File size: 3,617 Bytes
			
			| 7b3fe2e 1413f55 5a37546 3421664 ac22446 6924da6 1be8d66 6924da6 1fa99cf 6924da6 491df5b 6924da6 2d724cc c63d403 2d724cc | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 | ---
license: creativeml-openrail-m
datasets:
- amphora/QwQ-LongCoT-130K
language:
- en
base_model:
- Qwen/Qwen2.5-7B-Instruct
pipeline_tag: text-generation
library_name: transformers
tags:
- Long-CoT
- Qwen2.5
- 7B
- safetensors
- text-generation-inference
- QwQ
- SFT
- Math
- Qwen with Questions
new_version: prithivMLmods/QwQ-LCoT2-7B-Instruct
---
# **QwQ-LCoT-7B-Instruct Model File**
The QwQ-LCoT-7B-Instruct is a fine-tuned language model designed for advanced reasoning and instruction-following tasks. It leverages the Qwen2.5-7B base model and has been fine-tuned on the amphora/QwQ-LongCoT-130K dataset, focusing on chain-of-thought (CoT) reasoning. This model is optimized for tasks requiring logical reasoning, detailed explanations, and multi-step problem-solving, making it ideal for applications such as instruction-following, text generation, and complex reasoning tasks.
## Quickstart with Transformers
Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "prithivMLmods/QwQ-LCoT-7B-Instruct"
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r in strawberry."
messages = [
    {"role": "system", "content": "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```
### **Sample Long CoT:**

---
### **Key Features:**
1. **Model Size:**  
   - **7.62B parameters** (FP16 precision).  
2. **Model Sharding:**  
   - The model weights are split into 4 shards (`safetensors`) for efficient storage and download:
     - `model-00001-of-00004.safetensors` (4.88 GB)
     - `model-00002-of-00004.safetensors` (4.93 GB)
     - `model-00003-of-00004.safetensors` (4.33 GB)
     - `model-00004-of-00004.safetensors` (1.09 GB)
3. **Tokenizer:**  
   - Byte-pair encoding (BPE) based.
   - Files included:
     - `vocab.json` (2.78 MB)
     - `merges.txt` (1.82 MB)
     - `tokenizer.json` (11.4 MB)
   - Special tokens mapped in `special_tokens_map.json` (e.g., `<pad>`, `<eos>`).
4. **Configuration Files:**  
   - `config.json`: Defines model architecture and hyperparameters.
   - `generation_config.json`: Settings for inference and text generation tasks.
---
### **Training Dataset:**  
- **Dataset Name:** [amphora/QwQ-LongCoT-130K](https://huggingface.co/datasets/amphora/QwQ-LongCoT-130K)  
- **Size:** 133k examples.  
- **Focus:** Chain-of-Thought reasoning for complex tasks.
---
### **Use Cases:**
1. **Instruction Following:**  
   Handle user instructions effectively, even for multi-step tasks.
   
2. **Reasoning Tasks:**  
   Perform logical reasoning and generate detailed step-by-step solutions.
   
3. **Text Generation:**  
   Generate coherent, context-aware responses.
--- | 
