File size: 8,636 Bytes
4db1aba 3a0eac6 4db1aba afc5aa8 4db1aba 6970c9c 4db1aba 62960a8 9849dab 4db1aba 9996575 62960a8 4db1aba 8367fb1 9996575 afc5aa8 4db1aba 3a0eac6 4db1aba 9849dab 4db1aba 2351c87 3a0eac6 4db1aba 3a0eac6 0ca919a 3fe2c97 4db1aba 0ca919a 4db1aba 7e15abb 0ca919a 4db1aba 3e7c587 4db1aba 0ca919a 4db1aba afc5aa8 4db1aba afc5aa8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
---
library_name: pytorch
license: other
tags:
- real_time
- android
pipeline_tag: image-segmentation
---

# YOLOv8-Segmentation: Optimized for Mobile Deployment
## Real-time object segmentation optimized for mobile and edge by Ultralytics
Ultralytics YOLOv8 is a machine learning model that predicts bounding boxes, segmentation masks and classes of objects in an image.
This model is an implementation of YOLOv8-Segmentation found [here](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/yolo/segment).
More details on model performance across various devices, can be found [here](https://aihub.qualcomm.com/models/yolov8_seg).
### Model Details
- **Model Type:** Model_use_case.semantic_segmentation
- **Model Stats:**
- Model checkpoint: YOLOv8N-Seg
- Input resolution: 640x640
- Number of parameters: 3.43M
- Number of output classes: 80
- Model size (float): 13.2 MB
| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| YOLOv8-Segmentation | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 21.56 ms | 4 - 45 MB | NPU | -- |
| YOLOv8-Segmentation | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN | 17.646 ms | 1 - 10 MB | NPU | -- |
| YOLOv8-Segmentation | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 11.59 ms | 4 - 43 MB | NPU | -- |
| YOLOv8-Segmentation | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN | 10.886 ms | 5 - 45 MB | NPU | -- |
| YOLOv8-Segmentation | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 8.126 ms | 4 - 22 MB | NPU | -- |
| YOLOv8-Segmentation | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN | 5.051 ms | 5 - 7 MB | NPU | -- |
| YOLOv8-Segmentation | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 10.312 ms | 4 - 46 MB | NPU | -- |
| YOLOv8-Segmentation | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN | 6.696 ms | 2 - 16 MB | NPU | -- |
| YOLOv8-Segmentation | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 21.56 ms | 4 - 45 MB | NPU | -- |
| YOLOv8-Segmentation | float | SA7255P ADP | Qualcomm® SA7255P | QNN | 17.646 ms | 1 - 10 MB | NPU | -- |
| YOLOv8-Segmentation | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 8.06 ms | 4 - 25 MB | NPU | -- |
| YOLOv8-Segmentation | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN | 4.892 ms | 5 - 8 MB | NPU | -- |
| YOLOv8-Segmentation | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 12.512 ms | 4 - 31 MB | NPU | -- |
| YOLOv8-Segmentation | float | SA8295P ADP | Qualcomm® SA8295P | QNN | 9.075 ms | 0 - 18 MB | NPU | -- |
| YOLOv8-Segmentation | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 8.085 ms | 4 - 22 MB | NPU | -- |
| YOLOv8-Segmentation | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN | 4.936 ms | 5 - 7 MB | NPU | -- |
| YOLOv8-Segmentation | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 10.312 ms | 4 - 46 MB | NPU | -- |
| YOLOv8-Segmentation | float | SA8775P ADP | Qualcomm® SA8775P | QNN | 6.696 ms | 2 - 16 MB | NPU | -- |
| YOLOv8-Segmentation | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 8.206 ms | 4 - 24 MB | NPU | -- |
| YOLOv8-Segmentation | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN | 4.864 ms | 5 - 22 MB | NPU | -- |
| YOLOv8-Segmentation | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 6.284 ms | 14 - 44 MB | NPU | -- |
| YOLOv8-Segmentation | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 5.95 ms | 2 - 53 MB | NPU | -- |
| YOLOv8-Segmentation | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN | 3.59 ms | 5 - 61 MB | NPU | -- |
| YOLOv8-Segmentation | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 4.431 ms | 14 - 79 MB | NPU | -- |
| YOLOv8-Segmentation | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 5.538 ms | 3 - 46 MB | NPU | -- |
| YOLOv8-Segmentation | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN | 3.312 ms | 5 - 56 MB | NPU | -- |
| YOLOv8-Segmentation | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 3.608 ms | 16 - 67 MB | NPU | -- |
| YOLOv8-Segmentation | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 5.387 ms | 5 - 5 MB | NPU | -- |
| YOLOv8-Segmentation | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 7.308 ms | 17 - 17 MB | NPU | -- |
| YOLOv8-Segmentation | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN | 8.953 ms | 0 - 10 MB | NPU | -- |
| YOLOv8-Segmentation | w8a16 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN | 6.491 ms | 2 - 47 MB | NPU | -- |
| YOLOv8-Segmentation | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN | 4.659 ms | 2 - 5 MB | NPU | -- |
| YOLOv8-Segmentation | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN | 5.36 ms | 0 - 15 MB | NPU | -- |
| YOLOv8-Segmentation | w8a16 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN | 20.493 ms | 2 - 14 MB | NPU | -- |
| YOLOv8-Segmentation | w8a16 | SA7255P ADP | Qualcomm® SA7255P | QNN | 8.953 ms | 0 - 10 MB | NPU | -- |
| YOLOv8-Segmentation | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN | 4.655 ms | 2 - 5 MB | NPU | -- |
| YOLOv8-Segmentation | w8a16 | SA8295P ADP | Qualcomm® SA8295P | QNN | 5.936 ms | 0 - 18 MB | NPU | -- |
| YOLOv8-Segmentation | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN | 4.723 ms | 2 - 5 MB | NPU | -- |
| YOLOv8-Segmentation | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN | 5.36 ms | 0 - 15 MB | NPU | -- |
| YOLOv8-Segmentation | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN | 4.662 ms | 2 - 15 MB | NPU | -- |
| YOLOv8-Segmentation | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 7.507 ms | 6 - 29 MB | NPU | -- |
| YOLOv8-Segmentation | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN | 3.057 ms | 2 - 43 MB | NPU | -- |
| YOLOv8-Segmentation | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 4.935 ms | 0 - 55 MB | NPU | -- |
| YOLOv8-Segmentation | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN | 2.726 ms | 2 - 44 MB | NPU | -- |
| YOLOv8-Segmentation | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 4.709 ms | 7 - 57 MB | NPU | -- |
| YOLOv8-Segmentation | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 5.089 ms | 2 - 2 MB | NPU | -- |
| YOLOv8-Segmentation | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 8.454 ms | 15 - 15 MB | NPU | -- |
## License
* The license for the original implementation of YOLOv8-Segmentation can be found
[here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE)
## References
* [Ultralytics YOLOv8 Docs: Instance Segmentation](https://docs.ultralytics.com/tasks/segment/)
* [Source Model Implementation](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/yolo/segment)
## Community
* Join [our AI Hub Slack community](https://qualcomm-ai-hub.slack.com/join/shared_invite/zt-2d5zsmas3-Sj0Q9TzslueCjS31eXG2UA#/shared-invite/email) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).
## Usage and Limitations
Model may not be used for or in connection with any of the following applications:
- Accessing essential private and public services and benefits;
- Administration of justice and democratic processes;
- Assessing or recognizing the emotional state of a person;
- Biometric and biometrics-based systems, including categorization of persons based on sensitive characteristics;
- Education and vocational training;
- Employment and workers management;
- Exploitation of the vulnerabilities of persons resulting in harmful behavior;
- General purpose social scoring;
- Law enforcement;
- Management and operation of critical infrastructure;
- Migration, asylum and border control management;
- Predictive policing;
- Real-time remote biometric identification in public spaces;
- Recommender systems of social media platforms;
- Scraping of facial images (from the internet or otherwise); and/or
- Subliminal manipulation
|