|
import argparse |
|
import torch |
|
from safetensors.torch import load_file, save_file |
|
from collections import defaultdict |
|
|
|
def convert_comfy_to_wan_lora_final_fp16(lora_path, output_path): |
|
""" |
|
Converts a ComfyUI-style LoRA to the format expected by 'wan.modules.model'. |
|
- Keeps 'diffusion_model.' prefix. |
|
- Converts 'lora_A' to 'lora_down', 'lora_B' to 'lora_up'. |
|
- Skips per-layer '.alpha' keys. |
|
- Skips keys related to 'img_emb.' that are under the 'diffusion_model.' prefix. |
|
- Converts all LoRA weight tensors to float16. |
|
|
|
Args: |
|
lora_path (str): Path to the input ComfyUI LoRA .safetensors file. |
|
output_path (str): Path to save the converted LoRA .safetensors file. |
|
""" |
|
try: |
|
source_state_dict = load_file(lora_path) |
|
except Exception as e: |
|
print(f"Error loading LoRA file '{lora_path}': {e}") |
|
return |
|
|
|
diffusers_state_dict = {} |
|
print(f"Loaded {len(source_state_dict)} tensors from {lora_path}") |
|
|
|
source_comfy_prefix = "diffusion_model." |
|
target_wan_prefix = "diffusion_model." |
|
|
|
converted_count = 0 |
|
skipped_alpha_keys_count = 0 |
|
skipped_img_emb_keys_count = 0 |
|
problematic_keys = [] |
|
|
|
for key, tensor in source_state_dict.items(): |
|
original_key = key |
|
|
|
if not key.startswith(source_comfy_prefix): |
|
problematic_keys.append(f"{original_key} (Key does not start with expected prefix '{source_comfy_prefix}')") |
|
continue |
|
|
|
module_and_lora_part = key[len(source_comfy_prefix):] |
|
|
|
if module_and_lora_part.startswith("img_emb."): |
|
skipped_img_emb_keys_count += 1 |
|
continue |
|
|
|
new_key_module_base = "" |
|
new_lora_suffix = "" |
|
is_weight_tensor = False |
|
|
|
if module_and_lora_part.endswith(".lora_A.weight"): |
|
new_key_module_base = module_and_lora_part[:-len(".lora_A.weight")] |
|
new_lora_suffix = ".lora_down.weight" |
|
is_weight_tensor = True |
|
elif module_and_lora_part.endswith(".lora_B.weight"): |
|
new_key_module_base = module_and_lora_part[:-len(".lora_B.weight")] |
|
new_lora_suffix = ".lora_up.weight" |
|
is_weight_tensor = True |
|
elif module_and_lora_part.endswith(".alpha"): |
|
skipped_alpha_keys_count += 1 |
|
continue |
|
else: |
|
problematic_keys.append(f"{original_key} (Unknown LoRA suffix or non-LoRA key within '{source_comfy_prefix}' structure: '...{module_and_lora_part[-25:]}')") |
|
continue |
|
|
|
new_key = target_wan_prefix + new_key_module_base + new_lora_suffix |
|
|
|
|
|
if is_weight_tensor: |
|
if tensor.is_floating_point(): |
|
diffusers_state_dict[new_key] = tensor.to(torch.float16) |
|
else: |
|
diffusers_state_dict[new_key] = tensor |
|
print(f"Warning: Tensor {original_key} was not floating point, dtype not changed.") |
|
|
|
else: |
|
diffusers_state_dict[new_key] = tensor |
|
|
|
|
|
converted_count += 1 |
|
|
|
print(f"\nKey conversion finished.") |
|
print(f"Successfully processed and converted {converted_count} LoRA weight keys (to float16).") |
|
if skipped_alpha_keys_count > 0: |
|
print(f"Skipped {skipped_alpha_keys_count} '.alpha' keys.") |
|
if skipped_img_emb_keys_count > 0: |
|
print(f"Skipped {skipped_img_emb_keys_count} 'diffusion_model.img_emb.' related keys.") |
|
if problematic_keys: |
|
print(f"Found {len(problematic_keys)} other keys that were also skipped (see details below):") |
|
for pkey in problematic_keys: |
|
print(f" - {pkey}") |
|
|
|
if diffusers_state_dict: |
|
print(f"Output dictionary has {len(diffusers_state_dict)} keys.") |
|
print(f"Now attempting to save the file to: {output_path} (This might take a while for large files)...") |
|
try: |
|
save_file(diffusers_state_dict, output_path) |
|
print(f"\nSuccessfully saved converted LoRA to: {output_path}") |
|
except Exception as e: |
|
print(f"Error saving converted LoRA file '{output_path}': {e}") |
|
elif converted_count == 0 and source_state_dict: |
|
print("\nNo keys were converted. Check input LoRA format and skipped key counts.") |
|
elif not source_state_dict: |
|
print("\nInput LoRA file seems empty or could not be loaded. No conversion performed.") |
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser( |
|
description="Convert ComfyUI-style LoRA to 'wan.modules.model' format, converting weights to float16.", |
|
formatter_class=argparse.RawTextHelpFormatter |
|
) |
|
parser.add_argument("lora_path", type=str, help="Path to the input ComfyUI LoRA (.safetensors) file.") |
|
parser.add_argument("output_path", type=str, help="Path to save the converted LoRA (.safetensors) file.") |
|
args = parser.parse_args() |
|
|
|
convert_comfy_to_wan_lora_final_fp16(args.lora_path, args.output_path) |