qaihm-bot commited on
Commit
fdf3e6e
·
verified ·
1 Parent(s): 2f6912f

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +40 -19
README.md CHANGED
@@ -17,7 +17,7 @@ tags:
17
 
18
  GoogLeNet is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.
19
 
20
- This model is an implementation of GoogLeNet found [here](https://github.com/pytorch/vision/blob/main/torchvision/models/googlenet.py).
21
  This repository provides scripts to run GoogLeNet on Qualcomm® devices.
22
  More details on model performance across various devices, can be found
23
  [here](https://aihub.qualcomm.com/models/googlenet).
@@ -32,15 +32,32 @@ More details on model performance across various devices, can be found
32
  - Number of parameters: 6.62M
33
  - Model size: 25.3 MB
34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
 
37
 
38
- | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
39
- | ---|---|---|---|---|---|---|---|
40
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 1.013 ms | 0 - 1 MB | FP16 | NPU | [GoogLeNet.tflite](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet.tflite)
41
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 1.079 ms | 0 - 35 MB | FP16 | NPU | [GoogLeNet.so](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet.so)
42
-
43
-
44
 
45
  ## Installation
46
 
@@ -95,16 +112,16 @@ device. This script does the following:
95
  ```bash
96
  python -m qai_hub_models.models.googlenet.export
97
  ```
98
-
99
  ```
100
- Profile Job summary of GoogLeNet
101
- --------------------------------------------------
102
- Device: Snapdragon X Elite CRD (11)
103
- Estimated Inference Time: 1.04 ms
104
- Estimated Peak Memory Range: 0.57-0.57 MB
105
- Compute Units: NPU (143) | Total (143)
106
-
107
-
 
108
  ```
109
 
110
 
@@ -203,15 +220,19 @@ provides instructions on how to use the `.so` shared library in an Android appl
203
  Get more details on GoogLeNet's performance across various devices [here](https://aihub.qualcomm.com/models/googlenet).
204
  Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
205
 
 
206
  ## License
207
- - The license for the original implementation of GoogLeNet can be found
208
- [here](https://github.com/pytorch/vision/blob/main/LICENSE).
209
- - The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
 
210
 
211
  ## References
212
  * [Going Deeper with Convolutions](https://arxiv.org/abs/1409.4842)
213
  * [Source Model Implementation](https://github.com/pytorch/vision/blob/main/torchvision/models/googlenet.py)
214
 
 
 
215
  ## Community
216
  * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
217
  * For questions or feedback please [reach out to us](mailto:[email protected]).
 
17
 
18
  GoogLeNet is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.
19
 
20
+ This model is an implementation of GoogLeNet found [here]({source_repo}).
21
  This repository provides scripts to run GoogLeNet on Qualcomm® devices.
22
  More details on model performance across various devices, can be found
23
  [here](https://aihub.qualcomm.com/models/googlenet).
 
32
  - Number of parameters: 6.62M
33
  - Model size: 25.3 MB
34
 
35
+ | Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
36
+ |---|---|---|---|---|---|---|---|---|
37
+ | GoogLeNet | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 1.015 ms | 0 - 24 MB | FP16 | NPU | [GoogLeNet.tflite](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet.tflite) |
38
+ | GoogLeNet | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 1.077 ms | 0 - 33 MB | FP16 | NPU | [GoogLeNet.so](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet.so) |
39
+ | GoogLeNet | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 1.143 ms | 0 - 35 MB | FP16 | NPU | [GoogLeNet.onnx](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet.onnx) |
40
+ | GoogLeNet | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 0.743 ms | 0 - 50 MB | FP16 | NPU | [GoogLeNet.tflite](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet.tflite) |
41
+ | GoogLeNet | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 0.787 ms | 0 - 15 MB | FP16 | NPU | [GoogLeNet.so](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet.so) |
42
+ | GoogLeNet | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 0.901 ms | 0 - 53 MB | FP16 | NPU | [GoogLeNet.onnx](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet.onnx) |
43
+ | GoogLeNet | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 1.013 ms | 0 - 1 MB | FP16 | NPU | [GoogLeNet.tflite](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet.tflite) |
44
+ | GoogLeNet | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 0.899 ms | 1 - 2 MB | FP16 | NPU | Use Export Script |
45
+ | GoogLeNet | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 1.015 ms | 0 - 81 MB | FP16 | NPU | [GoogLeNet.tflite](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet.tflite) |
46
+ | GoogLeNet | SA8255 (Proxy) | SA8255P Proxy | QNN | 0.904 ms | 1 - 2 MB | FP16 | NPU | Use Export Script |
47
+ | GoogLeNet | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 1.012 ms | 0 - 1 MB | FP16 | NPU | [GoogLeNet.tflite](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet.tflite) |
48
+ | GoogLeNet | SA8775 (Proxy) | SA8775P Proxy | QNN | 0.896 ms | 1 - 2 MB | FP16 | NPU | Use Export Script |
49
+ | GoogLeNet | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 1.011 ms | 0 - 4 MB | FP16 | NPU | [GoogLeNet.tflite](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet.tflite) |
50
+ | GoogLeNet | SA8650 (Proxy) | SA8650P Proxy | QNN | 0.897 ms | 1 - 2 MB | FP16 | NPU | Use Export Script |
51
+ | GoogLeNet | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 1.501 ms | 0 - 51 MB | FP16 | NPU | [GoogLeNet.tflite](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet.tflite) |
52
+ | GoogLeNet | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 1.577 ms | 1 - 20 MB | FP16 | NPU | Use Export Script |
53
+ | GoogLeNet | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 0.674 ms | 0 - 19 MB | FP16 | NPU | [GoogLeNet.tflite](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet.tflite) |
54
+ | GoogLeNet | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 0.719 ms | 0 - 11 MB | FP16 | NPU | Use Export Script |
55
+ | GoogLeNet | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 0.846 ms | 0 - 20 MB | FP16 | NPU | [GoogLeNet.onnx](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet.onnx) |
56
+ | GoogLeNet | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 1.06 ms | 1 - 1 MB | FP16 | NPU | Use Export Script |
57
+ | GoogLeNet | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 1.334 ms | 14 - 14 MB | FP16 | NPU | [GoogLeNet.onnx](https://huggingface.co/qualcomm/GoogLeNet/blob/main/GoogLeNet.onnx) |
58
 
59
 
60
 
 
 
 
 
 
 
61
 
62
  ## Installation
63
 
 
112
  ```bash
113
  python -m qai_hub_models.models.googlenet.export
114
  ```
 
115
  ```
116
+ Profiling Results
117
+ ------------------------------------------------------------
118
+ GoogLeNet
119
+ Device : Samsung Galaxy S23 (13)
120
+ Runtime : TFLITE
121
+ Estimated inference time (ms) : 1.0
122
+ Estimated peak memory usage (MB): [0, 24]
123
+ Total # Ops : 84
124
+ Compute Unit(s) : NPU (84 ops)
125
  ```
126
 
127
 
 
220
  Get more details on GoogLeNet's performance across various devices [here](https://aihub.qualcomm.com/models/googlenet).
221
  Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
222
 
223
+
224
  ## License
225
+ * The license for the original implementation of GoogLeNet can be found [here](https://github.com/pytorch/vision/blob/main/LICENSE).
226
+ * The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
227
+
228
+
229
 
230
  ## References
231
  * [Going Deeper with Convolutions](https://arxiv.org/abs/1409.4842)
232
  * [Source Model Implementation](https://github.com/pytorch/vision/blob/main/torchvision/models/googlenet.py)
233
 
234
+
235
+
236
  ## Community
237
  * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
238
  * For questions or feedback please [reach out to us](mailto:[email protected]).