File size: 2,849 Bytes
3dc4783 337da4c 1f4787c 337da4c d2c18c9 337da4c 1182620 1f4787c 6115a84 1182620 d2c18c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
---
license: apache-2.0
datasets:
- DamarJati/Face-Mask-Detection
language:
- en
base_model:
- google/siglip2-base-patch16-224
pipeline_tag: image-classification
library_name: transformers
tags:
- Face-Mask-Detection
- SigLIP2
---

# **Face-Mask-Detection**
> **Face-Mask-Detection** is a binary image classification model based on `google/siglip2-base-patch16-224`, trained to detect whether a person is **wearing a face mask** or **not**. This model can be used in **public health monitoring**, **access control systems**, and **workplace compliance enforcement**.
```py
Classification Report:
precision recall f1-score support
Face_Mask Found 0.9662 0.9561 0.9611 5883
Face_Mask Not_Found 0.9568 0.9667 0.9617 5909
accuracy 0.9614 11792
macro avg 0.9615 0.9614 0.9614 11792
weighted avg 0.9615 0.9614 0.9614 11792
```

---
## **Label Classes**
The model distinguishes between the following face mask statuses:
```
0: Face_Mask Found
1: Face_Mask Not_Found
```
---
## **Installation**
```bash
pip install transformers torch pillow gradio
```
---
## **Example Inference Code**
```python
import gradio as gr
from transformers import AutoImageProcessor, SiglipForImageClassification
from PIL import Image
import torch
# Load model and processor
model_name = "prithivMLmods/Face-Mask-Detection"
model = SiglipForImageClassification.from_pretrained(model_name)
processor = AutoImageProcessor.from_pretrained(model_name)
# ID to label mapping
id2label = {
"0": "Face_Mask Found",
"1": "Face_Mask Not_Found"
}
def detect_face_mask(image):
image = Image.fromarray(image).convert("RGB")
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
prediction = {id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))}
return prediction
# Gradio Interface
iface = gr.Interface(
fn=detect_face_mask,
inputs=gr.Image(type="numpy"),
outputs=gr.Label(num_top_classes=2, label="Mask Status"),
title="Face-Mask-Detection",
description="Upload an image to check if a person is wearing a face mask or not."
)
if __name__ == "__main__":
iface.launch()
```
---
## **Applications**
* **COVID-19 Compliance Monitoring**
* **Security and Access Control**
* **Automated Surveillance Systems**
* **Health Safety Enforcement in Public Spaces** |