacher trajectories to assist student agents in training, allowing student agents to explore a larger state space at the early training phase. We propose a simple and effective SnapshotRL baseline algorithm, S3RL, which integrates well with existing DRL algorithms. Our experiments demonstrate that integrating S3RL with TD3, SAC, and PPO algorithms on the MuJoCo benchmark significantly improves sample efficiency and average return, without extra samples and additional computational resources.
Learning to Discretize Denoising Diffusion ODEs
Diffusion Probabilistic Models (DPMs) are generative models showing competitive performance in various domains, including image synthesis and 3D point cloud generation. Sampling from pre-trained DPMs involves multiple neural function evaluations (NFEs) to transform Gaussian noise samples into images, resulting in higher computational costs compared to single-step generative models such as GANs or VAEs. Therefore, reducing the number of NFEs while preserving generation quality is crucial. To address this, we propose LD3, a lightweight framework designed to learn the optimal time discretization for sampling. LD3 can be combined with various samplers and consistently improves generation quality without having to retrain resource-intensive neural networks. We demonstrate analytically and empirically that LD3 improves sampling efficiency with much less computational overhead. We evaluate our method with extensive experiments on 7 pre-trained models, covering unconditional and conditional sampling in both pixel-space and latent-space DPMs. We achieve FIDs of 2.38 (10 NFE), and 2.27 (10 NFE) on unconditional CIFAR10 and AFHQv2 in 5-10 minutes of training. LD3 offers an efficient approach to sampling from pre-trained diffusion models. Code is available at https://github.com/vinhsuhi/LD3.
4Seasons: A Cross-Season Dataset for Multi-Weather SLAM in Autonomous Driving
We present a novel dataset covering seasonal and challenging perceptual conditions for autonomous driving. Among others, it enables research on visual odometry, global place recognition, and map-based re-localization tracking. The data was collected in different scenarios and under a wide variety of weather conditions and illuminations, including day and night. This resulted in more than 350 km of recordings in nine different environments ranging from multi-level parking garage over urban (including tunnels) to countryside and highway. We provide globally consistent reference poses with up-to centimeter accuracy obtained from the fusion of direct stereo visual-inertial odometry with RTK-GNSS. The full dataset is available at https://go.vision.in.tum.de/4seasons.
Multimodal Detection of Unknown Objects on Roads for Autonomous Driving
Tremendous progress in deep learning over the last years has led towards a future with autonomous vehicles on our roads. Nevertheless, the performance of their perception systems is strongly dependent on the quality of the utilized training data. As these usually only cover a fraction of all object classes an autonomous driving system will face, such systems struggle with handling the unexpected. In order to safely operate on public roads, the identification of objects from unknown classes remains a crucial task. In this paper, we propose a novel pipeline to detect unknown objects. Instead of focusing on a single sensor modality, we make use of lidar and camera data by combining state-of-the art detection models in a sequential manner. We evaluate our approach on the Waymo Open Perception Dataset and point out current research gaps in anomaly detection.
Latent Compass: Creation by Navigation
In Marius von Senden's Space and Sight, a newly sighted blind patient describes the experience of a corner as lemon-like, because corners "prick" sight like lemons prick the tongue. Prickliness, here, is a dimension in the feature space of sensory experience, an effect of the perceived on the perceiver that arises where the two interact. In the account of the newly sighted, an effect familiar from one interaction translates to a novel context. Perception serves as the vehicle for generalization, in that an effect shared across different experiences produces a concrete abstraction grounded in those experiences. Cezanne and the post-impressionists, fluent in the language of experience translation, realized that the way to paint a concrete form that best reflected reality was to paint not what they saw, but what it was like to see. We envision a future of creation using AI where what it is like to see is replicable, transferrable, manipulable - part of the artist's palette that is both grounded in a particular context, and generalizable beyond it. An active line of research maps human-interpretable features onto directions in GAN latent space. Supervised and self-supervised approaches that search for anticipated directions or use off-the-shelf classifiers to drive image manipulation in embedding space are limited in the variety of features they can uncover. Unsupervised approaches that discover useful new directions show that the space of perceptually meaningful directions is nowhere close to being fully mapped. As this space is broad and full of creative potential, we want tools for direction discovery that capture the richness and generalizability of human perception. Our approach puts creators in the discovery loop during real-time tool use, in order to identify directions that are perceptually meaningful to them, and generate interpretable image translations along those directions.
NYU-VPR: Long-Term Visual Place Recognition Benchmark with View Direction and Data Anonymization Influences
Visual place recognition (VPR) is critical in not only localization and mapping for autonomous driving vehicles, but also in assistive navigation for the visually impaired population. To enable a long-term VPR system on a large scale, several challenges need to be addressed. First, different applications could require different image view directions, such as front views for self-driving cars while side views for the low vision people. Second, VPR in metropolitan scenes can often cause privacy concerns due to the imaging of pedestrian and vehicle identity information, calling for the need for data anonymization before VPR queries and database construction. Both factors could lead to VPR performance variations that are not well understood yet. To study their influences, we present the NYU-VPR dataset that contains more than 200,000 images over a 2km by 2km area near the New York University campus, taken within the whole year of 2016. We present benchmark results on several popular VPR algorithms showing that side views are significantly more challenging for current VPR methods while the influence of data anonymization is almost negligible, together with our hypothetical explanations and in-depth analysis.
Parameter-efficient Prompt Learning for 3D Point Cloud Understanding
This paper presents a parameter-efficient prompt tuning method, named PPT, to adapt a large multi-modal model for 3D point cloud understanding. Existing strategies are quite expensive in computation and storage, and depend on time-consuming prompt engineering. We address the problems from three aspects. Firstly, a PromptLearner module is devised to replace hand-crafted prompts with learnable contexts to automate the prompt tuning process. Then, we lock the pre-trained backbone instead of adopting the full fine-tuning paradigm to substantially improve the parameter efficiency. Finally, a lightweight PointAdapter module is arranged near target tasks to enhance prompt tuning for 3D point cloud understanding. Comprehensive experiments are conducted to demonstrate the superior parameter and data efficiency of the proposed method.Meanwhile, we obtain new records on 4 public datasets and multiple 3D tasks, i.e., point cloud recognition, few-shot learning, and part segmentation. The implementation is available at https://github.com/auniquesun/PPT.
Flying Triangulation - towards the 3D movie camera
Flying Triangulation sensors enable a free-hand and motion-robust 3D data acquisition of complex shaped objects. The measurement principle is based on a multi-line light-sectioning approach and uses sophisticated algorithms for real-time registration (S. Ettl et al., Appl. Opt. 51 (2012) 281-289). As "single-shot principle", light sectioning enables the option to get surface data from one single camera exposure. But there is a drawback: A pixel-dense measurement is not possible because of fundamental information-theoretical reasons. By "pixel-dense" we understand that each pixel displays individually measured distance information, neither interpolated from its neighbour pixels nor using lateral context information. Hence, for monomodal single-shot principles, the 3D data generated from one 2D raw image display a significantly lower space-bandwidth than the camera permits. This is the price one must pay for motion robustness. Currently, our sensors project about 10 lines (each with 1000 pixels), reaching an considerable lower data efficiency than theoretically possible for a single-shot sensor. Our aim is to push Flying Triangulation to its information-theoretical limits. Therefore, the line density as well as the measurement depth needs to be significantly increased. This causes serious indexing ambiguities. On the road to a single-shot 3D movie camera, we are working on solutions to overcome the problem of false line indexing by utilizing yet unexploited information. We will present several approaches and will discuss profound information-theoretical questions about the information efficiency of 3D sensors.
Wider or Deeper? Scaling LLM Inference-Time Compute with Adaptive Branching Tree Search
Recent advances demonstrate that increasing inference-time computation can significantly boost the reasoning capabilities of large language models (LLMs). Although repeated sampling (i.e., generating multiple candidate outputs) is a highly effective strategy, it does not leverage external feedback signals for refinement, which are often available in tasks like coding. In this work, we propose Adaptive Branching Monte Carlo Tree Search (AB-MCTS), a novel inference-time framework that generalizes repeated sampling with principled multi-turn exploration and exploitation. At each node in the search tree, AB-MCTS dynamically decides whether to "go wider" by expanding new candidate responses or "go deeper" by revisiting existing ones based on external feedback signals. We evaluate our method on complex coding and engineering tasks using frontier models. Empirical results show that AB-MCTS consistently outperforms both repeated sampling and standard MCTS, underscoring the importance of combining the response diversity of LLMs with multi-turn solution refinement for effective inference-time scaling.
SC3K: Self-supervised and Coherent 3D Keypoints Estimation from Rotated, Noisy, and Decimated Point Cloud Data
This paper proposes a new method to infer keypoints from arbitrary object categories in practical scenarios where point cloud data (PCD) are noisy, down-sampled and arbitrarily rotated. Our proposed model adheres to the following principles: i) keypoints inference is fully unsupervised (no annotation given), ii) keypoints position error should be low and resilient to PCD perturbations (robustness), iii) keypoints should not change their indexes for the intra-class objects (semantic coherence), iv) keypoints should be close to or proximal to PCD surface (compactness). We achieve these desiderata by proposing a new self-supervised training strategy for keypoints estimation that does not assume any a priori knowledge of the object class, and a model architecture with coupled auxiliary losses that promotes the desired keypoints properties. We compare the keypoints estimated by the proposed approach with those of the state-of-the-art unsupervised approaches. The experiments show that our approach outperforms by estimating keypoints with improved coverage (+9.41%) while being semantically consistent (+4.66%) that best characterizes the object's 3D shape for downstream tasks. Code and data are available at: https://github.com/IITPAVIS/SC3K
Stylus: Automatic Adapter Selection for Diffusion Models
Beyond scaling base models with more data or parameters, fine-tuned adapters provide an alternative way to generate high fidelity, custom images at reduced costs. As such, adapters have been widely adopted by open-source communities, accumulating a database of over 100K adapters-most of which are highly customized with insufficient descriptions. This paper explores the problem of matching the prompt to a set of relevant adapters, built on recent work that highlight the performance gains of composing adapters. We introduce Stylus, which efficiently selects and automatically composes task-specific adapters based on a prompt's keywords. Stylus outlines a three-stage approach that first summarizes adapters with improved descriptions and embeddings, retrieves relevant adapters, and then further assembles adapters based on prompts' keywords by checking how well they fit the prompt. To evaluate Stylus, we developed StylusDocs, a curated dataset featuring 75K adapters with pre-computed adapter embeddings. In our evaluation on popular Stable Diffusion checkpoints, Stylus achieves greater CLIP-FID Pareto efficiency and is twice as preferred, with humans and multimodal models as evaluators, over the base model. See stylus-diffusion.github.io for more.
Theoretical analysis and computation of the sample Frechet mean for sets of large graphs based on spectral information
To characterize the location (mean, median) of a set of graphs, one needs a notion of centrality that is adapted to metric spaces, since graph sets are not Euclidean spaces. A standard approach is to consider the Frechet mean. In this work, we equip a set of graphs with the pseudometric defined by the norm between the eigenvalues of their respective adjacency matrix. Unlike the edit distance, this pseudometric reveals structural changes at multiple scales, and is well adapted to studying various statistical problems for graph-valued data. We describe an algorithm to compute an approximation to the sample Frechet mean of a set of undirected unweighted graphs with a fixed size using this pseudometric.
Granular Privacy Control for Geolocation with Vision Language Models
Vision Language Models (VLMs) are rapidly advancing in their capability to answer information-seeking questions. As these models are widely deployed in consumer applications, they could lead to new privacy risks due to emergent abilities to identify people in photos, geolocate images, etc. As we demonstrate, somewhat surprisingly, current open-source and proprietary VLMs are very capable image geolocators, making widespread geolocation with VLMs an immediate privacy risk, rather than merely a theoretical future concern. As a first step to address this challenge, we develop a new benchmark, GPTGeoChat, to test the ability of VLMs to moderate geolocation dialogues with users. We collect a set of 1,000 image geolocation conversations between in-house annotators and GPT-4v, which are annotated with the granularity of location information revealed at each turn. Using this new dataset, we evaluate the ability of various VLMs to moderate GPT-4v geolocation conversations by determining when too much location information has been revealed. We find that custom fine-tuned models perform on par with prompted API-based models when identifying leaked location information at the country or city level; however, fine-tuning on supervised data appears to be needed to accurately moderate finer granularities, such as the name of a restaurant or building.
Can Large Vision Language Models Read Maps Like a Human?
In this paper, we introduce MapBench-the first dataset specifically designed for human-readable, pixel-based map-based outdoor navigation, curated from complex path finding scenarios. MapBench comprises over 1600 pixel space map path finding problems from 100 diverse maps. In MapBench, LVLMs generate language-based navigation instructions given a map image and a query with beginning and end landmarks. For each map, MapBench provides Map Space Scene Graph (MSSG) as an indexing data structure to convert between natural language and evaluate LVLM-generated results. We demonstrate that MapBench significantly challenges state-of-the-art LVLMs both zero-shot prompting and a Chain-of-Thought (CoT) augmented reasoning framework that decomposes map navigation into sequential cognitive processes. Our evaluation of both open-source and closed-source LVLMs underscores the substantial difficulty posed by MapBench, revealing critical limitations in their spatial reasoning and structured decision-making capabilities. We release all the code and dataset in https://github.com/taco-group/MapBench.
Sampling-Based Accuracy Testing of Posterior Estimators for General Inference
Parameter inference, i.e. inferring the posterior distribution of the parameters of a statistical model given some data, is a central problem to many scientific disciplines. Generative models can be used as an alternative to Markov Chain Monte Carlo methods for conducting posterior inference, both in likelihood-based and simulation-based problems. However, assessing the accuracy of posteriors encoded in generative models is not straightforward. In this paper, we introduce `Tests of Accuracy with Random Points' (TARP) coverage testing as a method to estimate coverage probabilities of generative posterior estimators. Our method differs from previously-existing coverage-based methods, which require posterior evaluations. We prove that our approach is necessary and sufficient to show that a posterior estimator is accurate. We demonstrate the method on a variety of synthetic examples, and show that TARP can be used to test the results of posterior inference analyses in high-dimensional spaces. We also show that our method can detect inaccurate inferences in cases where existing methods fail.
How NeRFs and 3D Gaussian Splatting are Reshaping SLAM: a Survey
Over the past two decades, research in the field of Simultaneous Localization and Mapping (SLAM) has undergone a significant evolution, highlighting its critical role in enabling autonomous exploration of unknown environments. This evolution ranges from hand-crafted methods, through the era of deep learning, to more recent developments focused on Neural Radiance Fields (NeRFs) and 3D Gaussian Splatting (3DGS) representations. Recognizing the growing body of research and the absence of a comprehensive survey on the topic, this paper aims to provide the first comprehensive overview of SLAM progress through the lens of the latest advancements in radiance fields. It sheds light on the background, evolutionary path, inherent strengths and limitations, and serves as a fundamental reference to highlight the dynamic progress and specific challenges.
Optimizing DDPM Sampling with Shortcut Fine-Tuning
In this study, we propose Shortcut Fine-Tuning (SFT), a new approach for addressing the challenge of fast sampling of pretrained Denoising Diffusion Probabilistic Models (DDPMs). SFT advocates for the fine-tuning of DDPM samplers through the direct minimization of Integral Probability Metrics (IPM), instead of learning the backward diffusion process. This enables samplers to discover an alternative and more efficient sampling shortcut, deviating from the backward diffusion process. Inspired by a control perspective, we propose a new algorithm SFT-PG: Shortcut Fine-Tuning with Policy Gradient, and prove that under certain assumptions, gradient descent of diffusion models with respect to IPM is equivalent to performing policy gradient. To our best knowledge, this is the first attempt to utilize reinforcement learning (RL) methods to train diffusion models. Through empirical evaluation, we demonstrate that our fine-tuning method can further enhance existing fast DDPM samplers, resulting in sample quality comparable to or even surpassing that of the full-step model across various datasets.
Multimarginal generative modeling with stochastic interpolants
Given a set of K probability densities, we consider the multimarginal generative modeling problem of learning a joint distribution that recovers these densities as marginals. The structure of this joint distribution should identify multi-way correspondences among the prescribed marginals. We formalize an approach to this task within a generalization of the stochastic interpolant framework, leading to efficient learning algorithms built upon dynamical transport of measure. Our generative models are defined by velocity and score fields that can be characterized as the minimizers of simple quadratic objectives, and they are defined on a simplex that generalizes the time variable in the usual dynamical transport framework. The resulting transport on the simplex is influenced by all marginals, and we show that multi-way correspondences can be extracted. The identification of such correspondences has applications to style transfer, algorithmic fairness, and data decorruption. In addition, the multimarginal perspective enables an efficient algorithm for reducing the dynamical transport cost in the ordinary two-marginal setting. We demonstrate these capacities with several numerical examples.
Diffusion Tree Sampling: Scalable inference-time alignment of diffusion models
Adapting a pretrained diffusion model to new objectives at inference time remains an open problem in generative modeling. Existing steering methods suffer from inaccurate value estimation, especially at high noise levels, which biases guidance. Moreover, information from past runs is not reused to improve sample quality, resulting in inefficient use of compute. Inspired by the success of Monte Carlo Tree Search, we address these limitations by casting inference-time alignment as a search problem that reuses past computations. We introduce a tree-based approach that samples from the reward-aligned target density by propagating terminal rewards back through the diffusion chain and iteratively refining value estimates with each additional generation. Our proposed method, Diffusion Tree Sampling (DTS), produces asymptotically exact samples from the target distribution in the limit of infinite rollouts, and its greedy variant, Diffusion Tree Search (DTS^star), performs a global search for high reward samples. On MNIST and CIFAR-10 class-conditional generation, DTS matches the FID of the best-performing baseline with up to 10times less compute. In text-to-image generation and language completion tasks, DTS^star effectively searches for high reward samples that match best-of-N with up to 5times less compute. By reusing information from previous generations, we get an anytime algorithm that turns additional compute into steadily better samples, providing a scalable approach for inference-time alignment of diffusion models.
On the Learning and Learnability of Quasimetrics
Our world is full of asymmetries. Gravity and wind can make reaching a place easier than coming back. Social artifacts such as genealogy charts and citation graphs are inherently directed. In reinforcement learning and control, optimal goal-reaching strategies are rarely reversible (symmetrical). Distance functions supported on these asymmetrical structures are called quasimetrics. Despite their common appearance, little research has been done on the learning of quasimetrics. Our theoretical analysis reveals that a common class of learning algorithms, including unconstrained multilayer perceptrons (MLPs), provably fails to learn a quasimetric consistent with training data. In contrast, our proposed Poisson Quasimetric Embedding (PQE) is the first quasimetric learning formulation that both is learnable with gradient-based optimization and enjoys strong performance guarantees. Experiments on random graphs, social graphs, and offline Q-learning demonstrate its effectiveness over many common baselines.
DPM-Solver-v3: Improved Diffusion ODE Solver with Empirical Model Statistics
Diffusion probabilistic models (DPMs) have exhibited excellent performance for high-fidelity image generation while suffering from inefficient sampling. Recent works accelerate the sampling procedure by proposing fast ODE solvers that leverage the specific ODE form of DPMs. However, they highly rely on specific parameterization during inference (such as noise/data prediction), which might not be the optimal choice. In this work, we propose a novel formulation towards the optimal parameterization during sampling that minimizes the first-order discretization error of the ODE solution. Based on such formulation, we propose DPM-Solver-v3, a new fast ODE solver for DPMs by introducing several coefficients efficiently computed on the pretrained model, which we call empirical model statistics. We further incorporate multistep methods and a predictor-corrector framework, and propose some techniques for improving sample quality at small numbers of function evaluations (NFE) or large guidance scales. Experiments show that DPM-Solver-v3 achieves consistently better or comparable performance in both unconditional and conditional sampling with both pixel-space and latent-space DPMs, especially in 5sim10 NFEs. We achieve FIDs of 12.21 (5 NFE), 2.51 (10 NFE) on unconditional CIFAR10, and MSE of 0.55 (5 NFE, 7.5 guidance scale) on Stable Diffusion, bringing a speed-up of 15\%sim30\% compared to previous state-of-the-art training-free methods. Code is available at https://github.com/thu-ml/DPM-Solver-v3.
DivShift: Exploring Domain-Specific Distribution Shift in Volunteer-Collected Biodiversity Datasets
Climate change is negatively impacting the world's biodiversity. To build automated systems to monitor these negative biodiversity impacts, large-scale, volunteer-collected datasets like iNaturalist are built from community-identified, natural imagery. However, such volunteer-based data are opportunistic and lack a structured sampling strategy, resulting in geographic, temporal, observation quality, and socioeconomic, biases that stymie uptake of these models for downstream biodiversity monitoring tasks. Here we introduce DivShift North American West Coast (DivShift-NAWC), a curated dataset of almost 8 million iNaturalist plant images across the western coast of North America, for exploring the effects of these biases on deep learning model performance. We compare model performance across four known biases and observe that they indeed confound model performance. We suggest practical strategies for curating datasets to train deep learning models for monitoring climate change's impacts on the world's biodiversity.
Making RL with Preference-based Feedback Efficient via Randomization
Reinforcement Learning algorithms that learn from human feedback (RLHF) need to be efficient in terms of statistical complexity, computational complexity, and query complexity. In this work, we consider the RLHF setting where the feedback is given in the format of preferences over pairs of trajectories. In the linear MDP model, using randomization in algorithm design, we present an algorithm that is sample efficient (i.e., has near-optimal worst-case regret bounds) and has polynomial running time (i.e., computational complexity is polynomial with respect to relevant parameters). Our algorithm further minimizes the query complexity through a novel randomized active learning procedure. In particular, our algorithm demonstrates a near-optimal tradeoff between the regret bound and the query complexity. To extend the results to more general nonlinear function approximation, we design a model-based randomized algorithm inspired by the idea of Thompson sampling. Our algorithm minimizes Bayesian regret bound and query complexity, again achieving a near-optimal tradeoff between these two quantities. Computation-wise, similar to the prior Thompson sampling algorithms under the regular RL setting, the main computation primitives of our algorithm are Bayesian supervised learning oracles which have been heavily investigated on the empirical side when applying Thompson sampling algorithms to RL benchmark problems.
Adaptive Sampling Strategies to Construct Equitable Training Datasets
In domains ranging from computer vision to natural language processing, machine learning models have been shown to exhibit stark disparities, often performing worse for members of traditionally underserved groups. One factor contributing to these performance gaps is a lack of representation in the data the models are trained on. It is often unclear, however, how to operationalize representativeness in specific applications. Here we formalize the problem of creating equitable training datasets, and propose a statistical framework for addressing this problem. We consider a setting where a model builder must decide how to allocate a fixed data collection budget to gather training data from different subgroups. We then frame dataset creation as a constrained optimization problem, in which one maximizes a function of group-specific performance metrics based on (estimated) group-specific learning rates and costs per sample. This flexible approach incorporates preferences of model-builders and other stakeholders, as well as the statistical properties of the learning task. When data collection decisions are made sequentially, we show that under certain conditions this optimization problem can be efficiently solved even without prior knowledge of the learning rates. To illustrate our approach, we conduct a simulation study of polygenic risk scores on synthetic genomic data -- an application domain that often suffers from non-representative data collection. We find that our adaptive sampling strategy outperforms several common data collection heuristics, including equal and proportional sampling, demonstrating the value of strategic dataset design for building equitable models.
Non-Log-Concave and Nonsmooth Sampling via Langevin Monte Carlo Algorithms
We study the problem of approximate sampling from non-log-concave distributions, e.g., Gaussian mixtures, which is often challenging even in low dimensions due to their multimodality. We focus on performing this task via Markov chain Monte Carlo (MCMC) methods derived from discretizations of the overdamped Langevin diffusions, which are commonly known as Langevin Monte Carlo algorithms. Furthermore, we are also interested in two nonsmooth cases for which a large class of proximal MCMC methods have been developed: (i) a nonsmooth prior is considered with a Gaussian mixture likelihood; (ii) a Laplacian mixture distribution. Such nonsmooth and non-log-concave sampling tasks arise from a wide range of applications to Bayesian inference and imaging inverse problems such as image deconvolution. We perform numerical simulations to compare the performance of most commonly used Langevin Monte Carlo algorithms.
GoalFlow: Goal-Driven Flow Matching for Multimodal Trajectories Generation in End-to-End Autonomous Driving
We propose GoalFlow, an end-to-end autonomous driving method for generating high-quality multimodal trajectories. In autonomous driving scenarios, there is rarely a single suitable trajectory. Recent methods have increasingly focused on modeling multimodal trajectory distributions. However, they suffer from trajectory selection complexity and reduced trajectory quality due to high trajectory divergence and inconsistencies between guidance and scene information. To address these issues, we introduce GoalFlow, a novel method that effectively constrains the generative process to produce high-quality, multimodal trajectories. To resolve the trajectory divergence problem inherent in diffusion-based methods, GoalFlow constrains the generated trajectories by introducing a goal point. GoalFlow establishes a novel scoring mechanism that selects the most appropriate goal point from the candidate points based on scene information. Furthermore, GoalFlow employs an efficient generative method, Flow Matching, to generate multimodal trajectories, and incorporates a refined scoring mechanism to select the optimal trajectory from the candidates. Our experimental results, validated on the NavsimDauner2024_navsim, demonstrate that GoalFlow achieves state-of-the-art performance, delivering robust multimodal trajectories for autonomous driving. GoalFlow achieved PDMS of 90.3, significantly surpassing other methods. Compared with other diffusion-policy-based methods, our approach requires only a single denoising step to obtain excellent performance. The code is available at https://github.com/YvanYin/GoalFlow.
Diffusion Generative Flow Samplers: Improving learning signals through partial trajectory optimization
We tackle the problem of sampling from intractable high-dimensional density functions, a fundamental task that often appears in machine learning and statistics. We extend recent sampling-based approaches that leverage controlled stochastic processes to model approximate samples from these target densities. The main drawback of these approaches is that the training objective requires full trajectories to compute, resulting in sluggish credit assignment issues due to use of entire trajectories and a learning signal present only at the terminal time. In this work, we present Diffusion Generative Flow Samplers (DGFS), a sampling-based framework where the learning process can be tractably broken down into short partial trajectory segments, via parameterizing an additional "flow function". Our method takes inspiration from the theory developed for generative flow networks (GFlowNets), allowing us to make use of intermediate learning signals. Through various challenging experiments, we demonstrate that DGFS achieves more accurate estimates of the normalization constant than closely-related prior methods.
Accounting For Informative Sampling When Learning to Forecast Treatment Outcomes Over Time
Machine learning (ML) holds great potential for accurately forecasting treatment outcomes over time, which could ultimately enable the adoption of more individualized treatment strategies in many practical applications. However, a significant challenge that has been largely overlooked by the ML literature on this topic is the presence of informative sampling in observational data. When instances are observed irregularly over time, sampling times are typically not random, but rather informative -- depending on the instance's characteristics, past outcomes, and administered treatments. In this work, we formalize informative sampling as a covariate shift problem and show that it can prohibit accurate estimation of treatment outcomes if not properly accounted for. To overcome this challenge, we present a general framework for learning treatment outcomes in the presence of informative sampling using inverse intensity-weighting, and propose a novel method, TESAR-CDE, that instantiates this framework using Neural CDEs. Using a simulation environment based on a clinical use case, we demonstrate the effectiveness of our approach in learning under informative sampling.
A General Framework for Inference-time Scaling and Steering of Diffusion Models
Diffusion models produce impressive results in modalities ranging from images and video to protein design and text. However, generating samples with user-specified properties remains a challenge. Recent research proposes fine-tuning models to maximize rewards that capture desired properties, but these methods require expensive training and are prone to mode collapse. In this work, we propose Feynman Kac (FK) steering, an inference-time framework for steering diffusion models with reward functions. FK steering works by sampling a system of multiple interacting diffusion processes, called particles, and resampling particles at intermediate steps based on scores computed using functions called potentials. Potentials are defined using rewards for intermediate states and are selected such that a high value indicates that the particle will yield a high-reward sample. We explore various choices of potentials, intermediate rewards, and samplers. We evaluate FK steering on text-to-image and text diffusion models. For steering text-to-image models with a human preference reward, we find that FK steering a 0.8B parameter model outperforms a 2.6B parameter fine-tuned model on prompt fidelity, with faster sampling and no training. For steering text diffusion models with rewards for text quality and specific text attributes, we find that FK steering generates lower perplexity, more linguistically acceptable outputs and enables gradient-free control of attributes like toxicity. Our results demonstrate that inference-time scaling and steering of diffusion models, even with off-the-shelf rewards, can provide significant sample quality gains and controllability benefits. Code is available at https://github.com/zacharyhorvitz/Fk-Diffusion-Steering .
Diffusion Sampling with Momentum for Mitigating Divergence Artifacts
Despite the remarkable success of diffusion models in image generation, slow sampling remains a persistent issue. To accelerate the sampling process, prior studies have reformulated diffusion sampling as an ODE/SDE and introduced higher-order numerical methods. However, these methods often produce divergence artifacts, especially with a low number of sampling steps, which limits the achievable acceleration. In this paper, we investigate the potential causes of these artifacts and suggest that the small stability regions of these methods could be the principal cause. To address this issue, we propose two novel techniques. The first technique involves the incorporation of Heavy Ball (HB) momentum, a well-known technique for improving optimization, into existing diffusion numerical methods to expand their stability regions. We also prove that the resulting methods have first-order convergence. The second technique, called Generalized Heavy Ball (GHVB), constructs a new high-order method that offers a variable trade-off between accuracy and artifact suppression. Experimental results show that our techniques are highly effective in reducing artifacts and improving image quality, surpassing state-of-the-art diffusion solvers on both pixel-based and latent-based diffusion models for low-step sampling. Our research provides novel insights into the design of numerical methods for future diffusion work.
Hybrid Imitative Planning with Geometric and Predictive Costs in Off-road Environments
Geometric methods for solving open-world off-road navigation tasks, by learning occupancy and metric maps, provide good generalization but can be brittle in outdoor environments that violate their assumptions (e.g., tall grass). Learning-based methods can directly learn collision-free behavior from raw observations, but are difficult to integrate with standard geometry-based pipelines. This creates an unfortunate conflict -- either use learning and lose out on well-understood geometric navigational components, or do not use it, in favor of extensively hand-tuned geometry-based cost maps. In this work, we reject this dichotomy by designing the learning and non-learning-based components in a way such that they can be effectively combined in a self-supervised manner. Both components contribute to a planning criterion: the learned component contributes predicted traversability as rewards, while the geometric component contributes obstacle cost information. We instantiate and comparatively evaluate our system in both in-distribution and out-of-distribution environments, showing that this approach inherits complementary gains from the learned and geometric components and significantly outperforms either of them. Videos of our results are hosted at https://sites.google.com/view/hybrid-imitative-planning
Explorer: Scaling Exploration-driven Web Trajectory Synthesis for Multimodal Web Agents
Recent success in large multimodal models (LMMs) has sparked promising applications of agents capable of autonomously completing complex web tasks. While open-source LMM agents have made significant advances in offline evaluation benchmarks, their performance still falls substantially short of human-level capabilities in more realistic online settings. A key bottleneck is the lack of diverse and large-scale trajectory-level datasets across various domains, which are expensive to collect. In this paper, we address this challenge by developing a scalable recipe to synthesize the largest and most diverse trajectory-level dataset to date, containing over 94K successful multimodal web trajectories, spanning 49K unique URLs, 720K screenshots, and 33M web elements. In particular, we leverage extensive web exploration and refinement to obtain diverse task intents. The average cost is 28 cents per successful trajectory, making it affordable to a wide range of users in the community. Leveraging this dataset, we train Explorer, a multimodal web agent, and demonstrate strong performance on both offline and online web agent benchmarks such as Mind2Web-Live, Multimodal-Mind2Web, and MiniWob++. Additionally, our experiments highlight data scaling as a key driver for improving web agent capabilities. We hope this study makes state-of-the-art LMM-based agent research at a larger scale more accessible.
WorldExplorer: Towards Generating Fully Navigable 3D Scenes
Generating 3D worlds from text is a highly anticipated goal in computer vision. Existing works are limited by the degree of exploration they allow inside of a scene, i.e., produce streched-out and noisy artifacts when moving beyond central or panoramic perspectives. To this end, we propose WorldExplorer, a novel method based on autoregressive video trajectory generation, which builds fully navigable 3D scenes with consistent visual quality across a wide range of viewpoints. We initialize our scenes by creating multi-view consistent images corresponding to a 360 degree panorama. Then, we expand it by leveraging video diffusion models in an iterative scene generation pipeline. Concretely, we generate multiple videos along short, pre-defined trajectories, that explore the scene in depth, including motion around objects. Our novel scene memory conditions each video on the most relevant prior views, while a collision-detection mechanism prevents degenerate results, like moving into objects. Finally, we fuse all generated views into a unified 3D representation via 3D Gaussian Splatting optimization. Compared to prior approaches, WorldExplorer produces high-quality scenes that remain stable under large camera motion, enabling for the first time realistic and unrestricted exploration. We believe this marks a significant step toward generating immersive and truly explorable virtual 3D environments.
Planning with Diffusion for Flexible Behavior Synthesis
Model-based reinforcement learning methods often use learning only for the purpose of estimating an approximate dynamics model, offloading the rest of the decision-making work to classical trajectory optimizers. While conceptually simple, this combination has a number of empirical shortcomings, suggesting that learned models may not be well-suited to standard trajectory optimization. In this paper, we consider what it would look like to fold as much of the trajectory optimization pipeline as possible into the modeling problem, such that sampling from the model and planning with it become nearly identical. The core of our technical approach lies in a diffusion probabilistic model that plans by iteratively denoising trajectories. We show how classifier-guided sampling and image inpainting can be reinterpreted as coherent planning strategies, explore the unusual and useful properties of diffusion-based planning methods, and demonstrate the effectiveness of our framework in control settings that emphasize long-horizon decision-making and test-time flexibility.
LucidDreaming: Controllable Object-Centric 3D Generation
With the recent development of generative models, Text-to-3D generations have also seen significant growth. Nonetheless, achieving precise control over 3D generation continues to be an arduous task, as using text to control often leads to missing objects and imprecise locations. Contemporary strategies for enhancing controllability in 3D generation often entail the introduction of additional parameters, such as customized diffusion models. This often induces hardness in adapting to different diffusion models or creating distinct objects. In this paper, we present LucidDreaming as an effective pipeline capable of fine-grained control over 3D generation. It requires only minimal input of 3D bounding boxes, which can be deduced from a simple text prompt using a Large Language Model. Specifically, we propose clipped ray sampling to separately render and optimize objects with user specifications. We also introduce object-centric density blob bias, fostering the separation of generated objects. With individual rendering and optimizing of objects, our method excels not only in controlled content generation from scratch but also within the pre-trained NeRF scenes. In such scenarios, existing generative approaches often disrupt the integrity of the original scene, and current editing methods struggle to synthesize new content in empty spaces. We show that our method exhibits remarkable adaptability across a spectrum of mainstream Score Distillation Sampling-based 3D generation frameworks, and achieves superior alignment of 3D content when compared to baseline approaches. We also provide a dataset of prompts with 3D bounding boxes, benchmarking 3D spatial controllability.
Sufficient Context: A New Lens on Retrieval Augmented Generation Systems
Augmenting LLMs with context leads to improved performance across many applications. Despite much research on Retrieval Augmented Generation (RAG) systems, an open question is whether errors arise because LLMs fail to utilize the context from retrieval or the context itself is insufficient to answer the query. To shed light on this, we develop a new notion of sufficient context, along with a way to classify instances that have enough information to answer the query. We then use sufficient context to analyze several models and datasets. By stratifying errors based on context sufficiency, we find that proprietary LLMs (Gemini, GPT, Claude) excel at answering queries when the context is sufficient, but often output incorrect answers instead of abstaining when the context is not. On the other hand, open-source LLMs (Llama, Mistral, Gemma) hallucinate or abstain often, even with sufficient context. We further categorize cases when the context is useful, and improves accuracy, even though it does not fully answer the query and the model errs without the context. Building on our findings, we explore ways to reduce hallucinations in RAG systems, including a new selective generation method that leverages sufficient context information for guided abstention. Our method improves the fraction of correct answers among times where the model responds by 2-10% for Gemini, GPT, and Gemma.
MVLight: Relightable Text-to-3D Generation via Light-conditioned Multi-View Diffusion
Recent advancements in text-to-3D generation, building on the success of high-performance text-to-image generative models, have made it possible to create imaginative and richly textured 3D objects from textual descriptions. However, a key challenge remains in effectively decoupling light-independent and lighting-dependent components to enhance the quality of generated 3D models and their relighting performance. In this paper, we present MVLight, a novel light-conditioned multi-view diffusion model that explicitly integrates lighting conditions directly into the generation process. This enables the model to synthesize high-quality images that faithfully reflect the specified lighting environment across multiple camera views. By leveraging this capability to Score Distillation Sampling (SDS), we can effectively synthesize 3D models with improved geometric precision and relighting capabilities. We validate the effectiveness of MVLight through extensive experiments and a user study.
A Survey on Text-Driven 360-Degree Panorama Generation
The advent of text-driven 360-degree panorama generation, enabling the synthesis of 360-degree panoramic images directly from textual descriptions, marks a transformative advancement in immersive visual content creation. This innovation significantly simplifies the traditionally complex process of producing such content. Recent progress in text-to-image diffusion models has accelerated the rapid development in this emerging field. This survey presents a comprehensive review of text-driven 360-degree panorama generation, offering an in-depth analysis of state-of-the-art algorithms and their expanding applications in 360-degree 3D scene generation. Furthermore, we critically examine current limitations and propose promising directions for future research. A curated project page with relevant resources and research papers is available at https://littlewhitesea.github.io/Text-Driven-Pano-Gen/.
EasyTPP: Towards Open Benchmarking Temporal Point Processes
Continuous-time event sequences play a vital role in real-world domains such as healthcare, finance, online shopping, social networks, and so on. To model such data, temporal point processes (TPPs) have emerged as the most natural and competitive models, making a significant impact in both academic and application communities. Despite the emergence of many powerful models in recent years, there hasn't been a central benchmark for these models and future research endeavors. This lack of standardization impedes researchers and practitioners from comparing methods and reproducing results, potentially slowing down progress in this field. In this paper, we present EasyTPP, the first central repository of research assets (e.g., data, models, evaluation programs, documentations) in the area of event sequence modeling. Our EasyTPP makes several unique contributions to this area: a unified interface of using existing datasets and adding new datasets; a wide range of evaluation programs that are easy to use and extend as well as facilitate reproducible research; implementations of popular neural TPPs, together with a rich library of modules by composing which one could quickly build complex models. All the data and implementation can be found at https://github.com/ant-research/EasyTemporalPointProcess. We will actively maintain this benchmark and welcome contributions from other researchers and practitioners. Our benchmark will help promote reproducible research in this field, thus accelerating research progress as well as making more significant real-world impacts.
Stable Score Distillation for High-Quality 3D Generation
Score Distillation Sampling (SDS) has exhibited remarkable performance in conditional 3D content generation. However, a comprehensive understanding of the SDS formulation is still lacking, hindering the development of 3D generation. In this work, we present an interpretation of SDS as a combination of three functional components: mode-disengaging, mode-seeking and variance-reducing terms, and analyze the properties of each. We show that problems such as over-smoothness and color-saturation result from the intrinsic deficiency of the supervision terms and reveal that the variance-reducing term introduced by SDS is sub-optimal. Additionally, we shed light on the adoption of large Classifier-Free Guidance (CFG) scale for 3D generation. Based on the analysis, we propose a simple yet effective approach named Stable Score Distillation (SSD) which strategically orchestrates each term for high-quality 3D generation. Extensive experiments validate the efficacy of our approach, demonstrating its ability to generate high-fidelity 3D content without succumbing to issues such as over-smoothness and over-saturation, even under low CFG conditions with the most challenging NeRF representation.
Restoration-Degradation Beyond Linear Diffusions: A Non-Asymptotic Analysis For DDIM-Type Samplers
We develop a framework for non-asymptotic analysis of deterministic samplers used for diffusion generative modeling. Several recent works have analyzed stochastic samplers using tools like Girsanov's theorem and a chain rule variant of the interpolation argument. Unfortunately, these techniques give vacuous bounds when applied to deterministic samplers. We give a new operational interpretation for deterministic sampling by showing that one step along the probability flow ODE can be expressed as two steps: 1) a restoration step that runs gradient ascent on the conditional log-likelihood at some infinitesimally previous time, and 2) a degradation step that runs the forward process using noise pointing back towards the current iterate. This perspective allows us to extend denoising diffusion implicit models to general, non-linear forward processes. We then develop the first polynomial convergence bounds for these samplers under mild conditions on the data distribution.
Geometry-Aware Score Distillation via 3D Consistent Noising and Gradient Consistency Modeling
Score distillation sampling (SDS), the methodology in which the score from pretrained 2D diffusion models is distilled into 3D representation, has recently brought significant advancements in text-to-3D generation task. However, this approach is still confronted with critical geometric inconsistency problems such as the Janus problem. Starting from a hypothesis that such inconsistency problems may be induced by multiview inconsistencies between 2D scores predicted from various viewpoints, we introduce GSD, a simple and general plug-and-play framework for incorporating 3D consistency and therefore geometry awareness into the SDS process. Our methodology is composed of three components: 3D consistent noising, designed to produce 3D consistent noise maps that perfectly follow the standard Gaussian distribution, geometry-based gradient warping for identifying correspondences between predicted gradients of different viewpoints, and novel gradient consistency loss to optimize the scene geometry toward producing more consistent gradients. We demonstrate that our method significantly improves performance, successfully addressing the geometric inconsistency problems in text-to-3D generation task with minimal computation cost and being compatible with existing score distillation-based models. Our project page is available at https://ku-cvlab.github.io/GSD/.
A Dataset for the Validation of Truth Inference Algorithms Suitable for Online Deployment
For the purpose of efficient and cost-effective large-scale data labeling, crowdsourcing is increasingly being utilized. To guarantee the quality of data labeling, multiple annotations need to be collected for each data sample, and truth inference algorithms have been developed to accurately infer the true labels. Despite previous studies having released public datasets to evaluate the efficacy of truth inference algorithms, these have typically focused on a single type of crowdsourcing task and neglected the temporal information associated with workers' annotation activities. These limitations significantly restrict the practical applicability of these algorithms, particularly in the context of long-term and online truth inference. In this paper, we introduce a substantial crowdsourcing annotation dataset collected from a real-world crowdsourcing platform. This dataset comprises approximately two thousand workers, one million tasks, and six million annotations. The data was gathered over a period of approximately six months from various types of tasks, and the timestamps of each annotation were preserved. We analyze the characteristics of the dataset from multiple perspectives and evaluate the effectiveness of several representative truth inference algorithms on this dataset. We anticipate that this dataset will stimulate future research on tracking workers' abilities over time in relation to different types of tasks, as well as enhancing online truth inference.
Semantic Trails of City Explorations: How Do We Live a City
The knowledge of city exploration trails of people is in short supply because of the complexity in defining meaningful trails representative of individual behaviours and in the access to actionable data. Existing datasets have only recorded isolated check-ins of activities featured by opaque venue types. In this paper, we fill the gaps in defining what is a semantic trail of city exploration and how it can be generated by integrating different data sources. Furthermore, we publicly release two datasets holding millions of semantic trails each and we discuss their most salient characteristics. We finally present an application using these datasets to build a recommender system meant to guide tourists while exploring a city.
MapEval: A Map-Based Evaluation of Geo-Spatial Reasoning in Foundation Models
Recent advancements in foundation models have enhanced AI systems' capabilities in autonomous tool usage and reasoning. However, their ability in location or map-based reasoning - which improves daily life by optimizing navigation, facilitating resource discovery, and streamlining logistics - has not been systematically studied. To bridge this gap, we introduce MapEval, a benchmark designed to assess diverse and complex map-based user queries with geo-spatial reasoning. MapEval features three task types (textual, API-based, and visual) that require collecting world information via map tools, processing heterogeneous geo-spatial contexts (e.g., named entities, travel distances, user reviews or ratings, images), and compositional reasoning, which all state-of-the-art foundation models find challenging. Comprising 700 unique multiple-choice questions about locations across 180 cities and 54 countries, MapEval evaluates foundation models' ability to handle spatial relationships, map infographics, travel planning, and navigation challenges. Using MapEval, we conducted a comprehensive evaluation of 28 prominent foundation models. While no single model excelled across all tasks, Claude-3.5-Sonnet, GPT-4o, and Gemini-1.5-Pro achieved competitive performance overall. However, substantial performance gaps emerged, particularly in MapEval, where agents with Claude-3.5-Sonnet outperformed GPT-4o and Gemini-1.5-Pro by 16% and 21%, respectively, and the gaps became even more amplified when compared to open-source LLMs. Our detailed analyses provide insights into the strengths and weaknesses of current models, though all models still fall short of human performance by more than 20% on average, struggling with complex map images and rigorous geo-spatial reasoning. This gap highlights MapEval's critical role in advancing general-purpose foundation models with stronger geo-spatial understanding.
Posterior Sampling for Deep Reinforcement Learning
Despite remarkable successes, deep reinforcement learning algorithms remain sample inefficient: they require an enormous amount of trial and error to find good policies. Model-based algorithms promise sample efficiency by building an environment model that can be used for planning. Posterior Sampling for Reinforcement Learning is such a model-based algorithm that has attracted significant interest due to its performance in the tabular setting. This paper introduces Posterior Sampling for Deep Reinforcement Learning (PSDRL), the first truly scalable approximation of Posterior Sampling for Reinforcement Learning that retains its model-based essence. PSDRL combines efficient uncertainty quantification over latent state space models with a specially tailored continual planning algorithm based on value-function approximation. Extensive experiments on the Atari benchmark show that PSDRL significantly outperforms previous state-of-the-art attempts at scaling up posterior sampling while being competitive with a state-of-the-art (model-based) reinforcement learning method, both in sample efficiency and computational efficiency.
MindJourney: Test-Time Scaling with World Models for Spatial Reasoning
Spatial reasoning in 3D space is central to human cognition and indispensable for embodied tasks such as navigation and manipulation. However, state-of-the-art vision-language models (VLMs) struggle frequently with tasks as simple as anticipating how a scene will look after an egocentric motion: they perceive 2D images but lack an internal model of 3D dynamics. We therefore propose MindJourney, a test-time scaling framework that grants a VLM with this missing capability by coupling it to a controllable world model based on video diffusion. The VLM iteratively sketches a concise camera trajectory, while the world model synthesizes the corresponding view at each step. The VLM then reasons over this multi-view evidence gathered during the interactive exploration. Without any fine-tuning, our MindJourney achieves over an average 8% performance boost on the representative spatial reasoning benchmark SAT, showing that pairing VLMs with world models for test-time scaling offers a simple, plug-and-play route to robust 3D reasoning. Meanwhile, our method also improves upon the test-time inference VLMs trained through reinforcement learning, which demonstrates the potential of our method that utilizes world models for test-time scaling.
Neural Optimal Transport with General Cost Functionals
We introduce a novel neural network-based algorithm to compute optimal transport (OT) plans for general cost functionals. In contrast to common Euclidean costs, i.e., ell^1 or ell^2, such functionals provide more flexibility and allow using auxiliary information, such as class labels, to construct the required transport map. Existing methods for general costs are discrete and have limitations in practice, i.e. they do not provide an out-of-sample estimation. We address the challenge of designing a continuous OT approach for general costs that generalizes to new data points in high-dimensional spaces, such as images. Additionally, we provide the theoretical error analysis for our recovered transport plans. As an application, we construct a cost functional to map data distributions while preserving the class-wise structure.
Faster Rates of Convergence to Stationary Points in Differentially Private Optimization
We study the problem of approximating stationary points of Lipschitz and smooth functions under (varepsilon,delta)-differential privacy (DP) in both the finite-sum and stochastic settings. A point w is called an alpha-stationary point of a function F:R^drightarrowR if |nabla F(w)|leq alpha. We provide a new efficient algorithm that finds an Obig(big[sqrt{d}{nvarepsilon}big]^{2/3}big)-stationary point in the finite-sum setting, where n is the number of samples. This improves on the previous best rate of Obig(big[sqrt{d}{nvarepsilon}big]^{1/2}big). We also give a new construction that improves over the existing rates in the stochastic optimization setting, where the goal is to find approximate stationary points of the population risk. Our construction finds a Obig(1{n^{1/3}} + big[sqrt{d}{nvarepsilon}big]^{1/2}big)-stationary point of the population risk in time linear in n. Furthermore, under the additional assumption of convexity, we completely characterize the sample complexity of finding stationary points of the population risk (up to polylog factors) and show that the optimal rate on population stationarity is tilde Thetabig(1{n}+sqrt{d}{nvarepsilon}big). Finally, we show that our methods can be used to provide dimension-independent rates of Obig(1{n}+minbig(big[sqrt{rank}{nvarepsilon}big]^{2/3},1{(nvarepsilon)^{2/5}}big)big) on population stationarity for Generalized Linear Models (GLM), where rank is the rank of the design matrix, which improves upon the previous best known rate.
Triplane Meets Gaussian Splatting: Fast and Generalizable Single-View 3D Reconstruction with Transformers
Recent advancements in 3D reconstruction from single images have been driven by the evolution of generative models. Prominent among these are methods based on Score Distillation Sampling (SDS) and the adaptation of diffusion models in the 3D domain. Despite their progress, these techniques often face limitations due to slow optimization or rendering processes, leading to extensive training and optimization times. In this paper, we introduce a novel approach for single-view reconstruction that efficiently generates a 3D model from a single image via feed-forward inference. Our method utilizes two transformer-based networks, namely a point decoder and a triplane decoder, to reconstruct 3D objects using a hybrid Triplane-Gaussian intermediate representation. This hybrid representation strikes a balance, achieving a faster rendering speed compared to implicit representations while simultaneously delivering superior rendering quality than explicit representations. The point decoder is designed for generating point clouds from single images, offering an explicit representation which is then utilized by the triplane decoder to query Gaussian features for each point. This design choice addresses the challenges associated with directly regressing explicit 3D Gaussian attributes characterized by their non-structural nature. Subsequently, the 3D Gaussians are decoded by an MLP to enable rapid rendering through splatting. Both decoders are built upon a scalable, transformer-based architecture and have been efficiently trained on large-scale 3D datasets. The evaluations conducted on both synthetic datasets and real-world images demonstrate that our method not only achieves higher quality but also ensures a faster runtime in comparison to previous state-of-the-art techniques. Please see our project page at https://zouzx.github.io/TriplaneGaussian/.
On diffusion models for amortized inference: Benchmarking and improving stochastic control and sampling
We study the problem of training diffusion models to sample from a distribution with a given unnormalized density or energy function. We benchmark several diffusion-structured inference methods, including simulation-based variational approaches and off-policy methods (continuous generative flow networks). Our results shed light on the relative advantages of existing algorithms while bringing into question some claims from past work. We also propose a novel exploration strategy for off-policy methods, based on local search in the target space with the use of a replay buffer, and show that it improves the quality of samples on a variety of target distributions. Our code for the sampling methods and benchmarks studied is made public at https://github.com/GFNOrg/gfn-diffusion as a base for future work on diffusion models for amortized inference.
Princeton365: A Diverse Dataset with Accurate Camera Pose
We introduce Princeton365, a large-scale diverse dataset of 365 videos with accurate camera pose. Our dataset bridges the gap between accuracy and data diversity in current SLAM benchmarks by introducing a novel ground truth collection framework that leverages calibration boards and a 360-camera. We collect indoor, outdoor, and object scanning videos with synchronized monocular and stereo RGB video outputs as well as IMU. We further propose a new scene scale-aware evaluation metric for SLAM based on the the optical flow induced by the camera pose estimation error. In contrast to the current metrics, our new metric allows for comparison between the performance of SLAM methods across scenes as opposed to existing metrics such as Average Trajectory Error (ATE), allowing researchers to analyze the failure modes of their methods. We also propose a challenging Novel View Synthesis benchmark that covers cases not covered by current NVS benchmarks, such as fully non-Lambertian scenes with 360-degree camera trajectories. Please visit https://princeton365.cs.princeton.edu for the dataset, code, videos, and submission.
Task-specific experimental design for treatment effect estimation
Understanding causality should be a core requirement of any attempt to build real impact through AI. Due to the inherent unobservability of counterfactuals, large randomised trials (RCTs) are the standard for causal inference. But large experiments are generically expensive, and randomisation carries its own costs, e.g. when suboptimal decisions are trialed. Recent work has proposed more sample-efficient alternatives to RCTs, but these are not adaptable to the downstream application for which the causal effect is sought. In this work, we develop a task-specific approach to experimental design and derive sampling strategies customised to particular downstream applications. Across a range of important tasks, real-world datasets, and sample sizes, our method outperforms other benchmarks, e.g. requiring an order-of-magnitude less data to match RCT performance on targeted marketing tasks.
ProNeRF: Learning Efficient Projection-Aware Ray Sampling for Fine-Grained Implicit Neural Radiance Fields
Recent advances in neural rendering have shown that, albeit slow, implicit compact models can learn a scene's geometries and view-dependent appearances from multiple views. To maintain such a small memory footprint but achieve faster inference times, recent works have adopted `sampler' networks that adaptively sample a small subset of points along each ray in the implicit neural radiance fields. Although these methods achieve up to a 10times reduction in rendering time, they still suffer from considerable quality degradation compared to the vanilla NeRF. In contrast, we propose ProNeRF, which provides an optimal trade-off between memory footprint (similar to NeRF), speed (faster than HyperReel), and quality (better than K-Planes). ProNeRF is equipped with a novel projection-aware sampling (PAS) network together with a new training strategy for ray exploration and exploitation, allowing for efficient fine-grained particle sampling. Our ProNeRF yields state-of-the-art metrics, being 15-23x faster with 0.65dB higher PSNR than NeRF and yielding 0.95dB higher PSNR than the best published sampler-based method, HyperReel. Our exploration and exploitation training strategy allows ProNeRF to learn the full scenes' color and density distributions while also learning efficient ray sampling focused on the highest-density regions. We provide extensive experimental results that support the effectiveness of our method on the widely adopted forward-facing and 360 datasets, LLFF and Blender, respectively.
GeoCLIP: Clip-Inspired Alignment between Locations and Images for Effective Worldwide Geo-localization
Worldwide Geo-localization aims to pinpoint the precise location of images taken anywhere on Earth. This task has considerable challenges due to immense variation in geographic landscapes. The image-to-image retrieval-based approaches fail to solve this problem on a global scale as it is not feasible to construct a large gallery of images covering the entire world. Instead, existing approaches divide the globe into discrete geographic cells, transforming the problem into a classification task. However, their performance is limited by the predefined classes and often results in inaccurate localizations when an image's location significantly deviates from its class center. To overcome these limitations, we propose GeoCLIP, a novel CLIP-inspired Image-to-GPS retrieval approach that enforces alignment between the image and its corresponding GPS locations. GeoCLIP's location encoder models the Earth as a continuous function by employing positional encoding through random Fourier features and constructing a hierarchical representation that captures information at varying resolutions to yield a semantically rich high-dimensional feature suitable to use even beyond geo-localization. To the best of our knowledge, this is the first work employing GPS encoding for geo-localization. We demonstrate the efficacy of our method via extensive experiments and ablations on benchmark datasets. We achieve competitive performance with just 20% of training data, highlighting its effectiveness even in limited-data settings. Furthermore, we qualitatively demonstrate geo-localization using a text query by leveraging CLIP backbone of our image encoder. The project webpage is available at: https://vicentevivan.github.io/GeoCLIP
Visual Language Maps for Robot Navigation
Grounding language to the visual observations of a navigating agent can be performed using off-the-shelf visual-language models pretrained on Internet-scale data (e.g., image captions). While this is useful for matching images to natural language descriptions of object goals, it remains disjoint from the process of mapping the environment, so that it lacks the spatial precision of classic geometric maps. To address this problem, we propose VLMaps, a spatial map representation that directly fuses pretrained visual-language features with a 3D reconstruction of the physical world. VLMaps can be autonomously built from video feed on robots using standard exploration approaches and enables natural language indexing of the map without additional labeled data. Specifically, when combined with large language models (LLMs), VLMaps can be used to (i) translate natural language commands into a sequence of open-vocabulary navigation goals (which, beyond prior work, can be spatial by construction, e.g., "in between the sofa and TV" or "three meters to the right of the chair") directly localized in the map, and (ii) can be shared among multiple robots with different embodiments to generate new obstacle maps on-the-fly (by using a list of obstacle categories). Extensive experiments carried out in simulated and real world environments show that VLMaps enable navigation according to more complex language instructions than existing methods. Videos are available at https://vlmaps.github.io.
The Oxford Spires Dataset: Benchmarking Large-Scale LiDAR-Visual Localisation, Reconstruction and Radiance Field Methods
This paper introduces a large-scale multi-modal dataset captured in and around well-known landmarks in Oxford using a custom-built multi-sensor perception unit as well as a millimetre-accurate map from a Terrestrial LiDAR Scanner (TLS). The perception unit includes three synchronised global shutter colour cameras, an automotive 3D LiDAR scanner, and an inertial sensor - all precisely calibrated. We also establish benchmarks for tasks involving localisation, reconstruction, and novel-view synthesis, which enable the evaluation of Simultaneous Localisation and Mapping (SLAM) methods, Structure-from-Motion (SfM) and Multi-view Stereo (MVS) methods as well as radiance field methods such as Neural Radiance Fields (NeRF) and 3D Gaussian Splatting. To evaluate 3D reconstruction the TLS 3D models are used as ground truth. Localisation ground truth is computed by registering the mobile LiDAR scans to the TLS 3D models. Radiance field methods are evaluated not only with poses sampled from the input trajectory, but also from viewpoints that are from trajectories which are distant from the training poses. Our evaluation demonstrates a key limitation of state-of-the-art radiance field methods: we show that they tend to overfit to the training poses/images and do not generalise well to out-of-sequence poses. They also underperform in 3D reconstruction compared to MVS systems using the same visual inputs. Our dataset and benchmarks are intended to facilitate better integration of radiance field methods and SLAM systems. The raw and processed data, along with software for parsing and evaluation, can be accessed at https://dynamic.robots.ox.ac.uk/datasets/oxford-spires/.
ModeDreamer: Mode Guiding Score Distillation for Text-to-3D Generation using Reference Image Prompts
Existing Score Distillation Sampling (SDS)-based methods have driven significant progress in text-to-3D generation. However, 3D models produced by SDS-based methods tend to exhibit over-smoothing and low-quality outputs. These issues arise from the mode-seeking behavior of current methods, where the scores used to update the model oscillate between multiple modes, resulting in unstable optimization and diminished output quality. To address this problem, we introduce a novel image prompt score distillation loss named ISD, which employs a reference image to direct text-to-3D optimization toward a specific mode. Our ISD loss can be implemented by using IP-Adapter, a lightweight adapter for integrating image prompt capability to a text-to-image diffusion model, as a mode-selection module. A variant of this adapter, when not being prompted by a reference image, can serve as an efficient control variate to reduce variance in score estimates, thereby enhancing both output quality and optimization stability. Our experiments demonstrate that the ISD loss consistently achieves visually coherent, high-quality outputs and improves optimization speed compared to prior text-to-3D methods, as demonstrated through both qualitative and quantitative evaluations on the T3Bench benchmark suite.
UniPC: A Unified Predictor-Corrector Framework for Fast Sampling of Diffusion Models
Diffusion probabilistic models (DPMs) have demonstrated a very promising ability in high-resolution image synthesis. However, sampling from a pre-trained DPM usually requires hundreds of model evaluations, which is computationally expensive. Despite recent progress in designing high-order solvers for DPMs, there still exists room for further speedup, especially in extremely few steps (e.g., 5~10 steps). Inspired by the predictor-corrector for ODE solvers, we develop a unified corrector (UniC) that can be applied after any existing DPM sampler to increase the order of accuracy without extra model evaluations, and derive a unified predictor (UniP) that supports arbitrary order as a byproduct. Combining UniP and UniC, we propose a unified predictor-corrector framework called UniPC for the fast sampling of DPMs, which has a unified analytical form for any order and can significantly improve the sampling quality over previous methods. We evaluate our methods through extensive experiments including both unconditional and conditional sampling using pixel-space and latent-space DPMs. Our UniPC can achieve 3.87 FID on CIFAR10 (unconditional) and 7.51 FID on ImageNet 256times256 (conditional) with only 10 function evaluations. Code is available at https://github.com/wl-zhao/UniPC
M2DGR: A Multi-sensor and Multi-scenario SLAM Dataset for Ground Robots
We introduce M2DGR: a novel large-scale dataset collected by a ground robot with a full sensor-suite including six fish-eye and one sky-pointing RGB cameras, an infrared camera, an event camera, a Visual-Inertial Sensor (VI-sensor), an inertial measurement unit (IMU), a LiDAR, a consumer-grade Global Navigation Satellite System (GNSS) receiver and a GNSS-IMU navigation system with real-time kinematic (RTK) signals. All those sensors were well-calibrated and synchronized, and their data were recorded simultaneously. The ground truth trajectories were obtained by the motion capture device, a laser 3D tracker, and an RTK receiver. The dataset comprises 36 sequences (about 1TB) captured in diverse scenarios including both indoor and outdoor environments. We evaluate state-of-the-art SLAM algorithms on M2DGR. Results show that existing solutions perform poorly in some scenarios. For the benefit of the research community, we make the dataset and tools public. The webpage of our project is https://github.com/SJTU-ViSYS/M2DGR.
Goal-conditioned Imitation Learning
Designing rewards for Reinforcement Learning (RL) is challenging because it needs to convey the desired task, be efficient to optimize, and be easy to compute. The latter is particularly problematic when applying RL to robotics, where detecting whether the desired configuration is reached might require considerable supervision and instrumentation. Furthermore, we are often interested in being able to reach a wide range of configurations, hence setting up a different reward every time might be unpractical. Methods like Hindsight Experience Replay (HER) have recently shown promise to learn policies able to reach many goals, without the need of a reward. Unfortunately, without tricks like resetting to points along the trajectory, HER might require many samples to discover how to reach certain areas of the state-space. In this work we investigate different approaches to incorporate demonstrations to drastically speed up the convergence to a policy able to reach any goal, also surpassing the performance of an agent trained with other Imitation Learning algorithms. Furthermore, we show our method can also be used when the available expert trajectories do not contain the actions, which can leverage kinesthetic or third person demonstration. The code is available at https://sites.google.com/view/goalconditioned-il/.
IsoScore: Measuring the Uniformity of Embedding Space Utilization
The recent success of distributed word representations has led to an increased interest in analyzing the properties of their spatial distribution. Several studies have suggested that contextualized word embedding models do not isotropically project tokens into vector space. However, current methods designed to measure isotropy, such as average random cosine similarity and the partition score, have not been thoroughly analyzed and are not appropriate for measuring isotropy. We propose IsoScore: a novel tool that quantifies the degree to which a point cloud uniformly utilizes the ambient vector space. Using rigorously designed tests, we demonstrate that IsoScore is the only tool available in the literature that accurately measures how uniformly distributed variance is across dimensions in vector space. Additionally, we use IsoScore to challenge a number of recent conclusions in the NLP literature that have been derived using brittle metrics of isotropy. We caution future studies from using existing tools to measure isotropy in contextualized embedding space as resulting conclusions will be misleading or altogether inaccurate.
Inference-Time Diffusion Model Distillation
Diffusion distillation models effectively accelerate reverse sampling by compressing the process into fewer steps. However, these models still exhibit a performance gap compared to their pre-trained diffusion model counterparts, exacerbated by distribution shifts and accumulated errors during multi-step sampling. To address this, we introduce Distillation++, a novel inference-time distillation framework that reduces this gap by incorporating teacher-guided refinement during sampling. Inspired by recent advances in conditional sampling, our approach recasts student model sampling as a proximal optimization problem with a score distillation sampling loss (SDS). To this end, we integrate distillation optimization during reverse sampling, which can be viewed as teacher guidance that drives student sampling trajectory towards the clean manifold using pre-trained diffusion models. Thus, Distillation++ improves the denoising process in real-time without additional source data or fine-tuning. Distillation++ demonstrates substantial improvements over state-of-the-art distillation baselines, particularly in early sampling stages, positioning itself as a robust guided sampling process crafted for diffusion distillation models. Code: https://github.com/geonyeong-park/inference_distillation.
A New Rejection Sampling Approach to k-means++ With Improved Trade-Offs
The k-means++ seeding algorithm (Arthur & Vassilvitskii, 2007) is widely used in practice for the k-means clustering problem where the goal is to cluster a dataset X subset R ^d into k clusters. The popularity of this algorithm is due to its simplicity and provable guarantee of being O(log k) competitive with the optimal solution in expectation. However, its running time is O(|X|kd), making it expensive for large datasets. In this work, we present a simple and effective rejection sampling based approach for speeding up k-means++. Our first method runs in time O(nnz (X) + beta k^2d) while still being O(log k ) competitive in expectation. Here, beta is a parameter which is the ratio of the variance of the dataset to the optimal k-means cost in expectation and O hides logarithmic factors in k and |X|. Our second method presents a new trade-off between computational cost and solution quality. It incurs an additional scale-invariant factor of k^{-Omega( m/beta)} Var (X) in addition to the O(log k) guarantee of k-means++ improving upon a result of (Bachem et al, 2016a) who get an additional factor of m^{-1}Var(X) while still running in time O(nnz(X) + mk^2d). We perform extensive empirical evaluations to validate our theoretical results and to show the effectiveness of our approach on real datasets.
Point2Point : A Framework for Efficient Deep Learning on Hilbert sorted Point Clouds with applications in Spatio-Temporal Occupancy Prediction
The irregularity and permutation invariance of point cloud data pose challenges for effective learning. Conventional methods for addressing this issue involve converting raw point clouds to intermediate representations such as 3D voxel grids or range images. While such intermediate representations solve the problem of permutation invariance, they can result in significant loss of information. Approaches that do learn on raw point clouds either have trouble in resolving neighborhood relationships between points or are too complicated in their formulation. In this paper, we propose a novel approach to representing point clouds as a locality preserving 1D ordering induced by the Hilbert space-filling curve. We also introduce Point2Point, a neural architecture that can effectively learn on Hilbert-sorted point clouds. We show that Point2Point shows competitive performance on point cloud segmentation and generation tasks. Finally, we show the performance of Point2Point on Spatio-temporal Occupancy prediction from Point clouds.
Scaling LLM Inference with Optimized Sample Compute Allocation
Sampling is a basic operation in many inference-time algorithms of large language models (LLMs). To scale up inference efficiently with a limited compute, it is crucial to find an optimal allocation for sample compute budgets: Which sampling configurations (model, temperature, language, etc.) do we use? How many samples do we generate in each configuration? We formulate these choices as a learning problem and propose OSCA, an algorithm that Optimizes Sample Compute Allocation by finding an optimal mix of different inference configurations. Our experiments show that with our learned mixed allocation, we can achieve accuracy better than the best single configuration with 128x less compute on code generation and 25x less compute on 4 reasoning tasks. OSCA is also shown to be effective in agentic workflows beyond single-turn tasks, achieving a better accuracy on SWE-Bench with 3x less compute than the default configuration. Our code and generations are released at https://github.com/LeiLiLab/OSCA.
Interpolation for Robust Learning: Data Augmentation on Geodesics
We propose to study and promote the robustness of a model as per its performance through the interpolation of training data distributions. Specifically, (1) we augment the data by finding the worst-case Wasserstein barycenter on the geodesic connecting subpopulation distributions of different categories. (2) We regularize the model for smoother performance on the continuous geodesic path connecting subpopulation distributions. (3) Additionally, we provide a theoretical guarantee of robustness improvement and investigate how the geodesic location and the sample size contribute, respectively. Experimental validations of the proposed strategy on four datasets, including CIFAR-100 and ImageNet, establish the efficacy of our method, e.g., our method improves the baselines' certifiable robustness on CIFAR10 up to 7.7%, with 16.8% on empirical robustness on CIFAR-100. Our work provides a new perspective of model robustness through the lens of Wasserstein geodesic-based interpolation with a practical off-the-shelf strategy that can be combined with existing robust training methods.
Large Language Monkeys: Scaling Inference Compute with Repeated Sampling
Scaling the amount of compute used to train language models has dramatically improved their capabilities. However, when it comes to inference, we often limit the amount of compute to only one attempt per problem. Here, we explore inference compute as another axis for scaling by increasing the number of generated samples. Across multiple tasks and models, we observe that coverage - the fraction of problems solved by any attempt - scales with the number of samples over four orders of magnitude. In domains like coding and formal proofs, where all answers can be automatically verified, these increases in coverage directly translate into improved performance. When we apply repeated sampling to SWE-bench Lite, the fraction of issues solved with DeepSeek-V2-Coder-Instruct increases from 15.9% with one sample to 56% with 250 samples, outperforming the single-attempt state-of-the-art of 43% which uses more capable frontier models. Moreover, using current API pricing, amplifying the cheaper DeepSeek model with five samples is more cost-effective and solves more issues than paying a premium for one sample from GPT-4o or Claude 3.5 Sonnet. Interestingly, the relationship between coverage and the number of samples is often log-linear and can be modelled with an exponentiated power law, suggesting the existence of inference-time scaling laws. Finally, we find that identifying correct samples out of many generations remains an important direction for future research in domains without automatic verifiers. When solving math word problems from GSM8K and MATH, coverage with Llama-3 models grows to over 95% with 10,000 samples. However, common methods to pick correct solutions from a sample collection, such as majority voting or reward models, plateau beyond several hundred samples and fail to fully scale with the sample budget.
Fast Sampling of Diffusion Models with Exponential Integrator
The past few years have witnessed the great success of Diffusion models~(DMs) in generating high-fidelity samples in generative modeling tasks. A major limitation of the DM is its notoriously slow sampling procedure which normally requires hundreds to thousands of time discretization steps of the learned diffusion process to reach the desired accuracy. Our goal is to develop a fast sampling method for DMs with a much less number of steps while retaining high sample quality. To this end, we systematically analyze the sampling procedure in DMs and identify key factors that affect the sample quality, among which the method of discretization is most crucial. By carefully examining the learned diffusion process, we propose Diffusion Exponential Integrator Sampler~(DEIS). It is based on the Exponential Integrator designed for discretizing ordinary differential equations (ODEs) and leverages a semilinear structure of the learned diffusion process to reduce the discretization error. The proposed method can be applied to any DMs and can generate high-fidelity samples in as few as 10 steps. In our experiments, it takes about 3 minutes on one A6000 GPU to generate 50k images from CIFAR10. Moreover, by directly using pre-trained DMs, we achieve the state-of-art sampling performance when the number of score function evaluation~(NFE) is limited, e.g., 4.17 FID with 10 NFEs, 3.37 FID, and 9.74 IS with only 15 NFEs on CIFAR10. Code is available at https://github.com/qsh-zh/deis
TreeRPO: Tree Relative Policy Optimization
Large Language Models (LLMs) have shown remarkable reasoning capabilities through Reinforcement Learning with Verifiable Rewards (RLVR) methods. However, a key limitation of existing approaches is that rewards defined at the full trajectory level provide insufficient guidance for optimizing the intermediate steps of a reasoning process. To address this, we introduce \name, a novel method that estimates the mathematical expectations of rewards at various reasoning steps using tree sampling. Unlike prior methods that rely on a separate step reward model, \name directly estimates these rewards through this sampling process. Building on the group-relative reward training mechanism of GRPO, \name innovatively computes rewards based on step-level groups generated during tree sampling. This advancement allows \name to produce fine-grained and dense reward signals, significantly enhancing the learning process and overall performance of LLMs. Experimental results demonstrate that our \name algorithm substantially improves the average Pass@1 accuracy of Qwen-2.5-Math on test benchmarks, increasing it from 19.0\% to 35.5\%. Furthermore, \name significantly outperforms GRPO by 2.9\% in performance while simultaneously reducing the average response length by 18.1\%, showcasing its effectiveness and efficiency. Our code will be available at https://github.com/yangzhch6/TreeRPO{https://github.com/yangzhch6/TreeRPO}.
Contextual Combinatorial Bandits with Probabilistically Triggered Arms
We study contextual combinatorial bandits with probabilistically triggered arms (C^2MAB-T) under a variety of smoothness conditions that capture a wide range of applications, such as contextual cascading bandits and contextual influence maximization bandits. Under the triggering probability modulated (TPM) condition, we devise the C^2-UCB-T algorithm and propose a novel analysis that achieves an O(dKT) regret bound, removing a potentially exponentially large factor O(1/p_{min}), where d is the dimension of contexts, p_{min} is the minimum positive probability that any arm can be triggered, and batch-size K is the maximum number of arms that can be triggered per round. Under the variance modulated (VM) or triggering probability and variance modulated (TPVM) conditions, we propose a new variance-adaptive algorithm VAC^2-UCB and derive a regret bound O(dT), which is independent of the batch-size K. As a valuable by-product, our analysis technique and variance-adaptive algorithm can be applied to the CMAB-T and C^2MAB setting, improving existing results there as well. We also include experiments that demonstrate the improved performance of our algorithms compared with benchmark algorithms on synthetic and real-world datasets.
Instance-aware Dynamic Prompt Tuning for Pre-trained Point Cloud Models
Pre-trained point cloud models have found extensive applications in 3D understanding tasks like object classification and part segmentation. However, the prevailing strategy of full fine-tuning in downstream tasks leads to large per-task storage overhead for model parameters, which limits the efficiency when applying large-scale pre-trained models. Inspired by the recent success of visual prompt tuning (VPT), this paper attempts to explore prompt tuning on pre-trained point cloud models, to pursue an elegant balance between performance and parameter efficiency. We find while instance-agnostic static prompting, e.g. VPT, shows some efficacy in downstream transfer, it is vulnerable to the distribution diversity caused by various types of noises in real-world point cloud data. To conquer this limitation, we propose a novel Instance-aware Dynamic Prompt Tuning (IDPT) strategy for pre-trained point cloud models. The essence of IDPT is to develop a dynamic prompt generation module to perceive semantic prior features of each point cloud instance and generate adaptive prompt tokens to enhance the model's robustness. Notably, extensive experiments demonstrate that IDPT outperforms full fine-tuning in most tasks with a mere 7% of the trainable parameters, providing a promising solution to parameter-efficient learning for pre-trained point cloud models. Code is available at https://github.com/zyh16143998882/ICCV23-IDPT.
GINA-3D: Learning to Generate Implicit Neural Assets in the Wild
Modeling the 3D world from sensor data for simulation is a scalable way of developing testing and validation environments for robotic learning problems such as autonomous driving. However, manually creating or re-creating real-world-like environments is difficult, expensive, and not scalable. Recent generative model techniques have shown promising progress to address such challenges by learning 3D assets using only plentiful 2D images -- but still suffer limitations as they leverage either human-curated image datasets or renderings from manually-created synthetic 3D environments. In this paper, we introduce GINA-3D, a generative model that uses real-world driving data from camera and LiDAR sensors to create realistic 3D implicit neural assets of diverse vehicles and pedestrians. Compared to the existing image datasets, the real-world driving setting poses new challenges due to occlusions, lighting-variations and long-tail distributions. GINA-3D tackles these challenges by decoupling representation learning and generative modeling into two stages with a learned tri-plane latent structure, inspired by recent advances in generative modeling of images. To evaluate our approach, we construct a large-scale object-centric dataset containing over 1.2M images of vehicles and pedestrians from the Waymo Open Dataset, and a new set of 80K images of long-tail instances such as construction equipment, garbage trucks, and cable cars. We compare our model with existing approaches and demonstrate that it achieves state-of-the-art performance in quality and diversity for both generated images and geometries.
DreamScene360: Unconstrained Text-to-3D Scene Generation with Panoramic Gaussian Splatting
The increasing demand for virtual reality applications has highlighted the significance of crafting immersive 3D assets. We present a text-to-3D 360^{circ} scene generation pipeline that facilitates the creation of comprehensive 360^{circ} scenes for in-the-wild environments in a matter of minutes. Our approach utilizes the generative power of a 2D diffusion model and prompt self-refinement to create a high-quality and globally coherent panoramic image. This image acts as a preliminary "flat" (2D) scene representation. Subsequently, it is lifted into 3D Gaussians, employing splatting techniques to enable real-time exploration. To produce consistent 3D geometry, our pipeline constructs a spatially coherent structure by aligning the 2D monocular depth into a globally optimized point cloud. This point cloud serves as the initial state for the centroids of 3D Gaussians. In order to address invisible issues inherent in single-view inputs, we impose semantic and geometric constraints on both synthesized and input camera views as regularizations. These guide the optimization of Gaussians, aiding in the reconstruction of unseen regions. In summary, our method offers a globally consistent 3D scene within a 360^{circ} perspective, providing an enhanced immersive experience over existing techniques. Project website at: http://dreamscene360.github.io/
Expanded Comprehensive Robotic Cholecystectomy Dataset (CRCD)
In recent years, the application of machine learning to minimally invasive surgery (MIS) has attracted considerable interest. Datasets are critical to the use of such techniques. This paper presents a unique dataset recorded during ex vivo pseudo-cholecystectomy procedures on pig livers using the da Vinci Research Kit (dVRK). Unlike existing datasets, it addresses a critical gap by providing comprehensive kinematic data, recordings of all pedal inputs, and offers a time-stamped record of the endoscope's movements. This expanded version also includes segmentation and keypoint annotations of images, enhancing its utility for computer vision applications. Contributed by seven surgeons with varied backgrounds and experience levels that are provided as a part of this expanded version, the dataset is an important new resource for surgical robotics research. It enables the development of advanced methods for evaluating surgeon skills, tools for providing better context awareness, and automation of surgical tasks. Our work overcomes the limitations of incomplete recordings and imprecise kinematic data found in other datasets. To demonstrate the potential of the dataset for advancing automation in surgical robotics, we introduce two models that predict clutch usage and camera activation, a 3D scene reconstruction example, and the results from our keypoint and segmentation models.
Machine Learning for Online Algorithm Selection under Censored Feedback
In online algorithm selection (OAS), instances of an algorithmic problem class are presented to an agent one after another, and the agent has to quickly select a presumably best algorithm from a fixed set of candidate algorithms. For decision problems such as satisfiability (SAT), quality typically refers to the algorithm's runtime. As the latter is known to exhibit a heavy-tail distribution, an algorithm is normally stopped when exceeding a predefined upper time limit. As a consequence, machine learning methods used to optimize an algorithm selection strategy in a data-driven manner need to deal with right-censored samples, a problem that has received little attention in the literature so far. In this work, we revisit multi-armed bandit algorithms for OAS and discuss their capability of dealing with the problem. Moreover, we adapt them towards runtime-oriented losses, allowing for partially censored data while keeping a space- and time-complexity independent of the time horizon. In an extensive experimental evaluation on an adapted version of the ASlib benchmark, we demonstrate that theoretically well-founded methods based on Thompson sampling perform specifically strong and improve in comparison to existing methods.
DreamDrone
We introduce DreamDrone, an innovative method for generating unbounded flythrough scenes from textual prompts. Central to our method is a novel feature-correspondence-guidance diffusion process, which utilizes the strong correspondence of intermediate features in the diffusion model. Leveraging this guidance strategy, we further propose an advanced technique for editing the intermediate latent code, enabling the generation of subsequent novel views with geometric consistency. Extensive experiments reveal that DreamDrone significantly surpasses existing methods, delivering highly authentic scene generation with exceptional visual quality. This approach marks a significant step in zero-shot perpetual view generation from textual prompts, enabling the creation of diverse scenes, including natural landscapes like oases and caves, as well as complex urban settings such as Lego-style street views. Our code is publicly available.
MTGS: Multi-Traversal Gaussian Splatting
Multi-traversal data, commonly collected through daily commutes or by self-driving fleets, provides multiple viewpoints for scene reconstruction within a road block. This data offers significant potential for high-quality novel view synthesis, which is crucial for applications such as autonomous vehicle simulators. However, inherent challenges in multi-traversal data often result in suboptimal reconstruction quality, including variations in appearance and the presence of dynamic objects. To address these issues, we propose Multi-Traversal Gaussian Splatting (MTGS), a novel approach that reconstructs high-quality driving scenes from arbitrarily collected multi-traversal data by modeling a shared static geometry while separately handling dynamic elements and appearance variations. Our method employs a multi-traversal dynamic scene graph with a shared static node and traversal-specific dynamic nodes, complemented by color correction nodes with learnable spherical harmonics coefficient residuals. This approach enables high-fidelity novel view synthesis and provides flexibility to navigate any viewpoint. We conduct extensive experiments on a large-scale driving dataset, nuPlan, with multi-traversal data. Our results demonstrate that MTGS improves LPIPS by 23.5% and geometry accuracy by 46.3% compared to single-traversal baselines. The code and data would be available to the public.
Clear Preferences Leave Traces: Reference Model-Guided Sampling for Preference Learning
Direct Preference Optimization (DPO) has emerged as a de-facto approach for aligning language models with human preferences. Recent work has shown DPO's effectiveness relies on training data quality. In particular, clear quality differences between preferred and rejected responses enhance learning performance. Current methods for identifying and obtaining such high-quality samples demand additional resources or external models. We discover that reference model probability space naturally detects high-quality training samples. Using this insight, we present a sampling strategy that achieves consistent improvements (+0.1 to +0.4) on MT-Bench while using less than half (30-50%) of the training data. We observe substantial improvements (+0.4 to +0.98) for technical tasks (coding, math, and reasoning) across multiple models and hyperparameter settings.
Align Your Steps: Optimizing Sampling Schedules in Diffusion Models
Diffusion models (DMs) have established themselves as the state-of-the-art generative modeling approach in the visual domain and beyond. A crucial drawback of DMs is their slow sampling speed, relying on many sequential function evaluations through large neural networks. Sampling from DMs can be seen as solving a differential equation through a discretized set of noise levels known as the sampling schedule. While past works primarily focused on deriving efficient solvers, little attention has been given to finding optimal sampling schedules, and the entire literature relies on hand-crafted heuristics. In this work, for the first time, we propose a general and principled approach to optimizing the sampling schedules of DMs for high-quality outputs, called Align Your Steps. We leverage methods from stochastic calculus and find optimal schedules specific to different solvers, trained DMs and datasets. We evaluate our novel approach on several image, video as well as 2D toy data synthesis benchmarks, using a variety of different samplers, and observe that our optimized schedules outperform previous hand-crafted schedules in almost all experiments. Our method demonstrates the untapped potential of sampling schedule optimization, especially in the few-step synthesis regime.
Endowing Embodied Agents with Spatial Reasoning Capabilities for Vision-and-Language Navigation
Enhancing the spatial perception capabilities of mobile robots is crucial for achieving embodied Vision-and-Language Navigation (VLN). Although significant progress has been made in simulated environments, directly transferring these capabilities to real-world scenarios often results in severe hallucination phenomena, causing robots to lose effective spatial awareness. To address this issue, we propose BrainNav, a bio-inspired spatial cognitive navigation framework inspired by biological spatial cognition theories and cognitive map theory. BrainNav integrates dual-map (coordinate map and topological map) and dual-orientation (relative orientation and absolute orientation) strategies, enabling real-time navigation through dynamic scene capture and path planning. Its five core modules-Hippocampal Memory Hub, Visual Cortex Perception Engine, Parietal Spatial Constructor, Prefrontal Decision Center, and Cerebellar Motion Execution Unit-mimic biological cognitive functions to reduce spatial hallucinations and enhance adaptability. Validated in a zero-shot real-world lab environment using the Limo Pro robot, BrainNav, compatible with GPT-4, outperforms existing State-of-the-Art (SOTA) Vision-and-Language Navigation in Continuous Environments (VLN-CE) methods without fine-tuning.
Elucidating the Exposure Bias in Diffusion Models
Diffusion models have demonstrated impressive generative capabilities, but their exposure bias problem, described as the input mismatch between training and sampling, lacks in-depth exploration. In this paper, we systematically investigate the exposure bias problem in diffusion models by first analytically modelling the sampling distribution, based on which we then attribute the prediction error at each sampling step as the root cause of the exposure bias issue. Furthermore, we discuss potential solutions to this issue and propose an intuitive metric for it. Along with the elucidation of exposure bias, we propose a simple, yet effective, training-free method called Epsilon Scaling to alleviate the exposure bias. We show that Epsilon Scaling explicitly moves the sampling trajectory closer to the vector field learned in the training phase by scaling down the network output (Epsilon), mitigating the input mismatch between training and sampling. Experiments on various diffusion frameworks (ADM, DDPM/DDIM, EDM, LDM), unconditional and conditional settings, and deterministic vs. stochastic sampling verify the effectiveness of our method. Remarkably, our ADM-ES, as a SOTA stochastic sampler, obtains 2.17 FID on CIFAR-10 under 100-step unconditional generation. The code is available at https://github.com/forever208/ADM-ES and https://github.com/forever208/EDM-ES.
Avoiding tipping points in fisheries management through Gaussian Process Dynamic Programming
Model uncertainty and limited data are fundamental challenges to robust management of human intervention in a natural system. These challenges are acutely highlighted by concerns that many ecological systems may contain tipping points, such as Allee population sizes. Before a collapse, we do not know where the tipping points lie, if they exist at all. Hence, we know neither a complete model of the system dynamics nor do we have access to data in some large region of state-space where such a tipping point might exist. We illustrate how a Bayesian Non-Parametric (BNP) approach using a Gaussian Process (GP) prior provides a flexible representation of this inherent uncertainty. We embed GPs in a Stochastic Dynamic Programming (SDP) framework in order to make robust management predictions with both model uncertainty and limited data. We use simulations to evaluate this approach as compared with the standard approach of using model selection to choose from a set of candidate models. We find that model selection erroneously favors models without tipping points -- leading to harvest policies that guarantee extinction. The GPDP performs nearly as well as the true model and significantly outperforms standard approaches. We illustrate this using examples of simulated single-species dynamics, where the standard model selection approach should be most effective, and find that it still fails to account for uncertainty appropriately and leads to population crashes, while management based on the GPDP does not, since it does not underestimate the uncertainty outside of the observed data.
Search-TTA: A Multimodal Test-Time Adaptation Framework for Visual Search in the Wild
To perform autonomous visual search for environmental monitoring, a robot may leverage satellite imagery as a prior map. This can help inform coarse, high-level search and exploration strategies, even when such images lack sufficient resolution to allow fine-grained, explicit visual recognition of targets. However, there are some challenges to overcome with using satellite images to direct visual search. For one, targets that are unseen in satellite images are underrepresented (compared to ground images) in most existing datasets, and thus vision models trained on these datasets fail to reason effectively based on indirect visual cues. Furthermore, approaches which leverage large Vision Language Models (VLMs) for generalization may yield inaccurate outputs due to hallucination, leading to inefficient search. To address these challenges, we introduce Search-TTA, a multimodal test-time adaptation framework that can accept text and/or image input. First, we pretrain a remote sensing image encoder to align with CLIP's visual encoder to output probability distributions of target presence used for visual search. Second, our framework dynamically refines CLIP's predictions during search using a test-time adaptation mechanism. Through a feedback loop inspired by Spatial Poisson Point Processes, gradient updates (weighted by uncertainty) are used to correct (potentially inaccurate) predictions and improve search performance. To validate Search-TTA's performance, we curate a visual search dataset based on internet-scale ecological data. We find that Search-TTA improves planner performance by up to 9.7%, particularly in cases with poor initial CLIP predictions. It also achieves comparable performance to state-of-the-art VLMs. Finally, we deploy Search-TTA on a real UAV via hardware-in-the-loop testing, by simulating its operation within a large-scale simulation that provides onboard sensing.
Dropout Strategy in Reinforcement Learning: Limiting the Surrogate Objective Variance in Policy Optimization Methods
Policy-based reinforcement learning algorithms are widely used in various fields. Among them, mainstream policy optimization algorithms such as TRPO and PPO introduce importance sampling into policy iteration, which allows the reuse of historical data. However, this can also lead to a high variance of the surrogate objective and indirectly affects the stability and convergence of the algorithm. In this paper, we first derived an upper bound of the surrogate objective variance, which can grow quadratically with the increase of the surrogate objective. Next, we proposed the dropout technique to avoid the excessive increase of the surrogate objective variance caused by importance sampling. Then, we introduced a general reinforcement learning framework applicable to mainstream policy optimization methods, and applied the dropout technique to the PPO algorithm to obtain the D-PPO variant. Finally, we conduct comparative experiments between D-PPO and PPO algorithms in the Atari 2600 environment, and the results show that D-PPO achieved significant performance improvements compared to PPO, and effectively limited the excessive increase of the surrogate objective variance during training.
The Tracking Machine Learning challenge : Throughput phase
This paper reports on the second "Throughput" phase of the Tracking Machine Learning (TrackML) challenge on the Codalab platform. As in the first "Accuracy" phase, the participants had to solve a difficult experimental problem linked to tracking accurately the trajectory of particles as e.g. created at the Large Hadron Collider (LHC): given O(10^5) points, the participants had to connect them into O(10^4) individual groups that represent the particle trajectories which are approximated helical. While in the first phase only the accuracy mattered, the goal of this second phase was a compromise between the accuracy and the speed of inference. Both were measured on the Codalab platform where the participants had to upload their software. The best three participants had solutions with good accuracy and speed an order of magnitude faster than the state of the art when the challenge was designed. Although the core algorithms were less diverse than in the first phase, a diversity of techniques have been used and are described in this paper. The performance of the algorithms are analysed in depth and lessons derived.
Alleviating Exposure Bias in Diffusion Models through Sampling with Shifted Time Steps
Diffusion Probabilistic Models (DPM) have shown remarkable efficacy in the synthesis of high-quality images. However, their inference process characteristically requires numerous, potentially hundreds, of iterative steps, which could exaggerate the problem of exposure bias due to the training and inference discrepancy. Previous work has attempted to mitigate this issue by perturbing inputs during training, which consequently mandates the retraining of the DPM. In this work, we conduct a systematic study of exposure bias in DPM and, intriguingly, we find that the exposure bias could be alleviated with a novel sampling method that we propose, without retraining the model. We empirically and theoretically show that, during inference, for each backward time step t and corresponding state x_t, there might exist another time step t_s which exhibits superior coupling with x_t. Based on this finding, we introduce a sampling method named Time-Shift Sampler. Our framework can be seamlessly integrated to existing sampling algorithms, such as DDPM, DDIM and other high-order solvers, inducing merely minimal additional computations. Experimental results show our method brings significant and consistent improvements in FID scores on different datasets and sampling methods. For example, integrating Time-Shift Sampler to F-PNDM yields a FID=3.88, achieving 44.49\% improvements as compared to F-PNDM, on CIFAR-10 with 10 sampling steps, which is more performant than the vanilla DDIM with 100 sampling steps. Our code is available at https://github.com/Mingxiao-Li/TS-DPM.
PanoWan: Lifting Diffusion Video Generation Models to 360° with Latitude/Longitude-aware Mechanisms
Panoramic video generation enables immersive 360{\deg} content creation, valuable in applications that demand scene-consistent world exploration. However, existing panoramic video generation models struggle to leverage pre-trained generative priors from conventional text-to-video models for high-quality and diverse panoramic videos generation, due to limited dataset scale and the gap in spatial feature representations. In this paper, we introduce PanoWan to effectively lift pre-trained text-to-video models to the panoramic domain, equipped with minimal modules. PanoWan employs latitude-aware sampling to avoid latitudinal distortion, while its rotated semantic denoising and padded pixel-wise decoding ensure seamless transitions at longitude boundaries. To provide sufficient panoramic videos for learning these lifted representations, we contribute PanoVid, a high-quality panoramic video dataset with captions and diverse scenarios. Consequently, PanoWan achieves state-of-the-art performance in panoramic video generation and demonstrates robustness for zero-shot downstream tasks.
Sekai: A Video Dataset towards World Exploration
Video generation techniques have made remarkable progress, promising to be the foundation of interactive world exploration. However, existing video generation datasets are not well-suited for world exploration training as they suffer from some limitations: limited locations, short duration, static scenes, and a lack of annotations about exploration and the world. In this paper, we introduce Sekai (meaning ``world'' in Japanese), a high-quality first-person view worldwide video dataset with rich annotations for world exploration. It consists of over 5,000 hours of walking or drone view (FPV and UVA) videos from over 100 countries and regions across 750 cities. We develop an efficient and effective toolbox to collect, pre-process and annotate videos with location, scene, weather, crowd density, captions, and camera trajectories. Experiments demonstrate the quality of the dataset. And, we use a subset to train an interactive video world exploration model, named YUME (meaning ``dream'' in Japanese). We believe Sekai will benefit the area of video generation and world exploration, and motivate valuable applications.
Cloud-Device Collaborative Adaptation to Continual Changing Environments in the Real-world
When facing changing environments in the real world, the lightweight model on client devices suffers from severe performance drops under distribution shifts. The main limitations of the existing device model lie in (1) unable to update due to the computation limit of the device, (2) the limited generalization ability of the lightweight model. Meanwhile, recent large models have shown strong generalization capability on the cloud while they can not be deployed on client devices due to poor computation constraints. To enable the device model to deal with changing environments, we propose a new learning paradigm of Cloud-Device Collaborative Continual Adaptation, which encourages collaboration between cloud and device and improves the generalization of the device model. Based on this paradigm, we further propose an Uncertainty-based Visual Prompt Adapted (U-VPA) teacher-student model to transfer the generalization capability of the large model on the cloud to the device model. Specifically, we first design the Uncertainty Guided Sampling (UGS) to screen out challenging data continuously and transmit the most out-of-distribution samples from the device to the cloud. Then we propose a Visual Prompt Learning Strategy with Uncertainty guided updating (VPLU) to specifically deal with the selected samples with more distribution shifts. We transmit the visual prompts to the device and concatenate them with the incoming data to pull the device testing distribution closer to the cloud training distribution. We conduct extensive experiments on two object detection datasets with continually changing environments. Our proposed U-VPA teacher-student framework outperforms previous state-of-the-art test time adaptation and device-cloud collaboration methods. The code and datasets will be released.
SAVVY: Spatial Awareness via Audio-Visual LLMs through Seeing and Hearing
3D spatial reasoning in dynamic, audio-visual environments is a cornerstone of human cognition yet remains largely unexplored by existing Audio-Visual Large Language Models (AV-LLMs) and benchmarks, which predominantly focus on static or 2D scenes. We introduce SAVVY-Bench, the first benchmark for 3D spatial reasoning in dynamic scenes with synchronized spatial audio. SAVVY-Bench is comprised of thousands of relationships involving static and moving objects, and requires fine-grained temporal grounding, consistent 3D localization, and multi-modal annotation. To tackle this challenge, we propose SAVVY, a novel training-free reasoning pipeline that consists of two stages: (i) Egocentric Spatial Tracks Estimation, which leverages AV-LLMs as well as other audio-visual methods to track the trajectories of key objects related to the query using both visual and spatial audio cues, and (ii) Dynamic Global Map Construction, which aggregates multi-modal queried object trajectories and converts them into a unified global dynamic map. Using the constructed map, a final QA answer is obtained through a coordinate transformation that aligns the global map with the queried viewpoint. Empirical evaluation demonstrates that SAVVY substantially enhances performance of state-of-the-art AV-LLMs, setting a new standard and stage for approaching dynamic 3D spatial reasoning in AV-LLMs.