Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
library_name: pytorch
|
3 |
-
license:
|
4 |
tags:
|
5 |
- android
|
6 |
pipeline_tag: image-segmentation
|
@@ -25,7 +25,7 @@ More details on model performance across various devices, can be found
|
|
25 |
|
26 |
### Model Details
|
27 |
|
28 |
-
- **Model Type:**
|
29 |
- **Model Stats:**
|
30 |
- Model checkpoint: COCO_WITH_VOC_LABELS_V1
|
31 |
- Input resolution: 513x513
|
@@ -33,20 +33,20 @@ More details on model performance across various devices, can be found
|
|
33 |
- Model size: 151 MB
|
34 |
- Number of output classes: 21
|
35 |
|
36 |
-
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) |
|
37 |
|---|---|---|---|---|---|---|---|---|
|
38 |
-
| DeepLabV3-ResNet50 |
|
39 |
-
| DeepLabV3-ResNet50 |
|
40 |
-
| DeepLabV3-ResNet50 |
|
41 |
-
| DeepLabV3-ResNet50 |
|
42 |
-
| DeepLabV3-ResNet50 |
|
43 |
-
| DeepLabV3-ResNet50 |
|
44 |
-
| DeepLabV3-ResNet50 |
|
45 |
-
| DeepLabV3-ResNet50 |
|
46 |
-
| DeepLabV3-ResNet50 |
|
47 |
-
| DeepLabV3-ResNet50 |
|
48 |
-
| DeepLabV3-ResNet50 |
|
49 |
-
| DeepLabV3-ResNet50 |
|
50 |
|
51 |
|
52 |
|
@@ -108,12 +108,12 @@ python -m qai_hub_models.models.deeplabv3_resnet50.export
|
|
108 |
Profiling Results
|
109 |
------------------------------------------------------------
|
110 |
DeepLabV3-ResNet50
|
111 |
-
Device :
|
112 |
-
Runtime : TFLITE
|
113 |
-
Estimated inference time (ms) :
|
114 |
-
Estimated peak memory usage (MB): [
|
115 |
-
Total # Ops : 100
|
116 |
-
Compute Unit(s) :
|
117 |
```
|
118 |
|
119 |
|
|
|
1 |
---
|
2 |
library_name: pytorch
|
3 |
+
license: other
|
4 |
tags:
|
5 |
- android
|
6 |
pipeline_tag: image-segmentation
|
|
|
25 |
|
26 |
### Model Details
|
27 |
|
28 |
+
- **Model Type:** Model_use_case.semantic_segmentation
|
29 |
- **Model Stats:**
|
30 |
- Model checkpoint: COCO_WITH_VOC_LABELS_V1
|
31 |
- Input resolution: 513x513
|
|
|
33 |
- Model size: 151 MB
|
34 |
- Number of output classes: 21
|
35 |
|
36 |
+
| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model
|
37 |
|---|---|---|---|---|---|---|---|---|
|
38 |
+
| DeepLabV3-ResNet50 | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 1554.729 ms | 20 - 36 MB | GPU | [DeepLabV3-ResNet50.tflite](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.tflite) |
|
39 |
+
| DeepLabV3-ResNet50 | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 434.261 ms | 23 - 59 MB | GPU | [DeepLabV3-ResNet50.tflite](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.tflite) |
|
40 |
+
| DeepLabV3-ResNet50 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 295.627 ms | 2 - 197 MB | GPU | [DeepLabV3-ResNet50.tflite](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.tflite) |
|
41 |
+
| DeepLabV3-ResNet50 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 593.065 ms | 22 - 39 MB | GPU | [DeepLabV3-ResNet50.tflite](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.tflite) |
|
42 |
+
| DeepLabV3-ResNet50 | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 1554.729 ms | 20 - 36 MB | GPU | [DeepLabV3-ResNet50.tflite](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.tflite) |
|
43 |
+
| DeepLabV3-ResNet50 | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 294.807 ms | 2 - 200 MB | GPU | [DeepLabV3-ResNet50.tflite](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.tflite) |
|
44 |
+
| DeepLabV3-ResNet50 | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 265.22 ms | 23 - 44 MB | GPU | [DeepLabV3-ResNet50.tflite](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.tflite) |
|
45 |
+
| DeepLabV3-ResNet50 | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 291.339 ms | 2 - 206 MB | GPU | [DeepLabV3-ResNet50.tflite](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.tflite) |
|
46 |
+
| DeepLabV3-ResNet50 | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 593.065 ms | 22 - 39 MB | GPU | [DeepLabV3-ResNet50.tflite](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.tflite) |
|
47 |
+
| DeepLabV3-ResNet50 | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 291.57 ms | 2 - 236 MB | GPU | [DeepLabV3-ResNet50.tflite](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.tflite) |
|
48 |
+
| DeepLabV3-ResNet50 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 298.315 ms | 20 - 54 MB | GPU | [DeepLabV3-ResNet50.tflite](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.tflite) |
|
49 |
+
| DeepLabV3-ResNet50 | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 188.721 ms | 21 - 41 MB | GPU | [DeepLabV3-ResNet50.tflite](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.tflite) |
|
50 |
|
51 |
|
52 |
|
|
|
108 |
Profiling Results
|
109 |
------------------------------------------------------------
|
110 |
DeepLabV3-ResNet50
|
111 |
+
Device : cs_8275 (ANDROID 14)
|
112 |
+
Runtime : TFLITE
|
113 |
+
Estimated inference time (ms) : 1554.7
|
114 |
+
Estimated peak memory usage (MB): [20, 36]
|
115 |
+
Total # Ops : 100
|
116 |
+
Compute Unit(s) : npu (0 ops) gpu (98 ops) cpu (2 ops)
|
117 |
```
|
118 |
|
119 |
|