File size: 18,069 Bytes
fc5cf45 8858b99 fc5cf45 f2b7158 fc5cf45 586e155 fc5cf45 66cb52a fc5cf45 9dd4c80 66cb52a fc5cf45 8858b99 fc5cf45 8858b99 fc5cf45 8858b99 c4f3a4e ba8121b d3a4b14 ba8121b fc5cf45 9280b5a fc5cf45 2cf5f2f fc5cf45 7750d06 c4f3a4e 8858b99 ba8121b 8858b99 7750d06 9280b5a fc5cf45 9280b5a fc5cf45 65c7a58 fc5cf45 65c7a58 fc5cf45 2cf5f2f fc5cf45 65c7a58 fc5cf45 54cec1a f757cc0 fc5cf45 54cec1a f757cc0 fc5cf45 586e155 fc5cf45 9280b5a fc5cf45 c4f3a4e fc5cf45 2cf5f2f c4f3a4e fc5cf45 c4f3a4e fc5cf45 13d981e fc5cf45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
---
library_name: pytorch
license: other
tags:
- backbone
- android
pipeline_tag: image-classification
---

# Inception-v3: Optimized for Mobile Deployment
## Imagenet classifier and general purpose backbone
InceptionNetV3 is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.
This model is an implementation of Inception-v3 found [here](https://github.com/pytorch/vision/blob/main/torchvision/models/inception.py).
This repository provides scripts to run Inception-v3 on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/inception_v3).
### Model Details
- **Model Type:** Model_use_case.image_classification
- **Model Stats:**
- Model checkpoint: Imagenet
- Input resolution: 224x224
- Number of parameters: 23.8M
- Model size (float): 90.9 MB
- Model size (w8a8): 23.3 MB
| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| Inception-v3 | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 7.757 ms | 0 - 55 MB | NPU | [Inception-v3.tflite](https://huggingface.co/qualcomm/Inception-v3/blob/main/Inception-v3.tflite) |
| Inception-v3 | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN | 7.709 ms | 1 - 10 MB | NPU | Use Export Script |
| Inception-v3 | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 2.185 ms | 0 - 97 MB | NPU | [Inception-v3.tflite](https://huggingface.co/qualcomm/Inception-v3/blob/main/Inception-v3.tflite) |
| Inception-v3 | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN | 2.44 ms | 0 - 30 MB | NPU | Use Export Script |
| Inception-v3 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 1.326 ms | 0 - 333 MB | NPU | [Inception-v3.tflite](https://huggingface.co/qualcomm/Inception-v3/blob/main/Inception-v3.tflite) |
| Inception-v3 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN | 1.352 ms | 1 - 4 MB | NPU | Use Export Script |
| Inception-v3 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 2.229 ms | 0 - 56 MB | NPU | [Inception-v3.tflite](https://huggingface.co/qualcomm/Inception-v3/blob/main/Inception-v3.tflite) |
| Inception-v3 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN | 2.186 ms | 1 - 14 MB | NPU | Use Export Script |
| Inception-v3 | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 7.757 ms | 0 - 55 MB | NPU | [Inception-v3.tflite](https://huggingface.co/qualcomm/Inception-v3/blob/main/Inception-v3.tflite) |
| Inception-v3 | float | SA7255P ADP | Qualcomm® SA7255P | QNN | 7.709 ms | 1 - 10 MB | NPU | Use Export Script |
| Inception-v3 | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 1.319 ms | 0 - 324 MB | NPU | [Inception-v3.tflite](https://huggingface.co/qualcomm/Inception-v3/blob/main/Inception-v3.tflite) |
| Inception-v3 | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN | 1.35 ms | 1 - 2 MB | NPU | Use Export Script |
| Inception-v3 | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 2.558 ms | 0 - 57 MB | NPU | [Inception-v3.tflite](https://huggingface.co/qualcomm/Inception-v3/blob/main/Inception-v3.tflite) |
| Inception-v3 | float | SA8295P ADP | Qualcomm® SA8295P | QNN | 2.608 ms | 0 - 18 MB | NPU | Use Export Script |
| Inception-v3 | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 1.327 ms | 0 - 320 MB | NPU | [Inception-v3.tflite](https://huggingface.co/qualcomm/Inception-v3/blob/main/Inception-v3.tflite) |
| Inception-v3 | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN | 1.349 ms | 1 - 3 MB | NPU | Use Export Script |
| Inception-v3 | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 2.229 ms | 0 - 56 MB | NPU | [Inception-v3.tflite](https://huggingface.co/qualcomm/Inception-v3/blob/main/Inception-v3.tflite) |
| Inception-v3 | float | SA8775P ADP | Qualcomm® SA8775P | QNN | 2.186 ms | 1 - 14 MB | NPU | Use Export Script |
| Inception-v3 | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 1.33 ms | 0 - 324 MB | NPU | [Inception-v3.tflite](https://huggingface.co/qualcomm/Inception-v3/blob/main/Inception-v3.tflite) |
| Inception-v3 | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN | 1.354 ms | 0 - 93 MB | NPU | Use Export Script |
| Inception-v3 | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 1.586 ms | 0 - 148 MB | NPU | [Inception-v3.onnx](https://huggingface.co/qualcomm/Inception-v3/blob/main/Inception-v3.onnx) |
| Inception-v3 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 0.992 ms | 0 - 92 MB | NPU | [Inception-v3.tflite](https://huggingface.co/qualcomm/Inception-v3/blob/main/Inception-v3.tflite) |
| Inception-v3 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN | 1.013 ms | 0 - 30 MB | NPU | Use Export Script |
| Inception-v3 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 1.182 ms | 0 - 28 MB | NPU | [Inception-v3.onnx](https://huggingface.co/qualcomm/Inception-v3/blob/main/Inception-v3.onnx) |
| Inception-v3 | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 0.913 ms | 0 - 60 MB | NPU | [Inception-v3.tflite](https://huggingface.co/qualcomm/Inception-v3/blob/main/Inception-v3.tflite) |
| Inception-v3 | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN | 0.919 ms | 1 - 24 MB | NPU | Use Export Script |
| Inception-v3 | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 1.107 ms | 1 - 24 MB | NPU | [Inception-v3.onnx](https://huggingface.co/qualcomm/Inception-v3/blob/main/Inception-v3.onnx) |
| Inception-v3 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 1.427 ms | 1 - 1 MB | NPU | Use Export Script |
| Inception-v3 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 1.473 ms | 46 - 46 MB | NPU | [Inception-v3.onnx](https://huggingface.co/qualcomm/Inception-v3/blob/main/Inception-v3.onnx) |
| Inception-v3 | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 1.523 ms | 0 - 34 MB | NPU | [Inception-v3.tflite](https://huggingface.co/qualcomm/Inception-v3/blob/main/Inception-v3_w8a8.tflite) |
| Inception-v3 | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN | 1.46 ms | 0 - 10 MB | NPU | Use Export Script |
| Inception-v3 | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 0.852 ms | 0 - 55 MB | NPU | [Inception-v3.tflite](https://huggingface.co/qualcomm/Inception-v3/blob/main/Inception-v3_w8a8.tflite) |
| Inception-v3 | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN | 0.973 ms | 0 - 51 MB | NPU | Use Export Script |
| Inception-v3 | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 0.651 ms | 0 - 109 MB | NPU | [Inception-v3.tflite](https://huggingface.co/qualcomm/Inception-v3/blob/main/Inception-v3_w8a8.tflite) |
| Inception-v3 | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN | 0.612 ms | 0 - 3 MB | NPU | Use Export Script |
| Inception-v3 | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 0.829 ms | 0 - 36 MB | NPU | [Inception-v3.tflite](https://huggingface.co/qualcomm/Inception-v3/blob/main/Inception-v3_w8a8.tflite) |
| Inception-v3 | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN | 0.783 ms | 0 - 15 MB | NPU | Use Export Script |
| Inception-v3 | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | TFLITE | 2.69 ms | 0 - 52 MB | NPU | [Inception-v3.tflite](https://huggingface.co/qualcomm/Inception-v3/blob/main/Inception-v3_w8a8.tflite) |
| Inception-v3 | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN | 2.815 ms | 0 - 12 MB | NPU | Use Export Script |
| Inception-v3 | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | TFLITE | 7.85 ms | 0 - 2 MB | NPU | [Inception-v3.tflite](https://huggingface.co/qualcomm/Inception-v3/blob/main/Inception-v3_w8a8.tflite) |
| Inception-v3 | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 1.523 ms | 0 - 34 MB | NPU | [Inception-v3.tflite](https://huggingface.co/qualcomm/Inception-v3/blob/main/Inception-v3_w8a8.tflite) |
| Inception-v3 | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN | 1.46 ms | 0 - 10 MB | NPU | Use Export Script |
| Inception-v3 | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 0.662 ms | 0 - 109 MB | NPU | [Inception-v3.tflite](https://huggingface.co/qualcomm/Inception-v3/blob/main/Inception-v3_w8a8.tflite) |
| Inception-v3 | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN | 0.609 ms | 0 - 3 MB | NPU | Use Export Script |
| Inception-v3 | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 1.117 ms | 0 - 38 MB | NPU | [Inception-v3.tflite](https://huggingface.co/qualcomm/Inception-v3/blob/main/Inception-v3_w8a8.tflite) |
| Inception-v3 | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN | 1.144 ms | 0 - 18 MB | NPU | Use Export Script |
| Inception-v3 | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 0.65 ms | 0 - 110 MB | NPU | [Inception-v3.tflite](https://huggingface.co/qualcomm/Inception-v3/blob/main/Inception-v3_w8a8.tflite) |
| Inception-v3 | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN | 0.608 ms | 0 - 3 MB | NPU | Use Export Script |
| Inception-v3 | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 0.829 ms | 0 - 36 MB | NPU | [Inception-v3.tflite](https://huggingface.co/qualcomm/Inception-v3/blob/main/Inception-v3_w8a8.tflite) |
| Inception-v3 | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN | 0.783 ms | 0 - 15 MB | NPU | Use Export Script |
| Inception-v3 | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 0.654 ms | 0 - 109 MB | NPU | [Inception-v3.tflite](https://huggingface.co/qualcomm/Inception-v3/blob/main/Inception-v3_w8a8.tflite) |
| Inception-v3 | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN | 0.609 ms | 0 - 120 MB | NPU | Use Export Script |
| Inception-v3 | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 23.707 ms | 5 - 133 MB | NPU | [Inception-v3.onnx](https://huggingface.co/qualcomm/Inception-v3/blob/main/Inception-v3_w8a8.onnx) |
| Inception-v3 | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 0.495 ms | 0 - 52 MB | NPU | [Inception-v3.tflite](https://huggingface.co/qualcomm/Inception-v3/blob/main/Inception-v3_w8a8.tflite) |
| Inception-v3 | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN | 0.459 ms | 0 - 51 MB | NPU | Use Export Script |
| Inception-v3 | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 20.321 ms | 0 - 738 MB | NPU | [Inception-v3.onnx](https://huggingface.co/qualcomm/Inception-v3/blob/main/Inception-v3_w8a8.onnx) |
| Inception-v3 | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 0.432 ms | 0 - 46 MB | NPU | [Inception-v3.tflite](https://huggingface.co/qualcomm/Inception-v3/blob/main/Inception-v3_w8a8.tflite) |
| Inception-v3 | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN | 0.43 ms | 0 - 39 MB | NPU | Use Export Script |
| Inception-v3 | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 23.64 ms | 0 - 703 MB | NPU | [Inception-v3.onnx](https://huggingface.co/qualcomm/Inception-v3/blob/main/Inception-v3_w8a8.onnx) |
| Inception-v3 | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 0.643 ms | 0 - 0 MB | NPU | Use Export Script |
| Inception-v3 | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 26.142 ms | 41 - 41 MB | NPU | [Inception-v3.onnx](https://huggingface.co/qualcomm/Inception-v3/blob/main/Inception-v3_w8a8.onnx) |
## Installation
Install the package via pip:
```bash
pip install qai-hub-models
```
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
## Demo off target
The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.
```bash
python -m qai_hub_models.models.inception_v3.demo
```
The above demo runs a reference implementation of pre-processing, model
inference, and post processing.
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.inception_v3.demo
```
### Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.
```bash
python -m qai_hub_models.models.inception_v3.export
```
```
Profiling Results
------------------------------------------------------------
Inception-v3
Device : cs_8275 (ANDROID 14)
Runtime : TFLITE
Estimated inference time (ms) : 7.8
Estimated peak memory usage (MB): [0, 55]
Total # Ops : 129
Compute Unit(s) : npu (129 ops) gpu (0 ops) cpu (0 ops)
```
## How does this work?
This [export script](https://aihub.qualcomm.com/models/inception_v3/qai_hub_models/models/Inception-v3/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:
Step 1: **Compile model for on-device deployment**
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the `jit.trace` and then call the `submit_compile_job` API.
```python
import torch
import qai_hub as hub
from qai_hub_models.models.inception_v3 import Model
# Load the model
torch_model = Model.from_pretrained()
# Device
device = hub.Device("Samsung Galaxy S24")
# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
# Compile model on a specific device
compile_job = hub.submit_compile_job(
model=pt_model,
device=device,
input_specs=torch_model.get_input_spec(),
)
# Get target model to run on-device
target_model = compile_job.get_target_model()
```
Step 2: **Performance profiling on cloud-hosted device**
After compiling models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
```
Step 3: **Verify on-device accuracy**
To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.
**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
## Run demo on a cloud-hosted device
You can also run the demo on-device.
```bash
python -m qai_hub_models.models.inception_v3.demo --on-device
```
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.inception_v3.demo -- --on-device
```
## Deploying compiled model to Android
The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
guide to deploy the .tflite model in an Android application.
- QNN (`.so` export ): This [sample
app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library in an Android application.
## View on Qualcomm® AI Hub
Get more details on Inception-v3's performance across various devices [here](https://aihub.qualcomm.com/models/inception_v3).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
## License
* The license for the original implementation of Inception-v3 can be found
[here](https://github.com/pytorch/vision/blob/main/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
## References
* [Rethinking the Inception Architecture for Computer Vision](http://arxiv.org/abs/1512.00567)
* [Source Model Implementation](https://github.com/pytorch/vision/blob/main/torchvision/models/inception.py)
## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).
|