qaihm-bot commited on
Commit
d982d32
·
verified ·
1 Parent(s): a646802

See https://github.com/quic/ai-hub-models/releases/v0.36.0 for changelog.

Files changed (1) hide show
  1. README.md +88 -25
README.md CHANGED
@@ -20,7 +20,11 @@ Llama 3 is a family of LLMs. The model is quantized to w4a16 (4-bit weights and
20
  This model is an implementation of Llama-v3-8B-Instruct found [here](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct/).
21
 
22
 
23
- More details on model performance across various devices, can be found [here](https://aihub.qualcomm.com/models/llama_v3_8b_instruct).
 
 
 
 
24
 
25
  ### Model Details
26
 
@@ -44,9 +48,9 @@ This model is an implementation of Llama-v3-8B-Instruct found [here](https://hug
44
 
45
  | Model | Precision | Device | Chipset | Target Runtime | Response Rate (tokens per second) | Time To First Token (range, seconds)
46
  |---|---|---|---|---|---|
47
- | Llama-v3-8B-Chat | w4a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_CONTEXT_BINARY | 12.9262 | 0.159383 - 5.100256 | -- | -- |
48
- | Llama-v3-8B-Chat | w4a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_CONTEXT_BINARY | 10.0367 | 0.211644 - 6.772608 | -- | -- |
49
- | Llama-v3-8B-Chat | w4a16 | SA8255P ADP | Qualcomm® SA8255P | QNN_CONTEXT_BINARY | 7.55837 | 0.3644368 - 11.6619776 | -- | -- |
50
 
51
  ## Deploying Llama 3 on-device
52
 
@@ -54,6 +58,84 @@ Please follow the [LLM on-device deployment](https://github.com/quic/ai-hub-apps
54
 
55
 
56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57
  ## License
58
  * The license for the original implementation of Llama-v3-8B-Instruct can be found
59
  [here](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct/blob/main/LICENSE).
@@ -68,26 +150,7 @@ Please follow the [LLM on-device deployment](https://github.com/quic/ai-hub-apps
68
 
69
 
70
  ## Community
71
- * Join [our AI Hub Slack community](https://qualcomm-ai-hub.slack.com/join/shared_invite/zt-2d5zsmas3-Sj0Q9TzslueCjS31eXG2UA#/shared-invite/email) to collaborate, post questions and learn more about on-device AI.
72
  * For questions or feedback please [reach out to us](mailto:[email protected]).
73
 
74
- ## Usage and Limitations
75
-
76
- Model may not be used for or in connection with any of the following applications:
77
-
78
- - Accessing essential private and public services and benefits;
79
- - Administration of justice and democratic processes;
80
- - Assessing or recognizing the emotional state of a person;
81
- - Biometric and biometrics-based systems, including categorization of persons based on sensitive characteristics;
82
- - Education and vocational training;
83
- - Employment and workers management;
84
- - Exploitation of the vulnerabilities of persons resulting in harmful behavior;
85
- - General purpose social scoring;
86
- - Law enforcement;
87
- - Management and operation of critical infrastructure;
88
- - Migration, asylum and border control management;
89
- - Predictive policing;
90
- - Real-time remote biometric identification in public spaces;
91
- - Recommender systems of social media platforms;
92
- - Scraping of facial images (from the internet or otherwise); and/or
93
- - Subliminal manipulation
 
20
  This model is an implementation of Llama-v3-8B-Instruct found [here](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct/).
21
 
22
 
23
+ This repository provides scripts to run Llama-v3-8B-Instruct on Qualcomm® devices.
24
+ More details on model performance across various devices, can be found
25
+ [here](https://aihub.qualcomm.com/models/llama_v3_8b_instruct).
26
+
27
+ **WARNING**: The model assets are not readily available for download due to licensing restrictions.
28
 
29
  ### Model Details
30
 
 
48
 
49
  | Model | Precision | Device | Chipset | Target Runtime | Response Rate (tokens per second) | Time To First Token (range, seconds)
50
  |---|---|---|---|---|---|
51
+ | Llama-v3-8B-Instruct | w4a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_CONTEXT_BINARY | 12.9262 | 0.159383 - 5.100256 | -- | -- |
52
+ | Llama-v3-8B-Instruct | w4a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_CONTEXT_BINARY | 10.0367 | 0.211644 - 6.772608 | -- | -- |
53
+ | Llama-v3-8B-Instruct | w4a16 | SA8255P ADP | Qualcomm® SA8255P | QNN_CONTEXT_BINARY | 7.55837 | 0.3644368 - 11.6619776 | -- | -- |
54
 
55
  ## Deploying Llama 3 on-device
56
 
 
58
 
59
 
60
 
61
+ ## Installation
62
+
63
+
64
+ Install the package via pip:
65
+ ```bash
66
+ pip install "qai-hub-models[llama-v3-8b-instruct]"
67
+ ```
68
+
69
+
70
+ ## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
71
+
72
+ Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
73
+ Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
74
+
75
+ With this API token, you can configure your client to run models on the cloud
76
+ hosted devices.
77
+ ```bash
78
+ qai-hub configure --api_token API_TOKEN
79
+ ```
80
+ Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
81
+
82
+
83
+
84
+ ## Demo off target
85
+
86
+ The package contains a simple end-to-end demo that downloads pre-trained
87
+ weights and runs this model on a sample input.
88
+
89
+ ```bash
90
+ python -m qai_hub_models.models.llama_v3_8b_instruct.demo
91
+ ```
92
+
93
+ The above demo runs a reference implementation of pre-processing, model
94
+ inference, and post processing.
95
+
96
+ **NOTE**: If you want running in a Jupyter Notebook or Google Colab like
97
+ environment, please add the following to your cell (instead of the above).
98
+ ```
99
+ %run -m qai_hub_models.models.llama_v3_8b_instruct.demo
100
+ ```
101
+
102
+
103
+ ### Run model on a cloud-hosted device
104
+
105
+ In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
106
+ device. This script does the following:
107
+ * Performance check on-device on a cloud-hosted device
108
+ * Downloads compiled assets that can be deployed on-device for Android.
109
+ * Accuracy check between PyTorch and on-device outputs.
110
+
111
+ ```bash
112
+ python -m qai_hub_models.models.llama_v3_8b_instruct.export
113
+ ```
114
+
115
+
116
+
117
+
118
+
119
+
120
+ ## Deploying compiled model to Android
121
+
122
+
123
+ The models can be deployed using multiple runtimes:
124
+ - TensorFlow Lite (`.tflite` export): [This
125
+ tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
126
+ guide to deploy the .tflite model in an Android application.
127
+
128
+
129
+ - QNN (`.so` export ): This [sample
130
+ app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
131
+ provides instructions on how to use the `.so` shared library in an Android application.
132
+
133
+
134
+ ## View on Qualcomm® AI Hub
135
+ Get more details on Llama-v3-8B-Instruct's performance across various devices [here](https://aihub.qualcomm.com/models/llama_v3_8b_instruct).
136
+ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
137
+
138
+
139
  ## License
140
  * The license for the original implementation of Llama-v3-8B-Instruct can be found
141
  [here](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct/blob/main/LICENSE).
 
150
 
151
 
152
  ## Community
153
+ * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
154
  * For questions or feedback please [reach out to us](mailto:[email protected]).
155
 
156
+