File size: 22,760 Bytes
24eb417
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
---
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dataset_size:10K<n<100K
- loss:CosineSimilarityLoss
base_model: distilbert/distilbert-base-uncased
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: The long jump pit had to be raked after every few attempts.
  sentences:
  - The high jumper cleared the bar on his first attempt.
  - Chemists use quantum mechanics to predict electron behavior and molecular bonding.
  - Eczema frequently appears as inflamed, tender spots on several parts of the body.
- source_sentence: Street art transforms empty rural barns into lively murals.
  sentences:
  - Traditional folk music plays a significant role in preserving a community's history.
  - '[SYNTAX] The saxophone offers the high-pitched, thrilling elements in a jazz
    trio.'
  - Atmospheric pressure decreases as you move higher above sea level.
- source_sentence: Proteins are synthesized through the process of translation.
  sentences:
  - Molecular genetics studies the structure and function of genes at a molecular
    level.
  - The mathematics lecture is a compelling method for introducing integral equations.
  - 'The correlation between air pollution and increased mortality rates is well-documented.  '
- source_sentence: '[SYNTAX] A barometer is used to measure atmospheric pressure.'
  sentences:
  - '[SYNTAX] Colonialism is a primary subject in several political science research
    papers.'
  - '[SYNTAX] Ordinary urban walls are turned into vibrant masterpieces by street
    art.'
  - Email remains a significant device for academic and fictional correspondence.
- source_sentence: Salinity gradients in oceans affect local wildlife habitats.
  sentences:
  - The distribution of wildlife in different habitats has fascinated ecologists for
    decades.
  - '[SYNTAX] Bioenergy plants can convert agricultural waste into valuable electricity.'
  - Proper management of irrigation schedules is crucial for crop health.
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on distilbert/distilbert-base-uncased
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: custom dev
      type: custom-dev
    metrics:
    - type: pearson_cosine
      value: 0.9117000984572255
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8442193394453843
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.9156511082976959
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8440889792296263
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.9159884478218315
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8445673615230997
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.9046139794819923
      name: Pearson Dot
    - type: spearman_dot
      value: 0.8327655787489855
      name: Spearman Dot
    - type: pearson_max
      value: 0.9159884478218315
      name: Pearson Max
    - type: spearman_max
      value: 0.8445673615230997
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: custom test
      type: custom-test
    metrics:
    - type: pearson_cosine
      value: 0.919801732989496
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8500534773438543
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.9282084953416339
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8493690342081703
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.9284184436823353
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.849759760833697
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.9141474471982576
      name: Pearson Dot
    - type: spearman_dot
      value: 0.8410969822964006
      name: Spearman Dot
    - type: pearson_max
      value: 0.9284184436823353
      name: Pearson Max
    - type: spearman_max
      value: 0.8500534773438543
      name: Spearman Max
---

# SentenceTransformer based on distilbert/distilbert-base-uncased

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) <!-- at revision 12040accade4e8a0f71eabdb258fecc2e7e948be -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'Salinity gradients in oceans affect local wildlife habitats.',
    'The distribution of wildlife in different habitats has fascinated ecologists for decades.',
    '[SYNTAX] Bioenergy plants can convert agricultural waste into valuable electricity.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity
* Dataset: `custom-dev`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.9117     |
| **spearman_cosine** | **0.8442** |
| pearson_manhattan   | 0.9157     |
| spearman_manhattan  | 0.8441     |
| pearson_euclidean   | 0.916      |
| spearman_euclidean  | 0.8446     |
| pearson_dot         | 0.9046     |
| spearman_dot        | 0.8328     |
| pearson_max         | 0.916      |
| spearman_max        | 0.8446     |

#### Semantic Similarity
* Dataset: `custom-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.9198     |
| **spearman_cosine** | **0.8501** |
| pearson_manhattan   | 0.9282     |
| spearman_manhattan  | 0.8494     |
| pearson_euclidean   | 0.9284     |
| spearman_euclidean  | 0.8498     |
| pearson_dot         | 0.9141     |
| spearman_dot        | 0.8411     |
| pearson_max         | 0.9284     |
| spearman_max        | 0.8501     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 19,352 training samples
* Columns: <code>s1</code>, <code>s2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | s1                                                                                 | s2                                                                                 | label                                           |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------|
  | type    | string                                                                             | string                                                                             | int                                             |
  | details | <ul><li>min: 10 tokens</li><li>mean: 19.92 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 20.53 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>0: ~50.50%</li><li>1: ~49.50%</li></ul> |
* Samples:
  | s1                                                                                                                                       | s2                                                                                                                                       | label          |
  |:-----------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------|:---------------|
  | <code>According to labeling theory, individuals are considered deviant once society has tagged them with that label.</code>              | <code>Labeling theory posits that corporations become powerful when labeled as such by stakeholders.</code>                              | <code>0</code> |
  | <code>Employers must classify workers correctly as either employees or independent contractors to comply with tax and labor laws.</code> | <code>Employers must classify workers correctly as either employees or independent contractors to comply with tax and labor laws.</code> | <code>1</code> |
  | <code>Higher education institutions play a critical role in advancing research and innovation.</code>                                    | <code>Advancement in research and innovation is significantly driven by the contributions of higher education institutions.</code>       | <code>1</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
  ```json
  {
      "loss_fct": "torch.nn.modules.loss.MSELoss"
  }
  ```

### Evaluation Dataset

#### Unnamed Dataset


* Size: 2,419 evaluation samples
* Columns: <code>s1</code>, <code>s2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | s1                                                                                 | s2                                                                                 | label                                           |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------|
  | type    | string                                                                             | string                                                                             | int                                             |
  | details | <ul><li>min: 11 tokens</li><li>mean: 19.91 tokens</li><li>max: 37 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 20.46 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>0: ~49.70%</li><li>1: ~50.30%</li></ul> |
* Samples:
  | s1                                                                                                                          | s2                                                                                                                          | label          |
  |:----------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------|:---------------|
  | <code>Acoustic tomography is an innovative geophysical technique used to image the Earth's interior.</code>                 | <code>Acoustic tomography is an innovative geophysical technique used to image the Earth's interior.</code>                 | <code>1</code> |
  | <code>Urban areas frequently exhibit a different age distribution pattern compared to rural areas.</code>                   | <code>Urban areas frequently exhibit a different age distribution pattern compared to rural areas.</code>                   | <code>1</code> |
  | <code>Radiocarbon dating is a critical tool for assessing the duration of battery life in modern electronic devices.</code> | <code>Radiocarbon dating is a critical tool for assessing the duration of battery life in modern electronic devices.</code> | <code>1</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
  ```json
  {
      "loss_fct": "torch.nn.modules.loss.MSELoss"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 10
- `warmup_ratio`: 0.1
- `fp16`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 10
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | loss   | custom-dev_spearman_cosine | custom-test_spearman_cosine |
|:------:|:----:|:-------------:|:------:|:--------------------------:|:---------------------------:|
| 0.3300 | 100  | 0.2961        | 0.1185 | 0.8063                     | -                           |
| 0.6601 | 200  | 0.0772        | 0.0504 | 0.8461                     | -                           |
| 0.9901 | 300  | 0.0502        | 0.0454 | 0.8486                     | -                           |
| 1.3201 | 400  | 0.0376        | 0.0402 | 0.8481                     | -                           |
| 1.6502 | 500  | 0.0344        | 0.0400 | 0.8501                     | -                           |
| 1.9802 | 600  | 0.0329        | 0.0390 | 0.8518                     | -                           |
| 2.3102 | 700  | 0.0185        | 0.0387 | 0.8496                     | -                           |
| 2.6403 | 800  | 0.0164        | 0.0371 | 0.8492                     | -                           |
| 2.9703 | 900  | 0.0179        | 0.0393 | 0.8428                     | -                           |
| 3.3003 | 1000 | 0.0099        | 0.0389 | 0.8466                     | -                           |
| 3.6304 | 1100 | 0.0092        | 0.0395 | 0.8480                     | -                           |
| 3.9604 | 1200 | 0.0101        | 0.0368 | 0.8492                     | -                           |
| 4.2904 | 1300 | 0.0067        | 0.0385 | 0.8474                     | -                           |
| 4.6205 | 1400 | 0.0056        | 0.0393 | 0.8456                     | -                           |
| 4.9505 | 1500 | 0.0068        | 0.0401 | 0.8466                     | -                           |
| 5.2805 | 1600 | 0.0041        | 0.0410 | 0.8462                     | -                           |
| 5.6106 | 1700 | 0.0043        | 0.0399 | 0.8469                     | -                           |
| 5.9406 | 1800 | 0.0039        | 0.0406 | 0.8463                     | -                           |
| 6.2706 | 1900 | 0.003         | 0.0400 | 0.8456                     | -                           |
| 6.6007 | 2000 | 0.0026        | 0.0416 | 0.8438                     | -                           |
| 6.9307 | 2100 | 0.0027        | 0.0420 | 0.8437                     | -                           |
| 7.2607 | 2200 | 0.0028        | 0.0424 | 0.8449                     | -                           |
| 7.5908 | 2300 | 0.0021        | 0.0422 | 0.8458                     | -                           |
| 7.9208 | 2400 | 0.002         | 0.0414 | 0.8451                     | -                           |
| 8.2508 | 2500 | 0.0015        | 0.0421 | 0.8451                     | -                           |
| 8.5809 | 2600 | 0.0015        | 0.0427 | 0.8451                     | -                           |
| 8.9109 | 2700 | 0.0016        | 0.0429 | 0.8444                     | -                           |
| 9.2409 | 2800 | 0.0011        | 0.0432 | 0.8442                     | -                           |
| 9.5710 | 2900 | 0.0014        | 0.0432 | 0.8444                     | -                           |
| 9.9010 | 3000 | 0.0011        | 0.0432 | 0.8442                     | -                           |
| 10.0   | 3030 | -             | -      | -                          | 0.8501                      |


### Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.0.0
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->