Update README.md
Browse filesUpdate Model Card
README.md
CHANGED
@@ -8,4 +8,95 @@ pipeline_tag: text-classification
|
|
8 |
library_name: transformers
|
9 |
tags:
|
10 |
- news
|
11 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
library_name: transformers
|
9 |
tags:
|
10 |
- news
|
11 |
+
---
|
12 |
+
|
13 |
+
|
14 |
+
### Description
|
15 |
+
`polarity3c` is a classification model that is specialized for determining the polarity of texts from news portals. It was learned mostly on texts in Polish.
|
16 |
+
|
17 |
+
<center><img src="https://cdn-uploads.huggingface.co/production/uploads/644addfe9279988e0cbc296b/v6pz2sBwc3GCPL1Il8wVP.png" width=20%></center>
|
18 |
+
|
19 |
+
Annotations from the plWordnet were used as the basis for the data. A pre-learned model on these annotations, served as the model in Human in the loop,
|
20 |
+
to support the annotations for teaching the final model. The final model was learned on web content; data was manually collected and annotated.
|
21 |
+
|
22 |
+
As a model base, the `sdadas/polish-roberta-large-v2` model was used with a classification head. More about model construction is on out [blog](https://radlab.dev/2025/06/01/polaryzacja-3c-model-z-plg-na-hf/).
|
23 |
+
|
24 |
+
### Architecture
|
25 |
+
```
|
26 |
+
RobertaForSequenceClassification(
|
27 |
+
(roberta): RobertaModel(
|
28 |
+
(embeddings): RobertaEmbeddings(
|
29 |
+
(word_embeddings): Embedding(128001, 1024, padding_idx=1)
|
30 |
+
(position_embeddings): Embedding(514, 1024, padding_idx=1)
|
31 |
+
(token_type_embeddings): Embedding(1, 1024)
|
32 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
33 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
34 |
+
)
|
35 |
+
(encoder): RobertaEncoder(
|
36 |
+
(layer): ModuleList(
|
37 |
+
(0-23): 24 x RobertaLayer(
|
38 |
+
(attention): RobertaAttention(
|
39 |
+
(self): RobertaSdpaSelfAttention(
|
40 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
41 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
42 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
43 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
44 |
+
)
|
45 |
+
(output): RobertaSelfOutput(
|
46 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
47 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
48 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
49 |
+
)
|
50 |
+
)
|
51 |
+
(intermediate): RobertaIntermediate(
|
52 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
53 |
+
(intermediate_act_fn): GELUActivation()
|
54 |
+
)
|
55 |
+
(output): RobertaOutput(
|
56 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
57 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
58 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
59 |
+
)
|
60 |
+
)
|
61 |
+
)
|
62 |
+
)
|
63 |
+
)
|
64 |
+
(classifier): RobertaClassificationHead(
|
65 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
66 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
67 |
+
(out_proj): Linear(in_features=1024, out_features=3, bias=True)
|
68 |
+
)
|
69 |
+
)
|
70 |
+
```
|
71 |
+
|
72 |
+
### Usage
|
73 |
+
Example of use with transformers pipeline:
|
74 |
+
```[python]
|
75 |
+
from transformers import pipeline
|
76 |
+
|
77 |
+
classifier = pipeline(model="radlab/polarity-3c", task="text-classification")
|
78 |
+
|
79 |
+
classifier("Text to classification")
|
80 |
+
```
|
81 |
+
|
82 |
+
with sample data and `top_k=3`:
|
83 |
+
```[python]
|
84 |
+
classifier("""
|
85 |
+
Po upadku re偶imu Asada w Syrii, mieszka艅cy, borykaj膮cy si臋 z ub贸stwem,
|
86 |
+
zacz臋li t艂umnie poszukiwa膰 skarb贸w, zach臋ceni legendami o zakopanych
|
87 |
+
bogactwach i dost臋pno艣ci膮 wykrywaczy metali, kt贸re sta艂y si臋 popularnym
|
88 |
+
towarem. Mimo, 偶e dzia艂alno艣膰 ta jest nielegalna, rz膮d przymyka oko,
|
89 |
+
a sprzedawcy oferuj膮 urz膮dzenia nawet dla dzieci. Poszukiwacze skupiaj膮
|
90 |
+
si臋 na obszarach historycznych, wierz膮c w legendy o skarbach ukrytych
|
91 |
+
przez staro偶ytne cywilizacje i wojska osma艅skie, cho膰 eksperci ostrzegaj膮
|
92 |
+
przed fa艂szywymi monetami i kradzie偶膮 artefakt贸w z muze贸w.""",
|
93 |
+
top_k=3
|
94 |
+
)
|
95 |
+
```
|
96 |
+
the output is:
|
97 |
+
```
|
98 |
+
[{'label': 'ambivalent', 'score': 0.9995126724243164},
|
99 |
+
{'label': 'negative', 'score': 0.00024663121439516544},
|
100 |
+
{'label': 'positive', 'score': 0.00024063512682914734}]
|
101 |
+
```
|
102 |
+
|