Merge pull request #18 from recursionpharma/change_repo
Browse files- MODELCARD.md +128 -0
- models/phenom_beta_huggingface/config.json → config.json +0 -0
- pyproject.toml +34 -0
- requirements.in +0 -17
- requirements.txt +0 -326
- test_huggingface_mae.py +2 -2
MODELCARD.md
ADDED
|
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
tags: []
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# Model Card for Phenom CA-MAE-S/16
|
| 7 |
+
|
| 8 |
+
Channel-agnostic image encoding model designed for microscopy image featurization.
|
| 9 |
+
The model uses a vision transformer backbone with channelwise cross-attention over patch tokens to create contextualized representations separately for each channel.
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
## Model Details
|
| 13 |
+
|
| 14 |
+
### Model Description
|
| 15 |
+
|
| 16 |
+
This model is a [channel-agnostic masked autoencoder](https://openaccess.thecvf.com/content/CVPR2024/html/Kraus_Masked_Autoencoders_for_Microscopy_are_Scalable_Learners_of_Cellular_Biology_CVPR_2024_paper.html) trained to reconstruct microscopy images over three datasets:
|
| 17 |
+
1. RxRx3
|
| 18 |
+
2. JUMP-CP overexpression
|
| 19 |
+
3. JUMP-CP gene-knockouts
|
| 20 |
+
|
| 21 |
+
- **Developed, funded, and shared by:** Recursion
|
| 22 |
+
- **Model type:** Vision transformer CA-MAE
|
| 23 |
+
- **Image modality:** Optimized for microscopy images from the CellPainting assay
|
| 24 |
+
- **License:**
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
### Model Sources
|
| 28 |
+
|
| 29 |
+
- **Repository:** [https://github.com/recursionpharma/maes_microscopy](https://github.com/recursionpharma/maes_microscopy)
|
| 30 |
+
- **Paper:** [Masked Autoencoders for Microscopy are Scalable Learners of Cellular Biology](https://openaccess.thecvf.com/content/CVPR2024/html/Kraus_Masked_Autoencoders_for_Microscopy_are_Scalable_Learners_of_Cellular_Biology_CVPR_2024_paper.html)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
## Uses
|
| 34 |
+
|
| 35 |
+
NOTE: model embeddings tend to extract features only after using standard batch correction post-processing techniques. **We recommend**, at a *minimum*, after inferencing the model over your images, to do the standard `PCA-CenterScale` pattern or better yet Typical Variation Normalization:
|
| 36 |
+
|
| 37 |
+
1. Fit a PCA kernel on all the *control images* (or all images if no controls) from across all experimental batches (e.g. the plates of wells from your assay),
|
| 38 |
+
2. Transform all the embeddings with that PCA kernel,
|
| 39 |
+
3. For each experimental batch, fit a separate StandardScaler on the transformed embeddings of the controls from step 2, then transform the rest of the embeddings from that batch with that StandardScaler.
|
| 40 |
+
|
| 41 |
+
### Direct Use
|
| 42 |
+
|
| 43 |
+
- Create biologically useful embeddings of microscopy images
|
| 44 |
+
- Create contextualized embeddings of each channel of a microscopy image (set `return_channelwise_embeddings=True`)
|
| 45 |
+
- Leverage the full MAE encoder + decoder to predict new channels / stains for images without all 6 CellPainting channels
|
| 46 |
+
|
| 47 |
+
### Downstream Use
|
| 48 |
+
|
| 49 |
+
- A determined ML expert could fine-tune the encoder for downstream tasks such as classification
|
| 50 |
+
|
| 51 |
+
### Out-of-Scope Use
|
| 52 |
+
|
| 53 |
+
- Unlikely to be especially performant on brightfield microscopy images
|
| 54 |
+
- Out-of-domain medical images, such as H&E (maybe it would be a decent baseline though)
|
| 55 |
+
|
| 56 |
+
## Bias, Risks, and Limitations
|
| 57 |
+
|
| 58 |
+
- Primary limitation is that the embeddings tend to be more useful at scale. For example, if you only have 1 plate of microscopy images, the embeddings might underperform compared to a supervised bespoke model.
|
| 59 |
+
|
| 60 |
+
## How to Get Started with the Model
|
| 61 |
+
|
| 62 |
+
You should be able to successfully run the below tests, which demonstrate how to use the model at inference time.
|
| 63 |
+
|
| 64 |
+
```python
|
| 65 |
+
import pytest
|
| 66 |
+
import torch
|
| 67 |
+
|
| 68 |
+
from huggingface_mae import MAEModel
|
| 69 |
+
|
| 70 |
+
huggingface_phenombeta_model_dir = "."
|
| 71 |
+
# huggingface_modelpath = "recursionpharma/test-pb-model"
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
@pytest.fixture
|
| 75 |
+
def huggingface_model():
|
| 76 |
+
# Make sure you have the model/config downloaded from https://huggingface.co/recursionpharma/test-pb-model to this directory
|
| 77 |
+
# huggingface-cli download recursionpharma/test-pb-model --local-dir=.
|
| 78 |
+
huggingface_model = MAEModel.from_pretrained(huggingface_phenombeta_model_dir)
|
| 79 |
+
huggingface_model.eval()
|
| 80 |
+
return huggingface_model
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
@pytest.mark.parametrize("C", [1, 4, 6, 11])
|
| 84 |
+
@pytest.mark.parametrize("return_channelwise_embeddings", [True, False])
|
| 85 |
+
def test_model_predict(huggingface_model, C, return_channelwise_embeddings):
|
| 86 |
+
example_input_array = torch.randint(
|
| 87 |
+
low=0,
|
| 88 |
+
high=255,
|
| 89 |
+
size=(2, C, 256, 256),
|
| 90 |
+
dtype=torch.uint8,
|
| 91 |
+
device=huggingface_model.device,
|
| 92 |
+
)
|
| 93 |
+
huggingface_model.return_channelwise_embeddings = return_channelwise_embeddings
|
| 94 |
+
embeddings = huggingface_model.predict(example_input_array)
|
| 95 |
+
expected_output_dim = 384 * C if return_channelwise_embeddings else 384
|
| 96 |
+
assert embeddings.shape == (2, expected_output_dim)
|
| 97 |
+
```
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
## Training, evaluation and testing details
|
| 101 |
+
|
| 102 |
+
See paper linked above for details on model training and evaluation. Primary hyperparameters are included in the repo linked above.
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
## Environmental Impact
|
| 106 |
+
|
| 107 |
+
- **Hardware Type:** Nvidia H100 Hopper nodes
|
| 108 |
+
- **Hours used:** 400
|
| 109 |
+
- **Cloud Provider:** private cloud
|
| 110 |
+
- **Carbon Emitted:** 138.24 kg co2 (roughly the equivalent of one car driving from Toronto to Montreal)
|
| 111 |
+
|
| 112 |
+
**BibTeX:**
|
| 113 |
+
|
| 114 |
+
```TeX
|
| 115 |
+
@inproceedings{kraus2024masked,
|
| 116 |
+
title={Masked Autoencoders for Microscopy are Scalable Learners of Cellular Biology},
|
| 117 |
+
author={Kraus, Oren and Kenyon-Dean, Kian and Saberian, Saber and Fallah, Maryam and McLean, Peter and Leung, Jess and Sharma, Vasudev and Khan, Ayla and Balakrishnan, Jia and Celik, Safiye and others},
|
| 118 |
+
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
|
| 119 |
+
pages={11757--11768},
|
| 120 |
+
year={2024}
|
| 121 |
+
}
|
| 122 |
+
```
|
| 123 |
+
|
| 124 |
+
## Model Card Contact
|
| 125 |
+
|
| 126 |
+
- Kian Kenyon-Dean: [email protected]
|
| 127 |
+
- Oren Kraus: [email protected]
|
| 128 |
+
- Or, email: [email protected]
|
models/phenom_beta_huggingface/config.json → config.json
RENAMED
|
File without changes
|
pyproject.toml
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[build-system]
|
| 2 |
+
requires = ["setuptools >= 61.0"]
|
| 3 |
+
build-backend = "setuptools.build_meta"
|
| 4 |
+
|
| 5 |
+
[project]
|
| 6 |
+
name = "maes_microscopy_project"
|
| 7 |
+
version = "0.1.0"
|
| 8 |
+
authors = [
|
| 9 |
+
{name = "kian-kd", email = "[email protected]"},
|
| 10 |
+
{name = "Laksh47", email = "[email protected]"},
|
| 11 |
+
]
|
| 12 |
+
requires-python = ">=3.10.4"
|
| 13 |
+
|
| 14 |
+
dependencies = [
|
| 15 |
+
"huggingface-hub",
|
| 16 |
+
"timm",
|
| 17 |
+
"torch>=2.3",
|
| 18 |
+
"torchmetrics",
|
| 19 |
+
"torchvision",
|
| 20 |
+
"tqdm",
|
| 21 |
+
"transformers",
|
| 22 |
+
"xformers",
|
| 23 |
+
"zarr",
|
| 24 |
+
"pytorch-lightning>=2.1",
|
| 25 |
+
"matplotlib",
|
| 26 |
+
"scikit-image",
|
| 27 |
+
"ipykernel",
|
| 28 |
+
"isort",
|
| 29 |
+
"ruff",
|
| 30 |
+
"pytest",
|
| 31 |
+
]
|
| 32 |
+
|
| 33 |
+
[tool.setuptools]
|
| 34 |
+
py-modules = []
|
requirements.in
DELETED
|
@@ -1,17 +0,0 @@
|
|
| 1 |
-
huggingface-hub
|
| 2 |
-
timm
|
| 3 |
-
torch>=2.3
|
| 4 |
-
torchmetrics
|
| 5 |
-
torchvision
|
| 6 |
-
tqdm
|
| 7 |
-
transformers
|
| 8 |
-
xformers
|
| 9 |
-
zarr
|
| 10 |
-
hydra-core
|
| 11 |
-
pytorch-lightning>=2.1
|
| 12 |
-
matplotlib
|
| 13 |
-
scikit-image
|
| 14 |
-
ipykernel
|
| 15 |
-
isort
|
| 16 |
-
ruff
|
| 17 |
-
pytest
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
DELETED
|
@@ -1,326 +0,0 @@
|
|
| 1 |
-
#
|
| 2 |
-
# This file is autogenerated by pip-compile with Python 3.10
|
| 3 |
-
# by the following command:
|
| 4 |
-
#
|
| 5 |
-
# pip-compile --no-emit-index-url --output-file=requirements.txt requirements.in
|
| 6 |
-
#
|
| 7 |
-
--trusted-host pypi.ngc.nvidia.com
|
| 8 |
-
|
| 9 |
-
aiohappyeyeballs==2.4.3
|
| 10 |
-
# via aiohttp
|
| 11 |
-
aiohttp==3.10.10
|
| 12 |
-
# via fsspec
|
| 13 |
-
aiosignal==1.3.1
|
| 14 |
-
# via aiohttp
|
| 15 |
-
antlr4-python3-runtime==4.9.3
|
| 16 |
-
# via
|
| 17 |
-
# hydra-core
|
| 18 |
-
# omegaconf
|
| 19 |
-
asciitree==0.3.3
|
| 20 |
-
# via zarr
|
| 21 |
-
asttokens==2.4.1
|
| 22 |
-
# via stack-data
|
| 23 |
-
async-timeout==4.0.3
|
| 24 |
-
# via aiohttp
|
| 25 |
-
attrs==24.2.0
|
| 26 |
-
# via aiohttp
|
| 27 |
-
certifi==2024.8.30
|
| 28 |
-
# via requests
|
| 29 |
-
charset-normalizer==3.4.0
|
| 30 |
-
# via requests
|
| 31 |
-
comm==0.2.2
|
| 32 |
-
# via ipykernel
|
| 33 |
-
contourpy==1.3.0
|
| 34 |
-
# via matplotlib
|
| 35 |
-
cycler==0.12.1
|
| 36 |
-
# via matplotlib
|
| 37 |
-
debugpy==1.8.7
|
| 38 |
-
# via ipykernel
|
| 39 |
-
decorator==5.1.1
|
| 40 |
-
# via ipython
|
| 41 |
-
exceptiongroup==1.2.2
|
| 42 |
-
# via
|
| 43 |
-
# ipython
|
| 44 |
-
# pytest
|
| 45 |
-
executing==2.1.0
|
| 46 |
-
# via stack-data
|
| 47 |
-
fasteners==0.19
|
| 48 |
-
# via zarr
|
| 49 |
-
filelock==3.16.1
|
| 50 |
-
# via
|
| 51 |
-
# huggingface-hub
|
| 52 |
-
# torch
|
| 53 |
-
# transformers
|
| 54 |
-
# triton
|
| 55 |
-
fonttools==4.54.1
|
| 56 |
-
# via matplotlib
|
| 57 |
-
frozenlist==1.5.0
|
| 58 |
-
# via
|
| 59 |
-
# aiohttp
|
| 60 |
-
# aiosignal
|
| 61 |
-
fsspec[http]==2024.10.0
|
| 62 |
-
# via
|
| 63 |
-
# huggingface-hub
|
| 64 |
-
# pytorch-lightning
|
| 65 |
-
# torch
|
| 66 |
-
huggingface-hub==0.26.2
|
| 67 |
-
# via
|
| 68 |
-
# -r requirements.in
|
| 69 |
-
# timm
|
| 70 |
-
# tokenizers
|
| 71 |
-
# transformers
|
| 72 |
-
hydra-core==1.3.2
|
| 73 |
-
# via -r requirements.in
|
| 74 |
-
idna==3.10
|
| 75 |
-
# via
|
| 76 |
-
# requests
|
| 77 |
-
# yarl
|
| 78 |
-
imageio==2.36.0
|
| 79 |
-
# via scikit-image
|
| 80 |
-
iniconfig==2.0.0
|
| 81 |
-
# via pytest
|
| 82 |
-
ipykernel==6.29.5
|
| 83 |
-
# via -r requirements.in
|
| 84 |
-
ipython==8.29.0
|
| 85 |
-
# via ipykernel
|
| 86 |
-
isort==5.13.2
|
| 87 |
-
# via -r requirements.in
|
| 88 |
-
jedi==0.19.1
|
| 89 |
-
# via ipython
|
| 90 |
-
jinja2==3.1.4
|
| 91 |
-
# via torch
|
| 92 |
-
jupyter-client==8.6.3
|
| 93 |
-
# via ipykernel
|
| 94 |
-
jupyter-core==5.7.2
|
| 95 |
-
# via
|
| 96 |
-
# ipykernel
|
| 97 |
-
# jupyter-client
|
| 98 |
-
kiwisolver==1.4.7
|
| 99 |
-
# via matplotlib
|
| 100 |
-
lazy-loader==0.4
|
| 101 |
-
# via scikit-image
|
| 102 |
-
lightning-utilities==0.11.8
|
| 103 |
-
# via
|
| 104 |
-
# pytorch-lightning
|
| 105 |
-
# torchmetrics
|
| 106 |
-
markupsafe==3.0.2
|
| 107 |
-
# via jinja2
|
| 108 |
-
matplotlib==3.9.2
|
| 109 |
-
# via -r requirements.in
|
| 110 |
-
matplotlib-inline==0.1.7
|
| 111 |
-
# via
|
| 112 |
-
# ipykernel
|
| 113 |
-
# ipython
|
| 114 |
-
mpmath==1.3.0
|
| 115 |
-
# via sympy
|
| 116 |
-
multidict==6.1.0
|
| 117 |
-
# via
|
| 118 |
-
# aiohttp
|
| 119 |
-
# yarl
|
| 120 |
-
nest-asyncio==1.6.0
|
| 121 |
-
# via ipykernel
|
| 122 |
-
networkx==3.2.1
|
| 123 |
-
# via
|
| 124 |
-
# scikit-image
|
| 125 |
-
# torch
|
| 126 |
-
numcodecs==0.12.1
|
| 127 |
-
# via zarr
|
| 128 |
-
numpy==1.26.4
|
| 129 |
-
# via
|
| 130 |
-
# contourpy
|
| 131 |
-
# imageio
|
| 132 |
-
# matplotlib
|
| 133 |
-
# numcodecs
|
| 134 |
-
# scikit-image
|
| 135 |
-
# scipy
|
| 136 |
-
# tifffile
|
| 137 |
-
# torchmetrics
|
| 138 |
-
# torchvision
|
| 139 |
-
# transformers
|
| 140 |
-
# xformers
|
| 141 |
-
# zarr
|
| 142 |
-
nvidia-cublas-cu12==12.4.5.8
|
| 143 |
-
# via
|
| 144 |
-
# nvidia-cudnn-cu12
|
| 145 |
-
# nvidia-cusolver-cu12
|
| 146 |
-
# torch
|
| 147 |
-
nvidia-cuda-cupti-cu12==12.4.127
|
| 148 |
-
# via torch
|
| 149 |
-
nvidia-cuda-nvrtc-cu12==12.4.127
|
| 150 |
-
# via torch
|
| 151 |
-
nvidia-cuda-runtime-cu12==12.4.127
|
| 152 |
-
# via torch
|
| 153 |
-
nvidia-cudnn-cu12==9.1.0.70
|
| 154 |
-
# via torch
|
| 155 |
-
nvidia-cufft-cu12==11.2.1.3
|
| 156 |
-
# via torch
|
| 157 |
-
nvidia-curand-cu12==10.3.5.147
|
| 158 |
-
# via torch
|
| 159 |
-
nvidia-cusolver-cu12==11.6.1.9
|
| 160 |
-
# via torch
|
| 161 |
-
nvidia-cusparse-cu12==12.3.1.170
|
| 162 |
-
# via
|
| 163 |
-
# nvidia-cusolver-cu12
|
| 164 |
-
# torch
|
| 165 |
-
nvidia-nccl-cu12==2.21.5
|
| 166 |
-
# via torch
|
| 167 |
-
nvidia-nvjitlink-cu12==12.4.127
|
| 168 |
-
# via
|
| 169 |
-
# nvidia-cusolver-cu12
|
| 170 |
-
# nvidia-cusparse-cu12
|
| 171 |
-
# torch
|
| 172 |
-
nvidia-nvtx-cu12==12.4.127
|
| 173 |
-
# via torch
|
| 174 |
-
omegaconf==2.3.0
|
| 175 |
-
# via hydra-core
|
| 176 |
-
packaging==24.1
|
| 177 |
-
# via
|
| 178 |
-
# huggingface-hub
|
| 179 |
-
# hydra-core
|
| 180 |
-
# ipykernel
|
| 181 |
-
# lazy-loader
|
| 182 |
-
# lightning-utilities
|
| 183 |
-
# matplotlib
|
| 184 |
-
# pytest
|
| 185 |
-
# pytorch-lightning
|
| 186 |
-
# scikit-image
|
| 187 |
-
# torchmetrics
|
| 188 |
-
# transformers
|
| 189 |
-
parso==0.8.4
|
| 190 |
-
# via jedi
|
| 191 |
-
pexpect==4.9.0
|
| 192 |
-
# via ipython
|
| 193 |
-
pillow==11.0.0
|
| 194 |
-
# via
|
| 195 |
-
# imageio
|
| 196 |
-
# matplotlib
|
| 197 |
-
# scikit-image
|
| 198 |
-
# torchvision
|
| 199 |
-
platformdirs==4.3.6
|
| 200 |
-
# via jupyter-core
|
| 201 |
-
pluggy==1.5.0
|
| 202 |
-
# via pytest
|
| 203 |
-
prompt-toolkit==3.0.48
|
| 204 |
-
# via ipython
|
| 205 |
-
propcache==0.2.0
|
| 206 |
-
# via yarl
|
| 207 |
-
psutil==6.1.0
|
| 208 |
-
# via ipykernel
|
| 209 |
-
ptyprocess==0.7.0
|
| 210 |
-
# via pexpect
|
| 211 |
-
pure-eval==0.2.3
|
| 212 |
-
# via stack-data
|
| 213 |
-
pygments==2.18.0
|
| 214 |
-
# via ipython
|
| 215 |
-
pyparsing==3.2.0
|
| 216 |
-
# via matplotlib
|
| 217 |
-
pytest==8.3.3
|
| 218 |
-
# via -r requirements.in
|
| 219 |
-
python-dateutil==2.9.0.post0
|
| 220 |
-
# via
|
| 221 |
-
# jupyter-client
|
| 222 |
-
# matplotlib
|
| 223 |
-
pytorch-lightning==2.4.0
|
| 224 |
-
# via -r requirements.in
|
| 225 |
-
pyyaml==6.0.2
|
| 226 |
-
# via
|
| 227 |
-
# huggingface-hub
|
| 228 |
-
# omegaconf
|
| 229 |
-
# pytorch-lightning
|
| 230 |
-
# timm
|
| 231 |
-
# transformers
|
| 232 |
-
pyzmq==26.2.0
|
| 233 |
-
# via
|
| 234 |
-
# ipykernel
|
| 235 |
-
# jupyter-client
|
| 236 |
-
regex==2024.9.11
|
| 237 |
-
# via transformers
|
| 238 |
-
requests==2.32.3
|
| 239 |
-
# via
|
| 240 |
-
# huggingface-hub
|
| 241 |
-
# transformers
|
| 242 |
-
ruff==0.7.2
|
| 243 |
-
# via -r requirements.in
|
| 244 |
-
safetensors==0.4.5
|
| 245 |
-
# via
|
| 246 |
-
# timm
|
| 247 |
-
# transformers
|
| 248 |
-
scikit-image==0.24.0
|
| 249 |
-
# via -r requirements.in
|
| 250 |
-
scipy==1.13.1
|
| 251 |
-
# via scikit-image
|
| 252 |
-
six==1.16.0
|
| 253 |
-
# via
|
| 254 |
-
# asttokens
|
| 255 |
-
# python-dateutil
|
| 256 |
-
stack-data==0.6.3
|
| 257 |
-
# via ipython
|
| 258 |
-
sympy==1.13.1
|
| 259 |
-
# via torch
|
| 260 |
-
tifffile==2024.8.30
|
| 261 |
-
# via scikit-image
|
| 262 |
-
timm==1.0.11
|
| 263 |
-
# via -r requirements.in
|
| 264 |
-
tokenizers==0.20.2
|
| 265 |
-
# via transformers
|
| 266 |
-
tomli==2.0.2
|
| 267 |
-
# via pytest
|
| 268 |
-
torch==2.5.1
|
| 269 |
-
# via
|
| 270 |
-
# -r requirements.in
|
| 271 |
-
# pytorch-lightning
|
| 272 |
-
# timm
|
| 273 |
-
# torchmetrics
|
| 274 |
-
# torchvision
|
| 275 |
-
# xformers
|
| 276 |
-
torchmetrics==1.5.1
|
| 277 |
-
# via
|
| 278 |
-
# -r requirements.in
|
| 279 |
-
# pytorch-lightning
|
| 280 |
-
torchvision==0.20.1
|
| 281 |
-
# via
|
| 282 |
-
# -r requirements.in
|
| 283 |
-
# timm
|
| 284 |
-
tornado==6.4.1
|
| 285 |
-
# via
|
| 286 |
-
# ipykernel
|
| 287 |
-
# jupyter-client
|
| 288 |
-
tqdm==4.66.6
|
| 289 |
-
# via
|
| 290 |
-
# -r requirements.in
|
| 291 |
-
# huggingface-hub
|
| 292 |
-
# pytorch-lightning
|
| 293 |
-
# transformers
|
| 294 |
-
traitlets==5.14.3
|
| 295 |
-
# via
|
| 296 |
-
# comm
|
| 297 |
-
# ipykernel
|
| 298 |
-
# ipython
|
| 299 |
-
# jupyter-client
|
| 300 |
-
# jupyter-core
|
| 301 |
-
# matplotlib-inline
|
| 302 |
-
transformers==4.46.1
|
| 303 |
-
# via -r requirements.in
|
| 304 |
-
triton==3.1.0
|
| 305 |
-
# via torch
|
| 306 |
-
typing-extensions==4.12.2
|
| 307 |
-
# via
|
| 308 |
-
# huggingface-hub
|
| 309 |
-
# ipython
|
| 310 |
-
# lightning-utilities
|
| 311 |
-
# multidict
|
| 312 |
-
# pytorch-lightning
|
| 313 |
-
# torch
|
| 314 |
-
urllib3==2.2.3
|
| 315 |
-
# via requests
|
| 316 |
-
wcwidth==0.2.13
|
| 317 |
-
# via prompt-toolkit
|
| 318 |
-
xformers==0.0.28.post3
|
| 319 |
-
# via -r requirements.in
|
| 320 |
-
yarl==1.17.1
|
| 321 |
-
# via aiohttp
|
| 322 |
-
zarr==2.18.2
|
| 323 |
-
# via -r requirements.in
|
| 324 |
-
|
| 325 |
-
# The following packages are considered to be unsafe in a requirements file:
|
| 326 |
-
# setuptools
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
test_huggingface_mae.py
CHANGED
|
@@ -3,14 +3,14 @@ import torch
|
|
| 3 |
|
| 4 |
from huggingface_mae import MAEModel
|
| 5 |
|
| 6 |
-
huggingface_phenombeta_model_dir = "
|
| 7 |
# huggingface_modelpath = "recursionpharma/test-pb-model"
|
| 8 |
|
| 9 |
|
| 10 |
@pytest.fixture
|
| 11 |
def huggingface_model():
|
| 12 |
# Make sure you have the model/config downloaded from https://huggingface.co/recursionpharma/test-pb-model to this directory
|
| 13 |
-
# huggingface-cli download recursionpharma/test-pb-model --local-dir
|
| 14 |
huggingface_model = MAEModel.from_pretrained(huggingface_phenombeta_model_dir)
|
| 15 |
huggingface_model.eval()
|
| 16 |
return huggingface_model
|
|
|
|
| 3 |
|
| 4 |
from huggingface_mae import MAEModel
|
| 5 |
|
| 6 |
+
huggingface_phenombeta_model_dir = "."
|
| 7 |
# huggingface_modelpath = "recursionpharma/test-pb-model"
|
| 8 |
|
| 9 |
|
| 10 |
@pytest.fixture
|
| 11 |
def huggingface_model():
|
| 12 |
# Make sure you have the model/config downloaded from https://huggingface.co/recursionpharma/test-pb-model to this directory
|
| 13 |
+
# huggingface-cli download recursionpharma/test-pb-model --local-dir=.
|
| 14 |
huggingface_model = MAEModel.from_pretrained(huggingface_phenombeta_model_dir)
|
| 15 |
huggingface_model.eval()
|
| 16 |
return huggingface_model
|