File size: 11,502 Bytes
2688972
 
dd1ed28
2688972
 
 
45efa93
2688972
 
 
 
 
 
 
 
 
 
 
 
 
 
7d0407d
 
 
 
 
2688972
 
 
dd1ed28
2688972
 
 
 
68d6a51
dd1ed28
68d6a51
2688972
dd1ed28
2688972
c869524
2f4ae70
c869524
 
2f4ae70
 
c869524
2f4ae70
c869524
2f4ae70
c869524
2f4ae70
c869524
 
2f4ae70
c869524
2f4ae70
c869524
2f4ae70
 
c869524
2f4ae70
 
c869524
2f4ae70
 
 
 
 
 
 
 
 
 
 
7d0407d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2688972
7d0407d
 
2688972
7d0407d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2688972
 
 
845a98b
 
2688972
 
 
 
 
 
 
 
 
 
 
7d0407d
2688972
 
7d0407d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
---
library_name: pytorch
license: other
tags:
- real_time
- android
pipeline_tag: image-segmentation

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/yolov11_seg/web-assets/model_demo.png)

# YOLOv11-Segmentation: Optimized for Mobile Deployment
## Real-time object segmentation optimized for mobile and edge by Ultralytics


Ultralytics YOLOv11 is a machine learning model that predicts bounding boxes, segmentation masks and classes of objects in an image.

This model is an implementation of YOLOv11-Segmentation found [here](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/yolo/segment).


This repository provides scripts to run YOLOv11-Segmentation on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/yolov11_seg).

**WARNING**: The model assets are not readily available for download due to licensing restrictions.

### Model Details

- **Model Type:** Model_use_case.semantic_segmentation
- **Model Stats:**
  - Model checkpoint: YOLO11N-Seg
  - Input resolution: 640x640
  - Number of output classes: 80
  - Number of parameters: 2.89M
  - Model size (float): 11.1 MB
  - Model size (w8a16): 11.4 MB

| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| YOLOv11-Segmentation | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 17.233 ms | 4 - 76 MB | NPU | -- |
| YOLOv11-Segmentation | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 16.001 ms | 1 - 110 MB | NPU | -- |
| YOLOv11-Segmentation | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 9.275 ms | 4 - 49 MB | NPU | -- |
| YOLOv11-Segmentation | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 5.377 ms | 4 - 39 MB | NPU | -- |
| YOLOv11-Segmentation | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 4.64 ms | 5 - 50 MB | NPU | -- |
| YOLOv11-Segmentation | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 6.685 ms | 3 - 46 MB | NPU | -- |
| YOLOv11-Segmentation | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 6.946 ms | 4 - 76 MB | NPU | -- |
| YOLOv11-Segmentation | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 6.245 ms | 2 - 109 MB | NPU | -- |
| YOLOv11-Segmentation | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 17.233 ms | 4 - 76 MB | NPU | -- |
| YOLOv11-Segmentation | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 16.001 ms | 1 - 110 MB | NPU | -- |
| YOLOv11-Segmentation | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 5.309 ms | 4 - 22 MB | NPU | -- |
| YOLOv11-Segmentation | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 4.631 ms | 6 - 21 MB | NPU | -- |
| YOLOv11-Segmentation | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 10.631 ms | 4 - 41 MB | NPU | -- |
| YOLOv11-Segmentation | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 5.345 ms | 0 - 25 MB | NPU | -- |
| YOLOv11-Segmentation | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 4.612 ms | 0 - 37 MB | NPU | -- |
| YOLOv11-Segmentation | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 6.946 ms | 4 - 76 MB | NPU | -- |
| YOLOv11-Segmentation | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 6.245 ms | 2 - 109 MB | NPU | -- |
| YOLOv11-Segmentation | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 5.35 ms | 0 - 26 MB | NPU | -- |
| YOLOv11-Segmentation | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 4.648 ms | 5 - 52 MB | NPU | -- |
| YOLOv11-Segmentation | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 6.741 ms | 5 - 57 MB | NPU | -- |
| YOLOv11-Segmentation | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 3.925 ms | 0 - 93 MB | NPU | -- |
| YOLOv11-Segmentation | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 3.432 ms | 5 - 207 MB | NPU | -- |
| YOLOv11-Segmentation | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 5.039 ms | 15 - 143 MB | NPU | -- |
| YOLOv11-Segmentation | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 3.081 ms | 3 - 77 MB | NPU | -- |
| YOLOv11-Segmentation | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 3.065 ms | 5 - 124 MB | NPU | -- |
| YOLOv11-Segmentation | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 4.329 ms | 5 - 112 MB | NPU | -- |
| YOLOv11-Segmentation | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 5.073 ms | 60 - 60 MB | NPU | -- |
| YOLOv11-Segmentation | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 6.862 ms | 17 - 17 MB | NPU | -- |
| YOLOv11-Segmentation | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 58.426 ms | 13 - 201 MB | NPU | -- |
| YOLOv11-Segmentation | w8a16 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | ONNX | 222.185 ms | 161 - 178 MB | CPU | -- |
| YOLOv11-Segmentation | w8a16 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | ONNX | 206.907 ms | 163 - 169 MB | CPU | -- |
| YOLOv11-Segmentation | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 57.333 ms | 13 - 199 MB | NPU | -- |
| YOLOv11-Segmentation | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 45.07 ms | 0 - 1605 MB | NPU | -- |
| YOLOv11-Segmentation | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 51.321 ms | 6 - 672 MB | NPU | -- |
| YOLOv11-Segmentation | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 57.38 ms | 31 - 31 MB | NPU | -- |




## Installation


Install the package via pip:
```bash
pip install "qai-hub-models[yolov11-seg]"
```


## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.

With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.



## Demo off target

The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.

```bash
python -m qai_hub_models.models.yolov11_seg.demo
```

The above demo runs a reference implementation of pre-processing, model
inference, and post processing.

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.yolov11_seg.demo
```


### Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.

```bash
python -m qai_hub_models.models.yolov11_seg.export
```



## How does this work?

This [export script](https://aihub.qualcomm.com/models/yolov11_seg/qai_hub_models/models/YOLOv11-Segmentation/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:

Step 1: **Compile model for on-device deployment**

To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the `jit.trace` and then call the `submit_compile_job` API.

```python
import torch

import qai_hub as hub
from qai_hub_models.models.yolov11_seg import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S24")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

```


Step 2: **Performance profiling on cloud-hosted device**

After compiling models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud.  Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        
```

Step 3: **Verify on-device accuracy**

To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.

**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).



## Run demo on a cloud-hosted device

You can also run the demo on-device.

```bash
python -m qai_hub_models.models.yolov11_seg.demo --eval-mode on-device
```

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.yolov11_seg.demo -- --eval-mode on-device
```


## Deploying compiled model to Android


The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
  tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
  guide to deploy the .tflite model in an Android application.


- QNN (`.so` export ): This [sample
  app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library  in an Android application.


## View on Qualcomm® AI Hub
Get more details on YOLOv11-Segmentation's performance across various devices [here](https://aihub.qualcomm.com/models/yolov11_seg).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)


## License
* The license for the original implementation of YOLOv11-Segmentation can be found
  [here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE)



## References
* [Ultralytics YOLOv11 Docs: Instance Segmentation](https://docs.ultralytics.com/tasks/segment/)
* [Source Model Implementation](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/yolo/segment)



## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).