File size: 1,265 Bytes
43420b3 42b1426 eb74a50 42b1426 eb74a50 42b1426 eb74a50 42b1426 eb74a50 42b1426 0231716 42b1426 eb74a50 42b1426 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
---
language: code
tags:
- code
- translation
- codet5
- vbnet
- csharp
- programming
- source-code
datasets:
- custom
license: mit
library_name: transformers
pipeline_tag: translation
model_type: codet5
---
# π CodeT5 VB.NET β C# Translator
This is a fine-tuned version of [Salesforce/CodeT5-base](https://huggingface.co/Salesforce/codet5-base) for translating VB.NET to C#.
---
# π Evaluation Metrics
**BLEU Score:** 0.4506
- 1-gram: 0.6698
- 2-gram: 0.5402
- 3-gram: 0.4656
- 4-gram: 0.4132
- Brevity penalty: 0.8773
- Length ratio: 0.8843
**ROUGE Scores:**
- ROUGE-1: 0.5836
- ROUGE-2: 0.4586
- ROUGE-L: 0.5378
- ROUGE-Lsum: 0.5781
---
# π§ Usage
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
model = AutoModelForSeq2SeqLM.from_pretrained("{repo_id}")
tokenizer = AutoTokenizer.from_pretrained("{repo_id}")
vb_code = "Dim x As Integer = 5"
inputs = tokenizer(f"translate VB.NET to C#: {vb_code}", return_tensors="pt")
outputs = model.generate(**inputs)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
# π Dataset Format
Training data was in JSONL with fields:
- `"vb_code"`: VB.NET input
- `"csharp_code"`: corresponding C# output
# π License
MIT
|