File size: 18,225 Bytes
b7b7202
 
1d15e1e
b7b7202
 
 
878bbb1
b7b7202
 
 
cb4fccc
b7b7202
 
 
 
fff7db8
b7b7202
 
6c96959
fff7db8
 
b7b7202
 
 
 
 
1da1fa4
b7b7202
 
1d15e1e
b7b7202
 
 
 
cd90639
 
 
b7b7202
1d15e1e
e55e123
d97be93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7b7202
488f76a
 
b7b7202
 
 
 
36c6a95
b7b7202
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1da1fa4
5265d22
 
b7b7202
 
488f76a
b7b7202
 
 
 
 
 
 
 
 
 
 
 
9870567
b7b7202
 
9870567
b7b7202
 
36c6a95
b7b7202
9870567
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7b7202
 
 
 
 
 
 
 
 
 
 
 
80ece63
 
 
3cc962d
b7b7202
 
 
 
 
 
 
 
 
80ece63
 
 
 
3cc962d
b7b7202
 
 
 
 
 
cb4fccc
b7b7202
 
488f76a
b7b7202
 
 
 
 
ac709b4
b7b7202
 
 
 
 
ac709b4
b7b7202
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e55e123
b7b7202
36c6a95
 
e55e123
 
 
b7b7202
 
 
 
 
e55e123
 
b7b7202
221f340
b7b7202
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
---
library_name: pytorch
license: other
tags:
- backbone
- android
pipeline_tag: image-classification

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/vit/web-assets/model_demo.png)

# VIT: Optimized for Mobile Deployment
## Imagenet classifier and general purpose backbone


VIT is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.

This model is an implementation of VIT found [here](https://github.com/pytorch/vision/blob/main/torchvision/models/vision_transformer.py).


This repository provides scripts to run VIT on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/vit).



### Model Details

- **Model Type:** Model_use_case.image_classification
- **Model Stats:**
  - Model checkpoint: Imagenet
  - Input resolution: 224x224
  - Number of parameters: 86.6M
  - Model size (float): 330 MB
  - Model size (w8a16): 86.2 MB
  - Model size (w8a8): 83.2 MB

| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| VIT | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 42.876 ms | 0 - 306 MB | NPU | [VIT.tflite](https://huggingface.co/qualcomm/VIT/blob/main/VIT.tflite) |
| VIT | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 45.209 ms | 1 - 321 MB | NPU | [VIT.dlc](https://huggingface.co/qualcomm/VIT/blob/main/VIT.dlc) |
| VIT | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 17.073 ms | 0 - 299 MB | NPU | [VIT.tflite](https://huggingface.co/qualcomm/VIT/blob/main/VIT.tflite) |
| VIT | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 21.417 ms | 0 - 328 MB | NPU | [VIT.dlc](https://huggingface.co/qualcomm/VIT/blob/main/VIT.dlc) |
| VIT | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 12.48 ms | 0 - 23 MB | NPU | [VIT.tflite](https://huggingface.co/qualcomm/VIT/blob/main/VIT.tflite) |
| VIT | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 13.747 ms | 0 - 31 MB | NPU | [VIT.dlc](https://huggingface.co/qualcomm/VIT/blob/main/VIT.dlc) |
| VIT | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 15.25 ms | 0 - 306 MB | NPU | [VIT.tflite](https://huggingface.co/qualcomm/VIT/blob/main/VIT.tflite) |
| VIT | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 16.628 ms | 1 - 326 MB | NPU | [VIT.dlc](https://huggingface.co/qualcomm/VIT/blob/main/VIT.dlc) |
| VIT | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 42.876 ms | 0 - 306 MB | NPU | [VIT.tflite](https://huggingface.co/qualcomm/VIT/blob/main/VIT.tflite) |
| VIT | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 45.209 ms | 1 - 321 MB | NPU | [VIT.dlc](https://huggingface.co/qualcomm/VIT/blob/main/VIT.dlc) |
| VIT | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 12.452 ms | 0 - 16 MB | NPU | [VIT.tflite](https://huggingface.co/qualcomm/VIT/blob/main/VIT.tflite) |
| VIT | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 13.798 ms | 0 - 29 MB | NPU | [VIT.dlc](https://huggingface.co/qualcomm/VIT/blob/main/VIT.dlc) |
| VIT | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 19.267 ms | 0 - 290 MB | NPU | [VIT.tflite](https://huggingface.co/qualcomm/VIT/blob/main/VIT.tflite) |
| VIT | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 19.74 ms | 1 - 320 MB | NPU | [VIT.dlc](https://huggingface.co/qualcomm/VIT/blob/main/VIT.dlc) |
| VIT | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 12.492 ms | 0 - 14 MB | NPU | [VIT.tflite](https://huggingface.co/qualcomm/VIT/blob/main/VIT.tflite) |
| VIT | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 13.759 ms | 0 - 29 MB | NPU | [VIT.dlc](https://huggingface.co/qualcomm/VIT/blob/main/VIT.dlc) |
| VIT | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 15.25 ms | 0 - 306 MB | NPU | [VIT.tflite](https://huggingface.co/qualcomm/VIT/blob/main/VIT.tflite) |
| VIT | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 16.628 ms | 1 - 326 MB | NPU | [VIT.dlc](https://huggingface.co/qualcomm/VIT/blob/main/VIT.dlc) |
| VIT | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 12.462 ms | 0 - 20 MB | NPU | [VIT.tflite](https://huggingface.co/qualcomm/VIT/blob/main/VIT.tflite) |
| VIT | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 13.818 ms | 0 - 23 MB | NPU | [VIT.dlc](https://huggingface.co/qualcomm/VIT/blob/main/VIT.dlc) |
| VIT | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 13.676 ms | 0 - 214 MB | NPU | [VIT.onnx.zip](https://huggingface.co/qualcomm/VIT/blob/main/VIT.onnx.zip) |
| VIT | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 8.515 ms | 0 - 311 MB | NPU | [VIT.tflite](https://huggingface.co/qualcomm/VIT/blob/main/VIT.tflite) |
| VIT | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 9.513 ms | 1 - 323 MB | NPU | [VIT.dlc](https://huggingface.co/qualcomm/VIT/blob/main/VIT.dlc) |
| VIT | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 9.546 ms | 0 - 328 MB | NPU | [VIT.onnx.zip](https://huggingface.co/qualcomm/VIT/blob/main/VIT.onnx.zip) |
| VIT | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 7.282 ms | 0 - 309 MB | NPU | [VIT.tflite](https://huggingface.co/qualcomm/VIT/blob/main/VIT.tflite) |
| VIT | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 8.012 ms | 1 - 313 MB | NPU | [VIT.dlc](https://huggingface.co/qualcomm/VIT/blob/main/VIT.dlc) |
| VIT | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 7.604 ms | 1 - 301 MB | NPU | [VIT.onnx.zip](https://huggingface.co/qualcomm/VIT/blob/main/VIT.onnx.zip) |
| VIT | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 14.604 ms | 1069 - 1069 MB | NPU | [VIT.dlc](https://huggingface.co/qualcomm/VIT/blob/main/VIT.dlc) |
| VIT | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 14.928 ms | 172 - 172 MB | NPU | [VIT.onnx.zip](https://huggingface.co/qualcomm/VIT/blob/main/VIT.onnx.zip) |
| VIT | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 65.343 ms | 0 - 197 MB | NPU | [VIT.dlc](https://huggingface.co/qualcomm/VIT/blob/main/VIT_w8a16.dlc) |
| VIT | w8a16 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 51.421 ms | 0 - 223 MB | NPU | [VIT.dlc](https://huggingface.co/qualcomm/VIT/blob/main/VIT_w8a16.dlc) |
| VIT | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 26.524 ms | 0 - 47 MB | NPU | [VIT.dlc](https://huggingface.co/qualcomm/VIT/blob/main/VIT_w8a16.dlc) |
| VIT | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 23.101 ms | 0 - 196 MB | NPU | [VIT.dlc](https://huggingface.co/qualcomm/VIT/blob/main/VIT_w8a16.dlc) |
| VIT | w8a16 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 196.89 ms | 0 - 1519 MB | NPU | [VIT.dlc](https://huggingface.co/qualcomm/VIT/blob/main/VIT_w8a16.dlc) |
| VIT | w8a16 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 65.343 ms | 0 - 197 MB | NPU | [VIT.dlc](https://huggingface.co/qualcomm/VIT/blob/main/VIT_w8a16.dlc) |
| VIT | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 26.113 ms | 0 - 48 MB | NPU | [VIT.dlc](https://huggingface.co/qualcomm/VIT/blob/main/VIT_w8a16.dlc) |
| VIT | w8a16 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 36.981 ms | 0 - 215 MB | NPU | [VIT.dlc](https://huggingface.co/qualcomm/VIT/blob/main/VIT_w8a16.dlc) |
| VIT | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 26.191 ms | 0 - 47 MB | NPU | [VIT.dlc](https://huggingface.co/qualcomm/VIT/blob/main/VIT_w8a16.dlc) |
| VIT | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 23.101 ms | 0 - 196 MB | NPU | [VIT.dlc](https://huggingface.co/qualcomm/VIT/blob/main/VIT_w8a16.dlc) |
| VIT | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 25.99 ms | 0 - 48 MB | NPU | [VIT.dlc](https://huggingface.co/qualcomm/VIT/blob/main/VIT_w8a16.dlc) |
| VIT | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 172.048 ms | 652 - 874 MB | NPU | [VIT.onnx.zip](https://huggingface.co/qualcomm/VIT/blob/main/VIT_w8a16.onnx.zip) |
| VIT | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 19.79 ms | 0 - 206 MB | NPU | [VIT.dlc](https://huggingface.co/qualcomm/VIT/blob/main/VIT_w8a16.dlc) |
| VIT | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 126.14 ms | 680 - 845 MB | NPU | [VIT.onnx.zip](https://huggingface.co/qualcomm/VIT/blob/main/VIT_w8a16.onnx.zip) |
| VIT | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 16.601 ms | 0 - 189 MB | NPU | [VIT.dlc](https://huggingface.co/qualcomm/VIT/blob/main/VIT_w8a16.dlc) |
| VIT | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 118.085 ms | 680 - 814 MB | NPU | [VIT.onnx.zip](https://huggingface.co/qualcomm/VIT/blob/main/VIT_w8a16.onnx.zip) |
| VIT | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 25.829 ms | 317 - 317 MB | NPU | [VIT.dlc](https://huggingface.co/qualcomm/VIT/blob/main/VIT_w8a16.dlc) |
| VIT | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 174.288 ms | 922 - 922 MB | NPU | [VIT.onnx.zip](https://huggingface.co/qualcomm/VIT/blob/main/VIT_w8a16.onnx.zip) |
| VIT | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 15.928 ms | 0 - 47 MB | NPU | [VIT.tflite](https://huggingface.co/qualcomm/VIT/blob/main/VIT_w8a8.tflite) |
| VIT | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 8.311 ms | 0 - 55 MB | NPU | [VIT.tflite](https://huggingface.co/qualcomm/VIT/blob/main/VIT_w8a8.tflite) |
| VIT | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 7.604 ms | 0 - 91 MB | NPU | [VIT.tflite](https://huggingface.co/qualcomm/VIT/blob/main/VIT_w8a8.tflite) |
| VIT | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 7.986 ms | 0 - 47 MB | NPU | [VIT.tflite](https://huggingface.co/qualcomm/VIT/blob/main/VIT_w8a8.tflite) |
| VIT | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | TFLITE | 89.903 ms | 2 - 44 MB | NPU | [VIT.tflite](https://huggingface.co/qualcomm/VIT/blob/main/VIT_w8a8.tflite) |
| VIT | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 15.928 ms | 0 - 47 MB | NPU | [VIT.tflite](https://huggingface.co/qualcomm/VIT/blob/main/VIT_w8a8.tflite) |
| VIT | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 7.616 ms | 0 - 20 MB | NPU | [VIT.tflite](https://huggingface.co/qualcomm/VIT/blob/main/VIT_w8a8.tflite) |
| VIT | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 9.894 ms | 0 - 49 MB | NPU | [VIT.tflite](https://huggingface.co/qualcomm/VIT/blob/main/VIT_w8a8.tflite) |
| VIT | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 7.628 ms | 0 - 20 MB | NPU | [VIT.tflite](https://huggingface.co/qualcomm/VIT/blob/main/VIT_w8a8.tflite) |
| VIT | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 7.986 ms | 0 - 47 MB | NPU | [VIT.tflite](https://huggingface.co/qualcomm/VIT/blob/main/VIT_w8a8.tflite) |
| VIT | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 7.63 ms | 0 - 20 MB | NPU | [VIT.tflite](https://huggingface.co/qualcomm/VIT/blob/main/VIT_w8a8.tflite) |
| VIT | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 169.472 ms | 666 - 893 MB | NPU | [VIT.onnx.zip](https://huggingface.co/qualcomm/VIT/blob/main/VIT_w8a8.onnx.zip) |
| VIT | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 5.393 ms | 0 - 52 MB | NPU | [VIT.tflite](https://huggingface.co/qualcomm/VIT/blob/main/VIT_w8a8.tflite) |
| VIT | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 128.241 ms | 671 - 813 MB | NPU | [VIT.onnx.zip](https://huggingface.co/qualcomm/VIT/blob/main/VIT_w8a8.onnx.zip) |
| VIT | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 4.991 ms | 0 - 56 MB | NPU | [VIT.tflite](https://huggingface.co/qualcomm/VIT/blob/main/VIT_w8a8.tflite) |
| VIT | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 117.12 ms | 674 - 795 MB | NPU | [VIT.onnx.zip](https://huggingface.co/qualcomm/VIT/blob/main/VIT_w8a8.onnx.zip) |
| VIT | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 182.806 ms | 921 - 921 MB | NPU | [VIT.onnx.zip](https://huggingface.co/qualcomm/VIT/blob/main/VIT_w8a8.onnx.zip) |




## Installation


Install the package via pip:
```bash
pip install qai-hub-models
```


## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.

With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.



## Demo off target

The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.

```bash
python -m qai_hub_models.models.vit.demo
```

The above demo runs a reference implementation of pre-processing, model
inference, and post processing.

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.vit.demo
```


### Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.

```bash
python -m qai_hub_models.models.vit.export
```



## How does this work?

This [export script](https://aihub.qualcomm.com/models/vit/qai_hub_models/models/VIT/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:

Step 1: **Compile model for on-device deployment**

To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the `jit.trace` and then call the `submit_compile_job` API.

```python
import torch

import qai_hub as hub
from qai_hub_models.models.vit import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S24")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

```


Step 2: **Performance profiling on cloud-hosted device**

After compiling models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud.  Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        
```

Step 3: **Verify on-device accuracy**

To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.

**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).



## Run demo on a cloud-hosted device

You can also run the demo on-device.

```bash
python -m qai_hub_models.models.vit.demo --eval-mode on-device
```

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.vit.demo -- --eval-mode on-device
```


## Deploying compiled model to Android


The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
  tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
  guide to deploy the .tflite model in an Android application.


- QNN (`.so` export ): This [sample
  app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library  in an Android application.


## View on Qualcomm® AI Hub
Get more details on VIT's performance across various devices [here](https://aihub.qualcomm.com/models/vit).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)


## License
* The license for the original implementation of VIT can be found
  [here](https://github.com/pytorch/vision/blob/main/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)



## References
* [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929)
* [Source Model Implementation](https://github.com/pytorch/vision/blob/main/torchvision/models/vision_transformer.py)



## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).