Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,141 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- vision
|
5 |
+
---
|
6 |
+
|
7 |
+
|
8 |
+
# VisualSplit
|
9 |
+
|
10 |
+
**VisualSplit** is a ViT-based model that explicitly factorises an image into **classical visual descriptors**—such as **edges**, **color segmentation**, and **grayscale histogram**—and learns to reconstruct the image conditioned on those descriptors. This design yields **interpretable representations** where geometry (edges), albedo/appearance (segmented colors), and global tone (histogram) can be reasoned about or varied independently.
|
11 |
+
|
12 |
+
> **Training data**: ImageNet-1K.
|
13 |
+
---
|
14 |
+
|
15 |
+
## Model Description
|
16 |
+
|
17 |
+
- **Inputs** (at inference):
|
18 |
+
- An RGB image (for convenience) which is converted to descriptors using the provided `FeatureExtractor` (edges, color segmentation, grayscale histogram).
|
19 |
+
- **Outputs**:
|
20 |
+
- A reconstructed RGB image tensor (same spatial size as the model’s training resolution; default `224×224` unless you trained otherwise).
|
21 |
+
|
22 |
+
---
|
23 |
+
|
24 |
+
## Getting Started (Inference)
|
25 |
+
|
26 |
+
Below are two ways to run inference with the uploaded `model.safetensors`.
|
27 |
+
|
28 |
+
### 1) Minimal PyTorch + safetensors (load state dict)
|
29 |
+
|
30 |
+
```python
|
31 |
+
import torch
|
32 |
+
from huggingface_hub import hf_hub_download
|
33 |
+
from safetensors.torch import load_file
|
34 |
+
|
35 |
+
# 1) Import your model & config from the VisualSplit repo
|
36 |
+
from visualsplit.models.CrossViT import CrossViTForPreTraining, CrossViTConfig
|
37 |
+
from visualsplit.utils import FeatureExtractor
|
38 |
+
|
39 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
40 |
+
|
41 |
+
# 2) Build a config matching your training (edit if you changed widths/depths)
|
42 |
+
config = CrossViTConfig(
|
43 |
+
image_size=224, # change if your training size differs
|
44 |
+
patch_size=16,
|
45 |
+
# ... any other config fields your repo exposes
|
46 |
+
)
|
47 |
+
|
48 |
+
model = CrossViTForPreTraining(config).to(device)
|
49 |
+
model.eval()
|
50 |
+
|
51 |
+
# 3) Download and load state dict from this model repo
|
52 |
+
# Replace REPO_ID with your Hugging Face model id, e.g. "HenryQUQ/visualsplit")
|
53 |
+
ckpt_path = hf_hub_download(repo_id="REPO_ID", filename="model.safetensors")
|
54 |
+
state_dict = load_file(ckpt_path)
|
55 |
+
missing, unexpected = model.load_state_dict(state_dict, strict=False)
|
56 |
+
print("Missing keys:", missing)
|
57 |
+
print("Unexpected keys:", unexpected)
|
58 |
+
|
59 |
+
# 4) Prepare an input image and extract descriptors
|
60 |
+
from PIL import Image
|
61 |
+
from torchvision import transforms
|
62 |
+
|
63 |
+
image = Image.open("input.jpg").convert("RGB")
|
64 |
+
transform = transforms.Compose([
|
65 |
+
transforms.Resize((config.image_size, config.image_size)),
|
66 |
+
transforms.ToTensor(),
|
67 |
+
])
|
68 |
+
pixel_values = transform(image).unsqueeze(0).to(device) # (1, 3, H, W)
|
69 |
+
|
70 |
+
# FeatureExtractor provided by the repo should return the required tensors
|
71 |
+
extractor = FeatureExtractor().to(device)
|
72 |
+
with torch.no_grad():
|
73 |
+
edge, gray_hist, segmented_rgb, _ = extractor(pixel_values)
|
74 |
+
|
75 |
+
# 5) Run inference (reconstruction)
|
76 |
+
with torch.no_grad():
|
77 |
+
outputs = model(
|
78 |
+
source_edge=edge,
|
79 |
+
source_gray_level_histogram=gray_hist,
|
80 |
+
source_segmented_rgb=segmented_rgb,
|
81 |
+
)
|
82 |
+
# Your repo’s forward returns may differ; adjust the key accordingly:
|
83 |
+
reconstructed = outputs["logits_reshape"] # (1, 3, H, W)
|
84 |
+
|
85 |
+
# 6) Convert to PIL for visualisation
|
86 |
+
to_pil = transforms.ToPILImage()
|
87 |
+
recon_img = to_pil(reconstructed.squeeze(0).cpu().clamp(0, 1))
|
88 |
+
recon_img.save("reconstructed.png")
|
89 |
+
print("Saved to reconstructed.png")
|
90 |
+
```
|
91 |
+
|
92 |
+
### 2) Reproducing the notebook flow (`notebook/validation.ipynb`)
|
93 |
+
|
94 |
+
The repository provides a validation notebook that:
|
95 |
+
1. Loads the trained model,
|
96 |
+
2. Uses `FeatureExtractor` to compute **edges**, **color-segmented RGB**, and **grayscale histograms**,
|
97 |
+
3. Runs the model to obtain a reconstructed image,
|
98 |
+
4. Saves/visualises the result.
|
99 |
+
|
100 |
+
---
|
101 |
+
|
102 |
+
## Installation & Requirements
|
103 |
+
|
104 |
+
```bash
|
105 |
+
# clone the VisualSplit code
|
106 |
+
git clone https://github.com/HenryQUQ/VisualSplit.git
|
107 |
+
cd VisualSplit
|
108 |
+
# pip install -e .
|
109 |
+
```
|
110 |
+
|
111 |
+
---
|
112 |
+
|
113 |
+
## Training Data
|
114 |
+
|
115 |
+
- **Dataset**: **ImageNet-1K**.
|
116 |
+
-
|
117 |
+
> This repository only hosts the **trained checkpoint for inference**. Follow the GitHub repo for the full training pipeline and data preparation scripts.
|
118 |
+
|
119 |
+
---
|
120 |
+
|
121 |
+
## Model Sources
|
122 |
+
|
123 |
+
- **Code**: https://github.com/HenryQUQ/VisualSplit
|
124 |
+
- **Weights (this page)**: this Hugging Face model repo
|
125 |
+
|
126 |
+
---
|
127 |
+
|
128 |
+
## Citation
|
129 |
+
|
130 |
+
If you use this model or ideas, please cite:
|
131 |
+
|
132 |
+
```bibtex
|
133 |
+
@inproceedings{Qu2025VisualSplit,
|
134 |
+
title = {Exploring Image Representation with Decoupled Classical Visual Descriptors},
|
135 |
+
author = {Qu, Chenyuan and Chen, Hao and Jiao, Jianbo},
|
136 |
+
booktitle = {British Machine Vision Conference (BMVC)},
|
137 |
+
year = {2025}
|
138 |
+
}
|
139 |
+
```
|
140 |
+
|
141 |
+
---
|