asofter commited on
Commit
4d3ee42
·
1 Parent(s): 2cde92b

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +41 -0
README.md ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ inference: false
5
+ pipeline_tag: token-classification
6
+ tags:
7
+ - ner
8
+ - bert
9
+ license: mit
10
+ datasets:
11
+ - conll2003
12
+ ---
13
+
14
+ # ONNX version of dslim/bert-base-NER
15
+
16
+ **This model is a conversion of [dslim/bert-base-NER](https://huggingface.co/dslim/bert-base-NER) to ONNX** format using the [🤗 Optimum](https://huggingface.co/docs/optimum/index) library.
17
+
18
+ `bert-base-NER` is a fine-tuned BERT model that is ready to use for Named Entity Recognition and achieves state-of-the-art performance for the NER task. It has been trained to recognize four types of entities: location (LOC), organizations (ORG), person (PER) and Miscellaneous (MISC).
19
+
20
+ Specifically, this model is a `bert-base-cased` model that was fine-tuned on the English version of the standard `CoNLL-2003 Named Entity Recognition` dataset.
21
+
22
+ ## Usage
23
+
24
+ Loading the model requires the [🤗 Optimum](https://huggingface.co/docs/optimum/index) library installed.
25
+
26
+ ```python
27
+ from optimum.onnxruntime import ORTModelForTokenClassification
28
+ from transformers import AutoTokenizer, pipeline
29
+
30
+
31
+ tokenizer = AutoTokenizer.from_pretrained("laiyer/bert-base-NER-onnx")
32
+ model = ORTModelForTokenClassification.from_pretrained("laiyer/bert-base-NER-onnx")
33
+ ner = pipeline(
34
+ task="ner",
35
+ model=model,
36
+ tokenizer=tokenizer,
37
+ )
38
+
39
+ ner_output = ner("My name is John Doe.")
40
+ print(ner_output)
41
+ ```