Update README.md
Browse files
README.md
CHANGED
@@ -67,4 +67,43 @@ Additional hard/soft negatives may include unrelated meanings.
|
|
67 |
|
68 |

|
69 |
|
70 |
-

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |

|
69 |
|
70 |
+

|
71 |
+
|
72 |
+
|
73 |
+
## How to use
|
74 |
+
|
75 |
+
Sentence-Transformers:
|
76 |
+
``` python
|
77 |
+
# Python
|
78 |
+
from sentence_transformers import SentenceTransformer, util
|
79 |
+
|
80 |
+
model = SentenceTransformer("radlab/semantic-euro-bert-encoder-v1", trust_remote_code=True)
|
81 |
+
|
82 |
+
texts = ["zamek", "drzwi", "wiadro", "horyzont", "ocean"]
|
83 |
+
emb = model.encode(texts, convert_to_tensor=True, normalize_embeddings=True)
|
84 |
+
scores = util.cos_sim(emb, emb)
|
85 |
+
print(scores) # higher = more semantically similar
|
86 |
+
```
|
87 |
+
|
88 |
+
Transformers (feature extraction):
|
89 |
+
``` python
|
90 |
+
# Python
|
91 |
+
from transformers import AutoModel, AutoTokenizer
|
92 |
+
import torch
|
93 |
+
import torch.nn.functional as F
|
94 |
+
|
95 |
+
name = "radlab/semantic-euro-bert-encoder-v1"
|
96 |
+
tok = AutoTokenizer.from_pretrained(name)
|
97 |
+
mdl = AutoModel.from_pretrained(name, trust_remote_code=True)
|
98 |
+
|
99 |
+
texts = ["student", "żak"]
|
100 |
+
tokens = tok(texts, padding=True, truncation=True, return_tensors="pt")
|
101 |
+
with torch.no_grad():
|
102 |
+
out = mdl(**tokens)
|
103 |
+
# simple mean pooling over tokens; use model-specific pooling if provided
|
104 |
+
emb = out.last_hidden_state.mean(dim=1)
|
105 |
+
emb = F.normalize(emb, p=2, dim=1)
|
106 |
+
|
107 |
+
sim = emb @ emb.T
|
108 |
+
print(sim)
|
109 |
+
```
|