Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -30,10 +30,13 @@ More details on model performance across various devices, can be found
|
|
| 30 |
- Model size: 63.2 MB
|
| 31 |
|
| 32 |
|
|
|
|
|
|
|
| 33 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
| 34 |
| ---|---|---|---|---|---|---|---|
|
| 35 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 3.
|
| 36 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 3.
|
|
|
|
| 37 |
|
| 38 |
|
| 39 |
## Installation
|
|
@@ -41,10 +44,11 @@ More details on model performance across various devices, can be found
|
|
| 41 |
This model can be installed as a Python package via pip.
|
| 42 |
|
| 43 |
```bash
|
| 44 |
-
pip install qai-hub-models
|
| 45 |
```
|
| 46 |
|
| 47 |
|
|
|
|
| 48 |
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
|
| 49 |
|
| 50 |
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
|
|
@@ -94,15 +98,17 @@ python -m qai_hub_models.models.midas.export
|
|
| 94 |
Profile Job summary of Midas-V2
|
| 95 |
--------------------------------------------------
|
| 96 |
Device: Snapdragon X Elite CRD (11)
|
| 97 |
-
Estimated Inference Time: 3.
|
| 98 |
Estimated Peak Memory Range: 0.75-0.75 MB
|
| 99 |
Compute Units: NPU (199) | Total (199)
|
| 100 |
|
| 101 |
|
| 102 |
```
|
|
|
|
|
|
|
| 103 |
## How does this work?
|
| 104 |
|
| 105 |
-
This [export script](https://
|
| 106 |
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
| 107 |
on-device. Lets go through each step below in detail:
|
| 108 |
|
|
@@ -179,6 +185,7 @@ spot check the output with expected output.
|
|
| 179 |
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
|
| 180 |
|
| 181 |
|
|
|
|
| 182 |
## Run demo on a cloud-hosted device
|
| 183 |
|
| 184 |
You can also run the demo on-device.
|
|
@@ -215,7 +222,7 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
|
| 215 |
## License
|
| 216 |
- The license for the original implementation of Midas-V2 can be found
|
| 217 |
[here](https://github.com/isl-org/MiDaS/blob/master/LICENSE).
|
| 218 |
-
- The license for the compiled assets for on-device deployment can be found [here](
|
| 219 |
|
| 220 |
## References
|
| 221 |
* [Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer](https://arxiv.org/abs/1907.01341v3)
|
|
|
|
| 30 |
- Model size: 63.2 MB
|
| 31 |
|
| 32 |
|
| 33 |
+
|
| 34 |
+
|
| 35 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
| 36 |
| ---|---|---|---|---|---|---|---|
|
| 37 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 3.428 ms | 0 - 3 MB | FP16 | NPU | [Midas-V2.tflite](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.tflite)
|
| 38 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 3.372 ms | 1 - 11 MB | FP16 | NPU | [Midas-V2.so](https://huggingface.co/qualcomm/Midas-V2/blob/main/Midas-V2.so)
|
| 39 |
+
|
| 40 |
|
| 41 |
|
| 42 |
## Installation
|
|
|
|
| 44 |
This model can be installed as a Python package via pip.
|
| 45 |
|
| 46 |
```bash
|
| 47 |
+
pip install "qai-hub-models[midas]"
|
| 48 |
```
|
| 49 |
|
| 50 |
|
| 51 |
+
|
| 52 |
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
|
| 53 |
|
| 54 |
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
|
|
|
|
| 98 |
Profile Job summary of Midas-V2
|
| 99 |
--------------------------------------------------
|
| 100 |
Device: Snapdragon X Elite CRD (11)
|
| 101 |
+
Estimated Inference Time: 3.53 ms
|
| 102 |
Estimated Peak Memory Range: 0.75-0.75 MB
|
| 103 |
Compute Units: NPU (199) | Total (199)
|
| 104 |
|
| 105 |
|
| 106 |
```
|
| 107 |
+
|
| 108 |
+
|
| 109 |
## How does this work?
|
| 110 |
|
| 111 |
+
This [export script](https://aihub.qualcomm.com/models/midas/qai_hub_models/models/Midas-V2/export.py)
|
| 112 |
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
| 113 |
on-device. Lets go through each step below in detail:
|
| 114 |
|
|
|
|
| 185 |
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
|
| 186 |
|
| 187 |
|
| 188 |
+
|
| 189 |
## Run demo on a cloud-hosted device
|
| 190 |
|
| 191 |
You can also run the demo on-device.
|
|
|
|
| 222 |
## License
|
| 223 |
- The license for the original implementation of Midas-V2 can be found
|
| 224 |
[here](https://github.com/isl-org/MiDaS/blob/master/LICENSE).
|
| 225 |
+
- The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
| 226 |
|
| 227 |
## References
|
| 228 |
* [Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer](https://arxiv.org/abs/1907.01341v3)
|