File size: 16,370 Bytes
bf6560a
 
55284e4
bf6560a
 
 
3485f04
bf6560a
 
 
6b91e20
bf6560a
 
 
 
e4907b7
bf6560a
 
113f4e6
e4907b7
 
bf6560a
 
 
 
 
36e8eff
bf6560a
 
55284e4
bf6560a
 
 
 
55284e4
e378b37
bf6560a
55284e4
56eb10b
10d1cb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf6560a
a31f8ae
 
bf6560a
 
 
 
423e7f9
bf6560a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36e8eff
a31f8ae
 
bf6560a
 
a31f8ae
bf6560a
 
 
 
 
 
 
 
 
 
 
 
71318ee
bf6560a
 
71318ee
bf6560a
 
423e7f9
bf6560a
71318ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf6560a
 
 
 
 
 
 
 
 
 
 
 
aebc367
 
 
84a7d98
bf6560a
 
 
 
 
 
 
 
 
aebc367
 
 
 
84a7d98
bf6560a
 
 
 
 
 
6b91e20
bf6560a
 
a31f8ae
bf6560a
 
 
 
 
aa15323
bf6560a
 
 
 
 
aa15323
bf6560a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56eb10b
bf6560a
423e7f9
 
56eb10b
 
 
bf6560a
 
 
 
 
56eb10b
 
bf6560a
e273191
bf6560a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
---
library_name: pytorch
license: other
tags:
- backbone
- android
pipeline_tag: image-classification

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/swin_base/web-assets/model_demo.png)

# Swin-Base: Optimized for Mobile Deployment
## Imagenet classifier and general purpose backbone


SwinBase is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.

This model is an implementation of Swin-Base found [here](https://github.com/pytorch/vision/blob/main/torchvision/models/swin_transformer.py).


This repository provides scripts to run Swin-Base on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/swin_base).



### Model Details

- **Model Type:** Model_use_case.image_classification
- **Model Stats:**
  - Model checkpoint: Imagenet
  - Input resolution: 224x224
  - Number of parameters: 88.8M
  - Model size (float): 339 MB
  - Model size (w8a16): 90.2 MB

| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| Swin-Base | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 60.88 ms | 0 - 356 MB | NPU | [Swin-Base.tflite](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.tflite) |
| Swin-Base | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 54.31 ms | 0 - 314 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.dlc) |
| Swin-Base | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 28.423 ms | 0 - 351 MB | NPU | [Swin-Base.tflite](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.tflite) |
| Swin-Base | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 28.165 ms | 1 - 335 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.dlc) |
| Swin-Base | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 21.901 ms | 0 - 31 MB | NPU | [Swin-Base.tflite](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.tflite) |
| Swin-Base | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 19.258 ms | 0 - 69 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.dlc) |
| Swin-Base | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 25.164 ms | 0 - 355 MB | NPU | [Swin-Base.tflite](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.tflite) |
| Swin-Base | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 22.366 ms | 0 - 313 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.dlc) |
| Swin-Base | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 60.88 ms | 0 - 356 MB | NPU | [Swin-Base.tflite](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.tflite) |
| Swin-Base | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 54.31 ms | 0 - 314 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.dlc) |
| Swin-Base | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 21.708 ms | 0 - 32 MB | NPU | [Swin-Base.tflite](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.tflite) |
| Swin-Base | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 19.468 ms | 0 - 56 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.dlc) |
| Swin-Base | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 31.692 ms | 0 - 347 MB | NPU | [Swin-Base.tflite](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.tflite) |
| Swin-Base | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 28.416 ms | 1 - 306 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.dlc) |
| Swin-Base | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 21.818 ms | 0 - 36 MB | NPU | [Swin-Base.tflite](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.tflite) |
| Swin-Base | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 19.322 ms | 0 - 47 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.dlc) |
| Swin-Base | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 25.164 ms | 0 - 355 MB | NPU | [Swin-Base.tflite](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.tflite) |
| Swin-Base | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 22.366 ms | 0 - 313 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.dlc) |
| Swin-Base | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 22.016 ms | 0 - 36 MB | NPU | [Swin-Base.tflite](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.tflite) |
| Swin-Base | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 19.36 ms | 0 - 59 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.dlc) |
| Swin-Base | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 19.725 ms | 0 - 230 MB | NPU | [Swin-Base.onnx.zip](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.onnx.zip) |
| Swin-Base | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 15.329 ms | 0 - 357 MB | NPU | [Swin-Base.tflite](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.tflite) |
| Swin-Base | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 13.265 ms | 1 - 347 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.dlc) |
| Swin-Base | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 13.207 ms | 1 - 390 MB | NPU | [Swin-Base.onnx.zip](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.onnx.zip) |
| Swin-Base | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 14.075 ms | 0 - 348 MB | NPU | [Swin-Base.tflite](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.tflite) |
| Swin-Base | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 11.689 ms | 1 - 313 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.dlc) |
| Swin-Base | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 12.103 ms | 1 - 350 MB | NPU | [Swin-Base.onnx.zip](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.onnx.zip) |
| Swin-Base | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 20.009 ms | 1032 - 1032 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.dlc) |
| Swin-Base | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 22.479 ms | 175 - 175 MB | NPU | [Swin-Base.onnx.zip](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base.onnx.zip) |
| Swin-Base | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 34.661 ms | 0 - 243 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base_w8a16.dlc) |
| Swin-Base | w8a16 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 23.684 ms | 0 - 247 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base_w8a16.dlc) |
| Swin-Base | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 17.997 ms | 0 - 64 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base_w8a16.dlc) |
| Swin-Base | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 18.312 ms | 0 - 244 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base_w8a16.dlc) |
| Swin-Base | w8a16 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 76.62 ms | 0 - 943 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base_w8a16.dlc) |
| Swin-Base | w8a16 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 34.661 ms | 0 - 243 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base_w8a16.dlc) |
| Swin-Base | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 18.005 ms | 0 - 41 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base_w8a16.dlc) |
| Swin-Base | w8a16 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 21.927 ms | 0 - 248 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base_w8a16.dlc) |
| Swin-Base | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 17.981 ms | 0 - 59 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base_w8a16.dlc) |
| Swin-Base | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 18.312 ms | 0 - 244 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base_w8a16.dlc) |
| Swin-Base | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 17.969 ms | 0 - 72 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base_w8a16.dlc) |
| Swin-Base | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 161.302 ms | 507 - 785 MB | NPU | [Swin-Base.onnx.zip](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base_w8a16.onnx.zip) |
| Swin-Base | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 12.242 ms | 0 - 253 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base_w8a16.dlc) |
| Swin-Base | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 119.609 ms | 879 - 1197 MB | NPU | [Swin-Base.onnx.zip](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base_w8a16.onnx.zip) |
| Swin-Base | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 11.49 ms | 0 - 241 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base_w8a16.dlc) |
| Swin-Base | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 110.058 ms | 638 - 927 MB | NPU | [Swin-Base.onnx.zip](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base_w8a16.onnx.zip) |
| Swin-Base | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 18.942 ms | 300 - 300 MB | NPU | [Swin-Base.dlc](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base_w8a16.dlc) |
| Swin-Base | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 159.935 ms | 989 - 989 MB | NPU | [Swin-Base.onnx.zip](https://huggingface.co/qualcomm/Swin-Base/blob/main/Swin-Base_w8a16.onnx.zip) |




## Installation


Install the package via pip:
```bash
pip install qai-hub-models
```


## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.

With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.



## Demo off target

The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.

```bash
python -m qai_hub_models.models.swin_base.demo
```

The above demo runs a reference implementation of pre-processing, model
inference, and post processing.

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.swin_base.demo
```


### Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.

```bash
python -m qai_hub_models.models.swin_base.export
```



## How does this work?

This [export script](https://aihub.qualcomm.com/models/swin_base/qai_hub_models/models/Swin-Base/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:

Step 1: **Compile model for on-device deployment**

To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the `jit.trace` and then call the `submit_compile_job` API.

```python
import torch

import qai_hub as hub
from qai_hub_models.models.swin_base import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S24")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

```


Step 2: **Performance profiling on cloud-hosted device**

After compiling models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud.  Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        
```

Step 3: **Verify on-device accuracy**

To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.

**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).



## Run demo on a cloud-hosted device

You can also run the demo on-device.

```bash
python -m qai_hub_models.models.swin_base.demo --eval-mode on-device
```

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.swin_base.demo -- --eval-mode on-device
```


## Deploying compiled model to Android


The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
  tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
  guide to deploy the .tflite model in an Android application.


- QNN (`.so` export ): This [sample
  app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library  in an Android application.


## View on Qualcomm® AI Hub
Get more details on Swin-Base's performance across various devices [here](https://aihub.qualcomm.com/models/swin_base).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)


## License
* The license for the original implementation of Swin-Base can be found
  [here](https://github.com/pytorch/vision/blob/main/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)



## References
* [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030)
* [Source Model Implementation](https://github.com/pytorch/vision/blob/main/torchvision/models/swin_transformer.py)



## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).