qianyu1217 commited on
Commit
9cba551
·
verified ·
1 Parent(s): 6e18d1a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +77 -3
README.md CHANGED
@@ -1,3 +1,77 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ ---
4
+
5
+ <h1 align="center">High-Precision Dichotomous Image Segmentation via Probing Diffusion Capacity</h1>
6
+
7
+
8
+ <div align="center" style="display: flex; justify-content: center; flex-wrap: wrap;">
9
+ <a href='https://arxiv.org/pdf/2410.10105'><img src='https://img.shields.io/badge/arXiv-DiffDIS-B31B1B'></a>&ensp;
10
+ <a href='https://github.com/qianyu-dlut/DiffDIS'><img src='https://img.shields.io/badge/Github-DiffDIS-blue'></a>&ensp;
11
+ <a href='LICENSE'><img src='https://img.shields.io/badge/License-MIT-yellow'></a>&ensp;
12
+ </div>
13
+
14
+
15
+ This repository contains the official implementation for the paper "[High-Precision Dichotomous Image Segmentation via Probing Diffusion Capacity](https://arxiv.org/pdf/2410.10105)" (ICLR 2025).
16
+
17
+ <p align="center">
18
+ <img alt="DiffDIS teaser image" src="https://raw.githubusercontent.com/qianyu-dlut/DiffDIS/master/assets/image.png" width="900px">
19
+ </p>
20
+
21
+ ## How to use
22
+ > For the complete training and inference process, please refer to our [GitHub Repository](https://github.com/qianyu-dlut/DiffDIS). This section specifically guides you on loading weights from Hugging Face.
23
+
24
+ ### Install Packages:
25
+ ```shell
26
+ pip install torch==2.2.0 torchvision==0.17.0 torchaudio==2.2.0 --index-url https://download.pytorch.org/whl/cu118
27
+ pip install -r requirements.txt
28
+ pip install -e diffusers-0.30.2/
29
+ ```
30
+
31
+ ### Load DiffDIS weights from Hugging Face:
32
+
33
+ ```python
34
+ # Use codes and weights locally
35
+ import torch
36
+ from diffusers import (
37
+ DiffusionPipeline,
38
+ DDPMScheduler,
39
+ UNet2DConditionModel,
40
+ AutoencoderKL,
41
+ )
42
+ from transformers import CLIPTextModel, CLIPTokenizer
43
+
44
+ hf_model_path = 'qianyu1217/diffdis'
45
+ vae = AutoencoderKL.from_pretrained(hf_model_path,subfolder='vae',trust_remote_code=True)
46
+ scheduler = DDPMScheduler.from_pretrained(hf_model_path,subfolder='scheduler')
47
+ text_encoder = CLIPTextModel.from_pretrained(hf_model_path,subfolder='text_encoder')
48
+ tokenizer = CLIPTokenizer.from_pretrained(hf_model_path,subfolder='tokenizer')
49
+ unet = UNet2DConditionModel_diffdis.from_pretrained(hf_model_path,subfolder="unet",
50
+ in_channels=8, sample_size=96,
51
+ low_cpu_mem_usage=False,
52
+ ignore_mismatched_sizes=False,
53
+ class_embed_type='projection',
54
+ projection_class_embeddings_input_dim=4,
55
+ mid_extra_cross=True,
56
+ mode = 'DBIA',
57
+ use_swci = True)
58
+ pipe = DiffDISPipeline(unet=unet,
59
+ vae=vae,
60
+ scheduler=scheduler,
61
+ text_encoder=text_encoder,
62
+ tokenizer=tokenizer)
63
+
64
+ ```
65
+
66
+
67
+
68
+ ## Citation
69
+
70
+ ```
71
+ @article{DiffDIS,
72
+ title={High-Precision Dichotomous Image Segmentation via Probing Diffusion Capacity},
73
+ author={Yu, Qian and Jiang, Peng-Tao and Zhang, Hao and Chen, Jinwei and Li, Bo and Zhang, Lihe and Lu, Huchuan},
74
+ journal={arXiv preprint arXiv:2410.10105},
75
+ year={2024}
76
+ }
77
+ ```