|
""" RWKV Modeling""" |
|
|
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import ( |
|
ModelOutput, |
|
add_code_sample_docstrings, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
is_ninja_available, |
|
is_torch_cuda_available, |
|
logging, |
|
) |
|
from transformers.generation import GenerationMixin |
|
from transformers.modeling_outputs import ModelOutput |
|
|
|
import torch |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss |
|
import torch.nn.functional as F |
|
|
|
import warnings |
|
from dataclasses import dataclass |
|
from typing import List, Dict, Optional, Tuple, Union, Any |
|
|
|
|
|
from .configuration_rwkv7 import RWKV7Config |
|
from .modeling_blocks_rwkv7 import RWKV7GooseModel |
|
|
|
class RWKV7PreTrainedModel(PreTrainedModel,RWKV7GooseModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. |
|
""" |
|
config_class = RWKV7Config |
|
base_model_prefix = "rwkv7" |
|
is_parallelizable = True |
|
_no_split_modules = ["RWKV7LayerBlock"] |
|
_keep_in_fp32_modules = [] |
|
supports_gradient_checkpointing = True |
|
|
|
def __init__(self, config: RWKV7Config): |
|
RWKV7GooseModel.__init__(self, config.__dict__) |
|
self.config = config |
|
|
|
def _init_weights( |
|
self, |
|
module |
|
): |
|
|
|
if hasattr(module, 'reset_parameters'): |
|
module.reset_parameters() |
|
return |
|
elif hasattr(module, 'init_parameters'): |
|
module.init_parameters() |
|
return |
|
|
|
|
|
initializer_range = 0.02 |
|
|
|
if isinstance(module, (nn.ParameterList, nn.ModuleList)): |
|
|
|
for param in module: |
|
self._init_weights(param) |
|
elif isinstance(module, nn.ParameterDict): |
|
|
|
for key, param in module.items(): |
|
self._init_weights(param) |
|
|
|
elif isinstance(module, (nn.Linear, nn.Conv1d)): |
|
|
|
|
|
nn.init.normal_(module.weight, mean=0.0, std=initializer_range) |
|
if module.bias is not None: |
|
nn.init.zeros_(module.bias) |
|
elif isinstance(module, nn.LayerNorm): |
|
nn.init.normal_(module.weight, mean=0.0, std=initializer_range) |
|
elif isinstance(module, nn.Parameter): |
|
nn.init.normal_(module, mean=0.0, std=initializer_range) |
|
elif isinstance(module, nn.Embedding): |
|
nn.init.normal_(module.weight, mean=0.0, std=initializer_range) |
|
|
|
|
|
|
|
|
|
|
|
@dataclass |
|
class RWKV7Output(ModelOutput): |
|
""" |
|
Class for the RWKV model outputs. |
|
Args: |
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): |
|
Sequence of hidden-states at the output of the last layer of the model. |
|
state (list of five `torch.FloatTensor` of shape `(batch_size, hidden_size, num_hidden_layers)`): |
|
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to |
|
avoid providing the old `input_ids`. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of |
|
the model at the output of each layer plus the optional initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in |
|
the self-attention heads. |
|
""" |
|
last_hidden_state: torch.FloatTensor = None |
|
rwkv_state: Optional[list[tuple[torch.Tensor,torch.Tensor,torch.Tensor]]] = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
@dataclass |
|
class RWKV7CausalLMOutput(ModelOutput): |
|
""" |
|
Base class for causal language model (or autoregressive) outputs. |
|
Args: |
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): |
|
Language modeling loss (for next-token prediction). |
|
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): |
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). |
|
state (list of five `torch.FloatTensor` of shape `(batch_size, hidden_size, num_hidden_layers)`): |
|
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to |
|
avoid providing the old `input_ids`. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of |
|
the model at the output of each layer plus the optional initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in |
|
the self-attention heads. |
|
""" |
|
loss: Optional[torch.FloatTensor] = None |
|
logits: torch.FloatTensor = None |
|
rwkv_state: Optional[list[tuple[torch.Tensor,torch.Tensor,torch.Tensor]]] = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
RWKV7_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) |
|
subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to |
|
general usage and behavior. |
|
Parameters: |
|
config ([`Rwkv7Config`]): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
RWKV7_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`): |
|
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else |
|
`past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input |
|
sequence tokens in the vocabulary. If `past_key_values` is used, only `input_ids` that do not have their |
|
past calculated should be passed as `input_ids`. Indices can be obtained using [`AutoTokenizer`]. See |
|
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input |
|
IDs?](../glossary#input-ids) |
|
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
[What are attention masks?](../glossary#attention-mask) |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
|
|
state (List block states, representing the RWKV various internal states per layer `(batch_size, hidden_state)`, *optional*): |
|
If passed along, the model uses the previous state in all the blocks (which will give the output for the |
|
`input_ids` provided as if the model add `state_input_ids + input_ids` as context). |
|
|
|
use_cache (`bool`, *optional*): |
|
If set to `True`, the last state is returned and can be used to quickly generate the next logits. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
|
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
@add_start_docstrings( |
|
"The bare RWKV7 Model transformer outputting raw hidden-states without activating the head (variable is still declared)", |
|
RWKV7_START_DOCSTRING, |
|
) |
|
class RWKV7Model(RWKV7PreTrainedModel): |
|
def __init__(self, config: RWKV7Config): |
|
super().__init__(config) |
|
|
|
def get_input_embeddings(self): |
|
return self.emb |
|
def set_input_embeddings(self, value): |
|
self.emb = value |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
@add_start_docstrings_to_model_forward(RWKV7_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
output_type=RWKV7Output, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.LongTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
rwkv_state: Optional[list[tuple[torch.Tensor,torch.Tensor,torch.Tensor]]] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
**kwargs |
|
) -> Union[Tuple, RWKV7Output]: |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if output_attentions: |
|
warnings.warning_once("`RWKV7Model` does not `output_attentions` now, setting it to `False`.") |
|
output_attentions = False |
|
|
|
if self.gradient_checkpointing and self.training and use_cache: |
|
warnings.warning_once("`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...") |
|
use_cache = False |
|
|
|
if self.gradient_checkpointing and self.training and use_cache: |
|
warnings.warning_once("`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...") |
|
use_cache = False |
|
|
|
if output_hidden_states: |
|
warnings.warning_once("`RWKV7Model` does not `output_hidden_states` now, setting it to `False`.") |
|
output_hidden_states = False |
|
|
|
|
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
if input_ids is None and inputs_embeds is None: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
if inputs_embeds is None: |
|
inputs_embeds = self.emb(input_ids.to(self.emb.weight.device)) |
|
x_hidden_state = inputs_embeds |
|
|
|
|
|
if rwkv_state is None or use_cache == False: |
|
rwkv_state = self.get_init_state(batch_size=x_hidden_state.shape[0]) |
|
prv_stateList = rwkv_state |
|
|
|
|
|
ret_stateList = self.get_init_state(batch_size=x_hidden_state.shape[0], skip_init_state=True) |
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_attns = () if output_attentions else None |
|
v_first = None |
|
ret_sublist = None |
|
|
|
|
|
for i, block in enumerate(self.blocks): |
|
|
|
if output_hidden_states: |
|
all_hidden_states += (x_hidden_state,) |
|
|
|
|
|
if self.gradient_checkpointing and self.training: |
|
x_hidden_state, ret_sublist, v_first = self._gradient_checkpointing_func( |
|
block.__call__, x_hidden_state, prv_stateList[i], v_first |
|
) |
|
ret_stateList[i] = ret_sublist |
|
else: |
|
x_hidden_state, ret_sublist, v_first = block(x_hidden_state, prv_stateList[i], v_first) |
|
ret_stateList[i] = ret_sublist |
|
|
|
|
|
|
|
|
|
|
|
x_hidden_state = x_hidden_state.to(self.ln_out.weight.device, non_blocking=True) |
|
x_hidden_state = self.ln_out(x_hidden_state) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (x_hidden_state,) |
|
|
|
if not return_dict: |
|
return tuple(i for i in [x_hidden_state, rwkv_state, all_hidden_states, all_attns] if i is not None) |
|
return RWKV7Output( |
|
last_hidden_state=x_hidden_state, |
|
rwkv_state=rwkv_state, |
|
hidden_states=all_hidden_states, |
|
attentions=all_attns |
|
) |
|
|
|
@add_start_docstrings( |
|
""" |
|
The RWKV Model transformer with a language modeling head on top (linear layer with weights tied to the input |
|
embeddings). |
|
""", |
|
RWKV7_START_DOCSTRING, |
|
) |
|
class RWKV7ForCausalLM(RWKV7Model, GenerationMixin): |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.post_init() |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids=None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
use_cache: bool = True, |
|
rwkv_state: Optional[list[tuple[torch.Tensor,torch.Tensor,torch.Tensor]]] = None, |
|
|
|
num_logits_to_keep: Optional[int] = None, |
|
**kwargs |
|
): |
|
''' |
|
Personal Notes: On huggingface barely documented "Transformer" hooks. |
|
|
|
I assume this is triggered once, for the start of AI inference. |
|
With subsequent calls for forward on each token step, being updated with |
|
`_update_model_kwargs_for_generation` function instead? |
|
''' |
|
|
|
|
|
|
|
|
|
|
|
if inputs_embeds is not None: |
|
if input_ids is not None: |
|
raise ValueError("You cannot specify both `inputs_ids` and `inputs_embeds` at the same time") |
|
model_inputs = {'inputs_embeds': inputs_embeds} |
|
else: |
|
|
|
|
|
|
|
|
|
model_inputs = {'input_ids': input_ids.contiguous()} |
|
|
|
if num_logits_to_keep is not None: |
|
model_inputs['num_logits_to_keep'] = num_logits_to_keep |
|
|
|
model_inputs.update({ |
|
'rwkv_state': rwkv_state, |
|
'use_cache': use_cache, |
|
'attention_mask': attention_mask, |
|
'num_logits_to_keep': num_logits_to_keep, |
|
}) |
|
return model_inputs |
|
|
|
def _update_model_kwargs_for_generation( |
|
self, outputs: ModelOutput, |
|
model_kwargs: Dict[str, Any], |
|
num_new_tokens: int = 1, |
|
**kwargs |
|
) -> Dict[str, Any]: |
|
|
|
rwkv_state = outputs.get("rwkv_state", None) |
|
input_ids = model_kwargs.get("input_ids", None) |
|
attention_mask = model_kwargs.get("attention_mask", None) |
|
|
|
|
|
if rwkv_state is not None and input_ids is not None and num_new_tokens > 0: |
|
input_ids = input_ids[:, -num_new_tokens:] |
|
model_kwargs["input_ids"] = input_ids |
|
|
|
if attention_mask is not None: |
|
attention_mask = attention_mask.new_ones((attention_mask.shape[0], num_new_tokens)) |
|
model_kwargs["attention_mask"] = attention_mask |
|
|
|
|
|
return model_kwargs |
|
|
|
@add_start_docstrings_to_model_forward(RWKV7_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
output_type=RWKV7CausalLMOutput, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.LongTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
rwkv_state: Optional[list[tuple[torch.Tensor,torch.Tensor,torch.Tensor]]] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
**kwargs |
|
) -> Union[Tuple, RWKV7CausalLMOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set |
|
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` |
|
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
rwkv_outputs = RWKV7Model.forward( |
|
self, input_ids, attention_mask, inputs_embeds, |
|
rwkv_state, use_cache, output_attentions, output_hidden_states, |
|
return_dict=False |
|
) |
|
|
|
|
|
hidden_states = rwkv_outputs[0] |
|
rwkv_state = rwkv_outputs[1] |
|
|
|
|
|
all_hidden_states = rwkv_outputs[2] if output_hidden_states else None |
|
if output_hidden_states: |
|
all_attns = rwkv_outputs[3] if output_attentions else None |
|
else: |
|
all_attns = rwkv_outputs[2] if output_attentions else None |
|
|
|
|
|
logits = self.head(hidden_states) |
|
|
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
|
|
if self._loss_function_cache is None: |
|
self._loss_function_cache = CrossEntropyLoss() |
|
|
|
|
|
labels = labels.to(logits.device) |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
|
|
if attention_mask is not None: |
|
token_loss = F.cross_entropy(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1), reduction="none") |
|
submask = attention_mask[..., 1:].contiguous().view(-1) |
|
loss = (token_loss * submask).sum() / submask.sum() |
|
else: |
|
loss = F.cross_entropy(shift_logits.view(-1, shift_labels.size(-1)), shift_labels.view(-1), reduction="mean") |
|
|
|
if not return_dict: |
|
return tuple(i for i in [loss, logits, rwkv_state, all_hidden_states, all_attns] if i is not None) |
|
|
|
return RWKV7CausalLMOutput( |
|
loss=loss, |
|
logits=logits, |
|
rwkv_state=rwkv_state, |
|
hidden_states=all_hidden_states, |
|
attentions=all_attns, |
|
) |
|
|
|
__all__ = ["RWKV7ForCausalLM", "RWKV7Model", "RWKV7PreTrainedModel"] |