Schmadge's picture
Update handler.py
9e81bca
raw
history blame
2.38 kB
import warnings
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from typing import Any, Dict
class EndpointHandler:
def __init__(
self,
path='',
torch_dtype=torch.bfloat16,
trust_remote_code=True,
) -> None:
self.model = AutoModelForCausalLM.from_pretrained(
path,
torch_dtype=torch_dtype,
trust_remote_code=trust_remote_code
)
tokenizer = AutoTokenizer.from_pretrained(
path,
trust_remote_code=trust_remote_code
)
if tokenizer.pad_token_id is None:
warnings.warn(
"pad_token_id is not set for the tokenizer. Using eos_token_id as pad_token_id."
)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right" # "left"
self.tokenizer = tokenizer
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model.eval()
self.model.to(device=self.device, dtype=torch_dtype)
self.generate_kwargs = {
"temperature": 0.01,
"top_p": 0.92,
"top_k": 0,
"max_new_tokens": 512,
"use_cache": True,
"do_sample": True,
"eos_token_id": self.tokenizer.eos_token_id,
"pad_token_id": self.tokenizer.pad_token_id,
"repetition_penalty": 1.0
}
def format_instruction(self, instruction):
return PROMPT_FOR_GENERATION_FORMAT.format(instruction=instruction)
def __call__(self, data: Dict[str, Any]) -> Dict[str, str]:
# process input
inputs = data.pop("inputs", data)
parameters = data.pop("parameters", None)
# preprocess
s = PROMPT_FOR_GENERATION_FORMAT.format(instruction=inputs)
input_ids = self.tokenizer(s, return_tensors="pt").input_ids.to(self.device)
gkw = {**self.generate_kwargs, **parameters}
# pass inputs with all kwargs in data
with torch.no_grad():
output_ids = self.model.generate(input_ids, **gkw)
# Slice the output_ids tensor to get only new tokens
new_tokens = output_ids[0, len(input_ids[0]) :]
output_text = self.tokenizer.decode(new_tokens, skip_special_tokens=True)
return [{"generated_text": output_text}]