File size: 4,065 Bytes
6414a7e
 
 
 
 
 
 
 
 
 
 
 
ea066b7
 
6414a7e
 
a513c5e
 
6414a7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a513c5e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
---
license: apache-2.0
language:
- en
base_model:
- prithivMLmods/Qwen3-0.6B-ft-bf16
pipeline_tag: text-generation
library_name: transformers
tags:
- text-generation-inference
- code
- moe
datasets:
- open-r1/Mixture-of-Thoughts
---

![3.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/tCzY2m08LhLrUmcCyLkQu.png)

# **Theta-Crucis-0.6B-Turbo1**

> **Theta-Crucis-0.6B-Turbo1** is a compact, high-performance model designed for **code generation**, **technical reasoning**, and **structured output tasks**. Fine-tuned from **Qwen3-0.6B** using the **Mixture of Thoughts (MoT)** dataset with an emphasis on **code expert clusters**, this model delivers agile and accurate coding assistance in low-resource environments. At only **0.6B parameters**, it offers strong fluency in programming, structured syntax, and technical language generation.

> \[!note]
> GGUF: [https://huggingface.co/prithivMLmods/Theta-Crucis-0.6B-Turbo1-GGUF](https://huggingface.co/prithivMLmods/Theta-Crucis-0.6B-Turbo1-GGUF)

---

## **Key Features**

1. **MoT Fine-Tuning on Code Expert Clusters**
   Leveraging the **Mixture of Thoughts (MoT)** dataset, this model is fine-tuned on high-quality programming data across languages, debugging patterns, and code reasoning structures.

2. **Turbo Code Generation & Debugging**
   Excels at generating well-structured, clean code in Python, JavaScript, C++, and more. Capable of explaining logic, identifying bugs, and suggesting improvements.

3. **Structured Output Capabilities**
   Supports outputs in **Markdown**, **JSON**, **YAML**, and **LaTeX**, making it ideal for auto-documentation, API formatting, and configuration file generation.

4. **Technical Fluency Across Languages**
   Handles code queries and explanations in over **20 languages**, enabling global developer support and multilingual documentation.

5. **Lightweight, Inference-Optimized Design**
   Suitable for deployment on **edge devices**, **laptops**, or **VRAM-limited GPUs**, with fast inference and strong accuracy in technical prompts.

---

## **Quickstart with Transformers**

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "prithivMLmods/Theta-Crucis-0.6B-Turbo1"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "Write a Python function that checks if a string is a palindrome. Explain each step."

messages = [
    {"role": "system", "content": "You are an expert code assistant."},
    {"role": "user", "content": prompt}
]

text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)

model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```

---

## **Intended Use**

* Programming education, code synthesis, and debugging support
* Structured data and config file generation (e.g., JSON, YAML)
* Developer assistant roles in multilingual and technical environments
* Deployment on constrained devices with high code output needs
* Fast prototyping and script generation across languages

---

## **Limitations**

* May underperform in long conversational or abstract language tasks
* Context length limitations can restrict multi-file or large project reasoning
* Not designed for creative writing or open-ended dialogue
* Focuses on technical and structured domains—general fluency is limited

---

## **References**

1. [Qwen2.5 Technical Report (2024)](https://arxiv.org/pdf/2412.15115)
2. [YaRN: Efficient Context Window Extension of Large Language Models](https://arxiv.org/pdf/2309.00071)
3. [open-r1/Mixture-of-Thoughts](https://huggingface.co/datasets/open-r1/Mixture-of-Thoughts)