Update README.md
Browse files
README.md
CHANGED
@@ -18,6 +18,9 @@ tags:
|
|
18 |
- Female
|
19 |
- SigLIP2
|
20 |
---
|
|
|
|
|
|
|
21 |
|
22 |
```py
|
23 |
Classification Report:
|
@@ -32,3 +35,77 @@ female portrait 0.9754 0.9656 0.9705 1600
|
|
32 |
```
|
33 |
|
34 |

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
- Female
|
19 |
- SigLIP2
|
20 |
---
|
21 |
+
# **Realistic-Gender-Classification**
|
22 |
+
|
23 |
+
> **Realistic-Gender-Classification** is a binary image classification model based on `google/siglip2-base-patch16-224`, designed to classify **gender** from realistic human portrait images. It can be used in **demographic analysis**, **personalization systems**, and **automated tagging** in large-scale image datasets.
|
24 |
|
25 |
```py
|
26 |
Classification Report:
|
|
|
35 |
```
|
36 |
|
37 |

|
38 |
+
|
39 |
+
---
|
40 |
+
|
41 |
+
## **Label Classes**
|
42 |
+
|
43 |
+
The model distinguishes between the following portrait gender categories:
|
44 |
+
|
45 |
+
```
|
46 |
+
0: female portrait
|
47 |
+
1: male portrait
|
48 |
+
```
|
49 |
+
|
50 |
+
---
|
51 |
+
|
52 |
+
## **Installation**
|
53 |
+
|
54 |
+
```bash
|
55 |
+
pip install transformers torch pillow gradio
|
56 |
+
```
|
57 |
+
|
58 |
+
---
|
59 |
+
|
60 |
+
## **Example Inference Code**
|
61 |
+
|
62 |
+
```python
|
63 |
+
import gradio as gr
|
64 |
+
from transformers import AutoImageProcessor, SiglipForImageClassification
|
65 |
+
from PIL import Image
|
66 |
+
import torch
|
67 |
+
|
68 |
+
# Load model and processor
|
69 |
+
model_name = "prithivMLmods/Realistic-Gender-Classification"
|
70 |
+
model = SiglipForImageClassification.from_pretrained(model_name)
|
71 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
72 |
+
|
73 |
+
# ID to label mapping
|
74 |
+
id2label = {
|
75 |
+
"0": "female portrait",
|
76 |
+
"1": "male portrait"
|
77 |
+
}
|
78 |
+
|
79 |
+
def classify_gender(image):
|
80 |
+
image = Image.fromarray(image).convert("RGB")
|
81 |
+
inputs = processor(images=image, return_tensors="pt")
|
82 |
+
|
83 |
+
with torch.no_grad():
|
84 |
+
outputs = model(**inputs)
|
85 |
+
logits = outputs.logits
|
86 |
+
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
|
87 |
+
|
88 |
+
prediction = {id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))}
|
89 |
+
return prediction
|
90 |
+
|
91 |
+
# Gradio Interface
|
92 |
+
iface = gr.Interface(
|
93 |
+
fn=classify_gender,
|
94 |
+
inputs=gr.Image(type="numpy"),
|
95 |
+
outputs=gr.Label(num_top_classes=2, label="Gender Classification"),
|
96 |
+
title="Realistic-Gender-Classification",
|
97 |
+
description="Upload a realistic portrait image to classify it as 'female portrait' or 'male portrait'."
|
98 |
+
)
|
99 |
+
|
100 |
+
if __name__ == "__main__":
|
101 |
+
iface.launch()
|
102 |
+
```
|
103 |
+
|
104 |
+
---
|
105 |
+
|
106 |
+
## **Applications**
|
107 |
+
|
108 |
+
* **Demographic Insights in Visual Data**
|
109 |
+
* **Dataset Curation & Tagging**
|
110 |
+
* **Media Analytics**
|
111 |
+
* **Audience Profiling for Marketing**
|