File size: 22,760 Bytes
24eb417 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 |
---
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dataset_size:10K<n<100K
- loss:CosineSimilarityLoss
base_model: distilbert/distilbert-base-uncased
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: The long jump pit had to be raked after every few attempts.
sentences:
- The high jumper cleared the bar on his first attempt.
- Chemists use quantum mechanics to predict electron behavior and molecular bonding.
- Eczema frequently appears as inflamed, tender spots on several parts of the body.
- source_sentence: Street art transforms empty rural barns into lively murals.
sentences:
- Traditional folk music plays a significant role in preserving a community's history.
- '[SYNTAX] The saxophone offers the high-pitched, thrilling elements in a jazz
trio.'
- Atmospheric pressure decreases as you move higher above sea level.
- source_sentence: Proteins are synthesized through the process of translation.
sentences:
- Molecular genetics studies the structure and function of genes at a molecular
level.
- The mathematics lecture is a compelling method for introducing integral equations.
- 'The correlation between air pollution and increased mortality rates is well-documented. '
- source_sentence: '[SYNTAX] A barometer is used to measure atmospheric pressure.'
sentences:
- '[SYNTAX] Colonialism is a primary subject in several political science research
papers.'
- '[SYNTAX] Ordinary urban walls are turned into vibrant masterpieces by street
art.'
- Email remains a significant device for academic and fictional correspondence.
- source_sentence: Salinity gradients in oceans affect local wildlife habitats.
sentences:
- The distribution of wildlife in different habitats has fascinated ecologists for
decades.
- '[SYNTAX] Bioenergy plants can convert agricultural waste into valuable electricity.'
- Proper management of irrigation schedules is crucial for crop health.
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on distilbert/distilbert-base-uncased
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: custom dev
type: custom-dev
metrics:
- type: pearson_cosine
value: 0.9117000984572255
name: Pearson Cosine
- type: spearman_cosine
value: 0.8442193394453843
name: Spearman Cosine
- type: pearson_manhattan
value: 0.9156511082976959
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8440889792296263
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.9159884478218315
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8445673615230997
name: Spearman Euclidean
- type: pearson_dot
value: 0.9046139794819923
name: Pearson Dot
- type: spearman_dot
value: 0.8327655787489855
name: Spearman Dot
- type: pearson_max
value: 0.9159884478218315
name: Pearson Max
- type: spearman_max
value: 0.8445673615230997
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: custom test
type: custom-test
metrics:
- type: pearson_cosine
value: 0.919801732989496
name: Pearson Cosine
- type: spearman_cosine
value: 0.8500534773438543
name: Spearman Cosine
- type: pearson_manhattan
value: 0.9282084953416339
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8493690342081703
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.9284184436823353
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.849759760833697
name: Spearman Euclidean
- type: pearson_dot
value: 0.9141474471982576
name: Pearson Dot
- type: spearman_dot
value: 0.8410969822964006
name: Spearman Dot
- type: pearson_max
value: 0.9284184436823353
name: Pearson Max
- type: spearman_max
value: 0.8500534773438543
name: Spearman Max
---
# SentenceTransformer based on distilbert/distilbert-base-uncased
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) <!-- at revision 12040accade4e8a0f71eabdb258fecc2e7e948be -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Salinity gradients in oceans affect local wildlife habitats.',
'The distribution of wildlife in different habitats has fascinated ecologists for decades.',
'[SYNTAX] Bioenergy plants can convert agricultural waste into valuable electricity.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `custom-dev`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.9117 |
| **spearman_cosine** | **0.8442** |
| pearson_manhattan | 0.9157 |
| spearman_manhattan | 0.8441 |
| pearson_euclidean | 0.916 |
| spearman_euclidean | 0.8446 |
| pearson_dot | 0.9046 |
| spearman_dot | 0.8328 |
| pearson_max | 0.916 |
| spearman_max | 0.8446 |
#### Semantic Similarity
* Dataset: `custom-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.9198 |
| **spearman_cosine** | **0.8501** |
| pearson_manhattan | 0.9282 |
| spearman_manhattan | 0.8494 |
| pearson_euclidean | 0.9284 |
| spearman_euclidean | 0.8498 |
| pearson_dot | 0.9141 |
| spearman_dot | 0.8411 |
| pearson_max | 0.9284 |
| spearman_max | 0.8501 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 19,352 training samples
* Columns: <code>s1</code>, <code>s2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | s1 | s2 | label |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 10 tokens</li><li>mean: 19.92 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 20.53 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>0: ~50.50%</li><li>1: ~49.50%</li></ul> |
* Samples:
| s1 | s2 | label |
|:-----------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------|:---------------|
| <code>According to labeling theory, individuals are considered deviant once society has tagged them with that label.</code> | <code>Labeling theory posits that corporations become powerful when labeled as such by stakeholders.</code> | <code>0</code> |
| <code>Employers must classify workers correctly as either employees or independent contractors to comply with tax and labor laws.</code> | <code>Employers must classify workers correctly as either employees or independent contractors to comply with tax and labor laws.</code> | <code>1</code> |
| <code>Higher education institutions play a critical role in advancing research and innovation.</code> | <code>Advancement in research and innovation is significantly driven by the contributions of higher education institutions.</code> | <code>1</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 2,419 evaluation samples
* Columns: <code>s1</code>, <code>s2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | s1 | s2 | label |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 11 tokens</li><li>mean: 19.91 tokens</li><li>max: 37 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 20.46 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>0: ~49.70%</li><li>1: ~50.30%</li></ul> |
* Samples:
| s1 | s2 | label |
|:----------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------|:---------------|
| <code>Acoustic tomography is an innovative geophysical technique used to image the Earth's interior.</code> | <code>Acoustic tomography is an innovative geophysical technique used to image the Earth's interior.</code> | <code>1</code> |
| <code>Urban areas frequently exhibit a different age distribution pattern compared to rural areas.</code> | <code>Urban areas frequently exhibit a different age distribution pattern compared to rural areas.</code> | <code>1</code> |
| <code>Radiocarbon dating is a critical tool for assessing the duration of battery life in modern electronic devices.</code> | <code>Radiocarbon dating is a critical tool for assessing the duration of battery life in modern electronic devices.</code> | <code>1</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 10
- `warmup_ratio`: 0.1
- `fp16`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 10
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | loss | custom-dev_spearman_cosine | custom-test_spearman_cosine |
|:------:|:----:|:-------------:|:------:|:--------------------------:|:---------------------------:|
| 0.3300 | 100 | 0.2961 | 0.1185 | 0.8063 | - |
| 0.6601 | 200 | 0.0772 | 0.0504 | 0.8461 | - |
| 0.9901 | 300 | 0.0502 | 0.0454 | 0.8486 | - |
| 1.3201 | 400 | 0.0376 | 0.0402 | 0.8481 | - |
| 1.6502 | 500 | 0.0344 | 0.0400 | 0.8501 | - |
| 1.9802 | 600 | 0.0329 | 0.0390 | 0.8518 | - |
| 2.3102 | 700 | 0.0185 | 0.0387 | 0.8496 | - |
| 2.6403 | 800 | 0.0164 | 0.0371 | 0.8492 | - |
| 2.9703 | 900 | 0.0179 | 0.0393 | 0.8428 | - |
| 3.3003 | 1000 | 0.0099 | 0.0389 | 0.8466 | - |
| 3.6304 | 1100 | 0.0092 | 0.0395 | 0.8480 | - |
| 3.9604 | 1200 | 0.0101 | 0.0368 | 0.8492 | - |
| 4.2904 | 1300 | 0.0067 | 0.0385 | 0.8474 | - |
| 4.6205 | 1400 | 0.0056 | 0.0393 | 0.8456 | - |
| 4.9505 | 1500 | 0.0068 | 0.0401 | 0.8466 | - |
| 5.2805 | 1600 | 0.0041 | 0.0410 | 0.8462 | - |
| 5.6106 | 1700 | 0.0043 | 0.0399 | 0.8469 | - |
| 5.9406 | 1800 | 0.0039 | 0.0406 | 0.8463 | - |
| 6.2706 | 1900 | 0.003 | 0.0400 | 0.8456 | - |
| 6.6007 | 2000 | 0.0026 | 0.0416 | 0.8438 | - |
| 6.9307 | 2100 | 0.0027 | 0.0420 | 0.8437 | - |
| 7.2607 | 2200 | 0.0028 | 0.0424 | 0.8449 | - |
| 7.5908 | 2300 | 0.0021 | 0.0422 | 0.8458 | - |
| 7.9208 | 2400 | 0.002 | 0.0414 | 0.8451 | - |
| 8.2508 | 2500 | 0.0015 | 0.0421 | 0.8451 | - |
| 8.5809 | 2600 | 0.0015 | 0.0427 | 0.8451 | - |
| 8.9109 | 2700 | 0.0016 | 0.0429 | 0.8444 | - |
| 9.2409 | 2800 | 0.0011 | 0.0432 | 0.8442 | - |
| 9.5710 | 2900 | 0.0014 | 0.0432 | 0.8444 | - |
| 9.9010 | 3000 | 0.0011 | 0.0432 | 0.8442 | - |
| 10.0 | 3030 | - | - | - | 0.8501 |
### Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.0.0
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |