File size: 17,937 Bytes
29d6673
 
d132408
29d6673
 
 
c5ae9b8
29d6673
 
 
1a33e82
29d6673
 
 
 
b86b199
29d6673
 
be6df0c
b86b199
 
29d6673
 
 
 
 
430b548
29d6673
 
d132408
29d6673
 
 
 
d132408
 
29d6673
d132408
8515975
7a65756
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29d6673
90f2e65
 
29d6673
 
 
 
f0061b4
29d6673
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
430b548
90f2e65
 
29d6673
 
90f2e65
29d6673
 
 
 
 
 
 
 
 
 
 
 
795106f
29d6673
 
795106f
29d6673
 
f0061b4
29d6673
795106f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29d6673
 
 
 
 
 
 
 
 
 
 
 
3909e35
 
 
296391c
29d6673
 
 
 
 
 
 
 
 
3909e35
 
 
 
296391c
29d6673
 
 
 
 
 
1a33e82
29d6673
 
90f2e65
29d6673
 
 
 
 
2127417
29d6673
 
 
 
 
2127417
29d6673
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8515975
29d6673
f0061b4
 
8515975
 
 
29d6673
 
 
 
 
8515975
 
29d6673
cfb899a
29d6673
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
---
library_name: pytorch
license: other
tags:
- backbone
- android
pipeline_tag: image-classification

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/resnet50/web-assets/model_demo.png)

# ResNet50: Optimized for Mobile Deployment
## Imagenet classifier and general purpose backbone


ResNet50 is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.

This model is an implementation of ResNet50 found [here](https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py).


This repository provides scripts to run ResNet50 on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/resnet50).



### Model Details

- **Model Type:** Model_use_case.image_classification
- **Model Stats:**
  - Model checkpoint: Imagenet
  - Input resolution: 224x224
  - Number of parameters: 25.5M
  - Model size (float): 97.4 MB
  - Model size (w8a8): 25.1 MB

| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| ResNet50 | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 10.814 ms | 0 - 63 MB | NPU | [ResNet50.tflite](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50.tflite) |
| ResNet50 | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 10.598 ms | 1 - 33 MB | NPU | [ResNet50.dlc](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50.dlc) |
| ResNet50 | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 3.039 ms | 0 - 76 MB | NPU | [ResNet50.tflite](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50.tflite) |
| ResNet50 | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 3.578 ms | 0 - 33 MB | NPU | [ResNet50.dlc](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50.dlc) |
| ResNet50 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 2.263 ms | 0 - 353 MB | NPU | [ResNet50.tflite](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50.tflite) |
| ResNet50 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 2.185 ms | 1 - 15 MB | NPU | [ResNet50.dlc](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50.dlc) |
| ResNet50 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 3.488 ms | 0 - 63 MB | NPU | [ResNet50.tflite](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50.tflite) |
| ResNet50 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 3.396 ms | 1 - 33 MB | NPU | [ResNet50.dlc](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50.dlc) |
| ResNet50 | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 10.814 ms | 0 - 63 MB | NPU | [ResNet50.tflite](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50.tflite) |
| ResNet50 | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 10.598 ms | 1 - 33 MB | NPU | [ResNet50.dlc](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50.dlc) |
| ResNet50 | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 2.271 ms | 0 - 368 MB | NPU | [ResNet50.tflite](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50.tflite) |
| ResNet50 | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 2.183 ms | 0 - 12 MB | NPU | [ResNet50.dlc](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50.dlc) |
| ResNet50 | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 3.657 ms | 0 - 55 MB | NPU | [ResNet50.tflite](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50.tflite) |
| ResNet50 | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 3.594 ms | 1 - 29 MB | NPU | [ResNet50.dlc](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50.dlc) |
| ResNet50 | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 2.27 ms | 0 - 362 MB | NPU | [ResNet50.tflite](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50.tflite) |
| ResNet50 | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 2.177 ms | 1 - 18 MB | NPU | [ResNet50.dlc](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50.dlc) |
| ResNet50 | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 3.488 ms | 0 - 63 MB | NPU | [ResNet50.tflite](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50.tflite) |
| ResNet50 | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 3.396 ms | 1 - 33 MB | NPU | [ResNet50.dlc](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50.dlc) |
| ResNet50 | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 2.269 ms | 0 - 364 MB | NPU | [ResNet50.tflite](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50.tflite) |
| ResNet50 | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 2.176 ms | 1 - 12 MB | NPU | [ResNet50.dlc](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50.dlc) |
| ResNet50 | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 2.25 ms | 0 - 191 MB | NPU | [ResNet50.onnx.zip](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50.onnx.zip) |
| ResNet50 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 1.617 ms | 0 - 82 MB | NPU | [ResNet50.tflite](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50.tflite) |
| ResNet50 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 1.605 ms | 0 - 38 MB | NPU | [ResNet50.dlc](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50.dlc) |
| ResNet50 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 1.659 ms | 0 - 42 MB | NPU | [ResNet50.onnx.zip](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50.onnx.zip) |
| ResNet50 | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 1.504 ms | 0 - 67 MB | NPU | [ResNet50.tflite](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50.tflite) |
| ResNet50 | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 1.457 ms | 1 - 37 MB | NPU | [ResNet50.dlc](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50.dlc) |
| ResNet50 | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 1.577 ms | 1 - 34 MB | NPU | [ResNet50.onnx.zip](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50.onnx.zip) |
| ResNet50 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 2.296 ms | 172 - 172 MB | NPU | [ResNet50.dlc](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50.dlc) |
| ResNet50 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 2.179 ms | 49 - 49 MB | NPU | [ResNet50.onnx.zip](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50.onnx.zip) |
| ResNet50 | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 1.704 ms | 0 - 32 MB | NPU | [ResNet50.tflite](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50_w8a8.tflite) |
| ResNet50 | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 1.94 ms | 0 - 34 MB | NPU | [ResNet50.dlc](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50_w8a8.dlc) |
| ResNet50 | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 0.907 ms | 0 - 64 MB | NPU | [ResNet50.tflite](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50_w8a8.tflite) |
| ResNet50 | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 1.204 ms | 0 - 59 MB | NPU | [ResNet50.dlc](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50_w8a8.dlc) |
| ResNet50 | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 0.772 ms | 0 - 124 MB | NPU | [ResNet50.tflite](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50_w8a8.tflite) |
| ResNet50 | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 0.899 ms | 0 - 122 MB | NPU | [ResNet50.dlc](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50_w8a8.dlc) |
| ResNet50 | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 0.942 ms | 0 - 33 MB | NPU | [ResNet50.tflite](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50_w8a8.tflite) |
| ResNet50 | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 1.072 ms | 0 - 34 MB | NPU | [ResNet50.dlc](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50_w8a8.dlc) |
| ResNet50 | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | TFLITE | 2.759 ms | 0 - 48 MB | NPU | [ResNet50.tflite](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50_w8a8.tflite) |
| ResNet50 | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 3.957 ms | 0 - 48 MB | NPU | [ResNet50.dlc](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50_w8a8.dlc) |
| ResNet50 | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | TFLITE | 11.86 ms | 0 - 2 MB | NPU | [ResNet50.tflite](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50_w8a8.tflite) |
| ResNet50 | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 1.704 ms | 0 - 32 MB | NPU | [ResNet50.tflite](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50_w8a8.tflite) |
| ResNet50 | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 1.94 ms | 0 - 34 MB | NPU | [ResNet50.dlc](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50_w8a8.dlc) |
| ResNet50 | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 0.773 ms | 0 - 120 MB | NPU | [ResNet50.tflite](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50_w8a8.tflite) |
| ResNet50 | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 0.889 ms | 0 - 122 MB | NPU | [ResNet50.dlc](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50_w8a8.dlc) |
| ResNet50 | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 1.208 ms | 0 - 39 MB | NPU | [ResNet50.tflite](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50_w8a8.tflite) |
| ResNet50 | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 1.439 ms | 0 - 40 MB | NPU | [ResNet50.dlc](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50_w8a8.dlc) |
| ResNet50 | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 0.771 ms | 0 - 121 MB | NPU | [ResNet50.tflite](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50_w8a8.tflite) |
| ResNet50 | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 0.898 ms | 0 - 123 MB | NPU | [ResNet50.dlc](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50_w8a8.dlc) |
| ResNet50 | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 0.942 ms | 0 - 33 MB | NPU | [ResNet50.tflite](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50_w8a8.tflite) |
| ResNet50 | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 1.072 ms | 0 - 34 MB | NPU | [ResNet50.dlc](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50_w8a8.dlc) |
| ResNet50 | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 0.774 ms | 0 - 120 MB | NPU | [ResNet50.tflite](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50_w8a8.tflite) |
| ResNet50 | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 0.899 ms | 0 - 124 MB | NPU | [ResNet50.dlc](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50_w8a8.dlc) |
| ResNet50 | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 0.589 ms | 0 - 54 MB | NPU | [ResNet50.tflite](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50_w8a8.tflite) |
| ResNet50 | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 0.663 ms | 0 - 54 MB | NPU | [ResNet50.dlc](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50_w8a8.dlc) |
| ResNet50 | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 0.531 ms | 0 - 39 MB | NPU | [ResNet50.tflite](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50_w8a8.tflite) |
| ResNet50 | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 0.597 ms | 0 - 41 MB | NPU | [ResNet50.dlc](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50_w8a8.dlc) |
| ResNet50 | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 0.959 ms | 131 - 131 MB | NPU | [ResNet50.dlc](https://huggingface.co/qualcomm/ResNet50/blob/main/ResNet50_w8a8.dlc) |




## Installation


Install the package via pip:
```bash
pip install qai-hub-models
```


## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.

With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.



## Demo off target

The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.

```bash
python -m qai_hub_models.models.resnet50.demo
```

The above demo runs a reference implementation of pre-processing, model
inference, and post processing.

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.resnet50.demo
```


### Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.

```bash
python -m qai_hub_models.models.resnet50.export
```



## How does this work?

This [export script](https://aihub.qualcomm.com/models/resnet50/qai_hub_models/models/ResNet50/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:

Step 1: **Compile model for on-device deployment**

To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the `jit.trace` and then call the `submit_compile_job` API.

```python
import torch

import qai_hub as hub
from qai_hub_models.models.resnet50 import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S24")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

```


Step 2: **Performance profiling on cloud-hosted device**

After compiling models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud.  Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        
```

Step 3: **Verify on-device accuracy**

To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.

**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).



## Run demo on a cloud-hosted device

You can also run the demo on-device.

```bash
python -m qai_hub_models.models.resnet50.demo --eval-mode on-device
```

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.resnet50.demo -- --eval-mode on-device
```


## Deploying compiled model to Android


The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
  tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
  guide to deploy the .tflite model in an Android application.


- QNN (`.so` export ): This [sample
  app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library  in an Android application.


## View on Qualcomm® AI Hub
Get more details on ResNet50's performance across various devices [here](https://aihub.qualcomm.com/models/resnet50).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)


## License
* The license for the original implementation of ResNet50 can be found
  [here](https://github.com/pytorch/vision/blob/main/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)



## References
* [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385)
* [Source Model Implementation](https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py)



## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).