Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -33,34 +33,33 @@ More details on model performance across various devices, can be found
|
|
33 |
|
34 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
35 |
|---|---|---|---|---|---|---|---|---|
|
36 |
-
| LiteHRNet | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 7.
|
37 |
-
| LiteHRNet | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 7.
|
38 |
-
| LiteHRNet | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 4.
|
39 |
-
| LiteHRNet | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 4.
|
40 |
-
| LiteHRNet | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 5.
|
41 |
-
| LiteHRNet | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX |
|
42 |
-
| LiteHRNet | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 7.
|
43 |
-
| LiteHRNet | SA7255P ADP | SA7255P | TFLITE | 28.
|
44 |
-
| LiteHRNet | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 7.
|
45 |
-
| LiteHRNet | SA8295P ADP | SA8295P | TFLITE | 9.
|
46 |
-
| LiteHRNet | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 7.
|
47 |
-
| LiteHRNet | SA8775P ADP | SA8775P | TFLITE | 10.
|
48 |
-
| LiteHRNet | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 8.
|
49 |
-
| LiteHRNet | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 8.
|
50 |
|
51 |
|
52 |
|
53 |
|
54 |
## Installation
|
55 |
|
56 |
-
This model can be installed as a Python package via pip.
|
57 |
|
|
|
58 |
```bash
|
59 |
pip install "qai-hub-models[litehrnet]"
|
60 |
```
|
61 |
|
62 |
|
63 |
-
|
64 |
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
|
65 |
|
66 |
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
|
@@ -112,7 +111,7 @@ LiteHRNet
|
|
112 |
Device : Samsung Galaxy S23 (13)
|
113 |
Runtime : TFLITE
|
114 |
Estimated inference time (ms) : 7.8
|
115 |
-
Estimated peak memory usage (MB): [0,
|
116 |
Total # Ops : 1235
|
117 |
Compute Unit(s) : NPU (1233 ops) CPU (2 ops)
|
118 |
```
|
@@ -139,7 +138,7 @@ from qai_hub_models.models.litehrnet import Model
|
|
139 |
torch_model = Model.from_pretrained()
|
140 |
|
141 |
# Device
|
142 |
-
device = hub.Device("Samsung Galaxy
|
143 |
|
144 |
# Trace model
|
145 |
input_shape = torch_model.get_input_spec()
|
@@ -231,7 +230,8 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
|
231 |
|
232 |
|
233 |
## License
|
234 |
-
* The license for the original implementation of LiteHRNet can be found
|
|
|
235 |
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
236 |
|
237 |
|
|
|
33 |
|
34 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
35 |
|---|---|---|---|---|---|---|---|---|
|
36 |
+
| LiteHRNet | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 7.85 ms | 0 - 16 MB | FP16 | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite) |
|
37 |
+
| LiteHRNet | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 7.38 ms | 0 - 24 MB | FP16 | NPU | [LiteHRNet.onnx](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.onnx) |
|
38 |
+
| LiteHRNet | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 4.775 ms | 0 - 36 MB | FP16 | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite) |
|
39 |
+
| LiteHRNet | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 4.507 ms | 0 - 48 MB | FP16 | NPU | [LiteHRNet.onnx](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.onnx) |
|
40 |
+
| LiteHRNet | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 5.265 ms | 0 - 37 MB | FP16 | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite) |
|
41 |
+
| LiteHRNet | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 4.116 ms | 1 - 45 MB | FP16 | NPU | [LiteHRNet.onnx](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.onnx) |
|
42 |
+
| LiteHRNet | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 7.849 ms | 0 - 15 MB | FP16 | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite) |
|
43 |
+
| LiteHRNet | SA7255P ADP | SA7255P | TFLITE | 28.427 ms | 0 - 30 MB | FP16 | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite) |
|
44 |
+
| LiteHRNet | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 7.847 ms | 0 - 16 MB | FP16 | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite) |
|
45 |
+
| LiteHRNet | SA8295P ADP | SA8295P | TFLITE | 9.954 ms | 0 - 33 MB | FP16 | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite) |
|
46 |
+
| LiteHRNet | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 7.871 ms | 0 - 16 MB | FP16 | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite) |
|
47 |
+
| LiteHRNet | SA8775P ADP | SA8775P | TFLITE | 10.701 ms | 0 - 30 MB | FP16 | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite) |
|
48 |
+
| LiteHRNet | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 8.497 ms | 0 - 31 MB | FP16 | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite) |
|
49 |
+
| LiteHRNet | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 8.206 ms | 6 - 6 MB | FP16 | NPU | [LiteHRNet.onnx](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.onnx) |
|
50 |
|
51 |
|
52 |
|
53 |
|
54 |
## Installation
|
55 |
|
|
|
56 |
|
57 |
+
Install the package via pip:
|
58 |
```bash
|
59 |
pip install "qai-hub-models[litehrnet]"
|
60 |
```
|
61 |
|
62 |
|
|
|
63 |
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
|
64 |
|
65 |
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
|
|
|
111 |
Device : Samsung Galaxy S23 (13)
|
112 |
Runtime : TFLITE
|
113 |
Estimated inference time (ms) : 7.8
|
114 |
+
Estimated peak memory usage (MB): [0, 16]
|
115 |
Total # Ops : 1235
|
116 |
Compute Unit(s) : NPU (1233 ops) CPU (2 ops)
|
117 |
```
|
|
|
138 |
torch_model = Model.from_pretrained()
|
139 |
|
140 |
# Device
|
141 |
+
device = hub.Device("Samsung Galaxy S24")
|
142 |
|
143 |
# Trace model
|
144 |
input_shape = torch_model.get_input_spec()
|
|
|
230 |
|
231 |
|
232 |
## License
|
233 |
+
* The license for the original implementation of LiteHRNet can be found
|
234 |
+
[here](https://github.com/HRNet/Lite-HRNet/blob/hrnet/LICENSE).
|
235 |
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
236 |
|
237 |
|