Update README.md
Browse files
README.md
CHANGED
@@ -1,7 +1,25 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
```py
|
6 |
Classification Report:
|
7 |
precision recall f1-score support
|
@@ -17,4 +35,88 @@ Middle Age 45-64 0.8532 0.7400 0.7926 3785
|
|
17 |
weighted avg 0.8545 0.8583 0.8510 19016
|
18 |
```
|
19 |
|
20 |
-

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- prithivMLmods/Age-Classification-Set
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
base_model:
|
8 |
+
- google/siglip2-base-patch16-512
|
9 |
+
library_name: transformers
|
10 |
---
|
11 |
|
12 |
+

|
13 |
+
|
14 |
+
# open-age-detection
|
15 |
+
|
16 |
+
> `open-age-detection` is a vision-language encoder model fine-tuned from `google/siglip2-base-patch16-512` for **multi-class image classification**. It is trained to classify the estimated age group of a person from an image. The model uses the `SiglipForImageClassification` architecture.
|
17 |
+
|
18 |
+
> \[!note]
|
19 |
+
> *SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features*
|
20 |
+
> [https://arxiv.org/pdf/2502.14786](https://arxiv.org/pdf/2502.14786)
|
21 |
+
|
22 |
+
|
23 |
```py
|
24 |
Classification Report:
|
25 |
precision recall f1-score support
|
|
|
35 |
weighted avg 0.8545 0.8583 0.8510 19016
|
36 |
```
|
37 |
|
38 |
+

|
39 |
+
|
40 |
+
---
|
41 |
+
|
42 |
+
## Label Space: 5 Age Groups
|
43 |
+
|
44 |
+
```
|
45 |
+
Class 0: Child 0β12
|
46 |
+
Class 1: Teenager 13β20
|
47 |
+
Class 2: Adult 21β44
|
48 |
+
Class 3: Middle Age 45β64
|
49 |
+
Class 4: Aged 65+
|
50 |
+
```
|
51 |
+
|
52 |
+
---
|
53 |
+
|
54 |
+
## Install Dependencies
|
55 |
+
|
56 |
+
```bash
|
57 |
+
pip install -q transformers torch pillow gradio hf_xet
|
58 |
+
```
|
59 |
+
|
60 |
+
---
|
61 |
+
|
62 |
+
## Inference Code
|
63 |
+
|
64 |
+
```python
|
65 |
+
import gradio as gr
|
66 |
+
from transformers import AutoImageProcessor, SiglipForImageClassification
|
67 |
+
from PIL import Image
|
68 |
+
import torch
|
69 |
+
|
70 |
+
# Load model and processor
|
71 |
+
model_name = "prithivMLmods/open-age-detection" # Updated model name
|
72 |
+
model = SiglipForImageClassification.from_pretrained(model_name)
|
73 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
74 |
+
|
75 |
+
# Updated label mapping
|
76 |
+
id2label = {
|
77 |
+
"0": "Child 0-12",
|
78 |
+
"1": "Teenager 13-20",
|
79 |
+
"2": "Adult 21-44",
|
80 |
+
"3": "Middle Age 45-64",
|
81 |
+
"4": "Aged 65+"
|
82 |
+
}
|
83 |
+
|
84 |
+
def classify_image(image):
|
85 |
+
image = Image.fromarray(image).convert("RGB")
|
86 |
+
inputs = processor(images=image, return_tensors="pt")
|
87 |
+
|
88 |
+
with torch.no_grad():
|
89 |
+
outputs = model(**inputs)
|
90 |
+
logits = outputs.logits
|
91 |
+
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
|
92 |
+
|
93 |
+
prediction = {
|
94 |
+
id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))
|
95 |
+
}
|
96 |
+
|
97 |
+
return prediction
|
98 |
+
|
99 |
+
# Gradio Interface
|
100 |
+
iface = gr.Interface(
|
101 |
+
fn=classify_image,
|
102 |
+
inputs=gr.Image(type="numpy"),
|
103 |
+
outputs=gr.Label(num_top_classes=5, label="Age Group Detection"),
|
104 |
+
title="open-age-detection",
|
105 |
+
description="Upload a facial image to estimate the age group: Child, Teenager, Adult, Middle Age, or Aged."
|
106 |
+
)
|
107 |
+
|
108 |
+
if __name__ == "__main__":
|
109 |
+
iface.launch()
|
110 |
+
```
|
111 |
+
|
112 |
+
---
|
113 |
+
|
114 |
+
## Intended Use
|
115 |
+
|
116 |
+
`open-age-detection` is designed for:
|
117 |
+
|
118 |
+
* **Demographic Analysis** β Estimate age groups for statistical or analytical applications.
|
119 |
+
* **Smart Personalization** β Age-based content or product recommendation.
|
120 |
+
* **Access Control** β Assist systems requiring age verification.
|
121 |
+
* **Social Research** β Study age-related trends in image datasets.
|
122 |
+
* **Surveillance and Security** β Profile age ranges in monitored environments.
|