File size: 153,128 Bytes
e8a0a6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
# recursive_swe_bench/task_generators/bug_fixing.py

from typing import Any, Dict, List, Optional, Tuple, Set, Union
import uuid
import json
import re
import random
import ast
import copy
from pathlib import Path
import tempfile
import subprocess
import shutil
import os

from recursive_swe_bench.core.recursive_task import (
    RecursiveTask, ProblemState, EvaluationResult, Feedback, TaskStatus
)

class BugCategory:
    """Categories of bugs for classification and evolution."""
    SYNTAX = "syntax"
    LOGICAL = "logical"
    PERFORMANCE = "performance"
    SECURITY = "security"
    CONCURRENCY = "concurrency"
    EXCEPTION_HANDLING = "exception_handling"
    API_USAGE = "api_usage"
    MEMORY_MANAGEMENT = "memory_management"
    TYPE_ERROR = "type_error"
    EDGE_CASE = "edge_case"
    DATA_HANDLING = "data_handling"
    DEPENDENCY = "dependency"


class BugFixingTask(RecursiveTask):
    """
    A recursive task for evaluating how models fix bugs in code.
    
    The task presents a piece of code with one or more bugs, and evolves
    based on the model's fix attempts. As the model addresses issues,
    the task may introduce more subtle bugs, change requirements, or
    increase complexity to test adaptive problem-solving.
    """
    
    def __init__(
        self,
        initial_state: ProblemState,
        config: Dict[str, Any] = None,
        test_runner: Any = None
    ):
        """
        Initialize the bug fixing task.
        
        Args:
            initial_state: The initial problem state
            config: Configuration options
            test_runner: Custom test runner (optional)
        """
        super().__init__(initial_state, config)
        self.test_runner = test_runner or DefaultTestRunner()
        self.bug_categories: Set[str] = set(
            self.config.get("bug_categories", [BugCategory.LOGICAL, BugCategory.SYNTAX])
        )
        self.difficulty_progression = self.config.get(
            "difficulty_progression", [0.0, 0.15, 0.3, 0.5, 0.7]
        )
        self.evolution_strategies = self.config.get(
            "evolution_strategies", ["add_subtle_bug", "change_requirements", "increase_complexity"]
        )
        
    def _run_evaluation(self, solution: str) -> EvaluationResult:
        """
        Run tests to evaluate the solution.
        
        Args:
            solution: The solution code
            
        Returns:
            Evaluation results
        """
        # Create a temporary directory to run tests
        with tempfile.TemporaryDirectory() as temp_dir:
            temp_path = Path(temp_dir)
            
            # Write solution code to file
            solution_file = temp_path / "solution.py"
            with open(solution_file, "w") as f:
                f.write(solution)
            
            # Create test files
            test_files = self._create_test_files(temp_path)
            
            # Run tests
            results = self.test_runner.run_tests(
                solution_file=solution_file,
                test_files=test_files,
                code_context=self.state.code_context
            )
            
            # Calculate score based on test results
            score = self._calculate_score(results)
            
            return EvaluationResult(
                success=results["all_passed"],
                score=score,
                execution_results=results["execution"],
                error_details=results.get("errors"),
                test_results=results["tests"],
                metrics={
                    "passed_tests": results["passed_tests"],
                    "total_tests": results["total_tests"],
                    "execution_time": results["execution_time"],
                    "memory_usage": results.get("memory_usage", 0),
                    "code_complexity": self._calculate_complexity(solution)
                }
            )
    
    def _generate_feedback(self, solution: str, result: EvaluationResult) -> Feedback:
        """
        Generate structured feedback based on evaluation results.
        
        Args:
            solution: The solution code
            result: The evaluation results
            
        Returns:
            Structured feedback
        """
        issues = []
        suggestions = []
        focus_areas = []
        
        # Add issues for failing tests
        if result.test_results:
            for test_name, test_result in result.test_results.items():
                if not test_result["passed"]:
                    issues.append({
                        "type": "test_failure",
                        "test": test_name,
                        "message": test_result.get("message", "Test failed"),
                        "expected": test_result.get("expected"),
                        "actual": test_result.get("actual")
                    })
        
        # Add issues for errors
        if result.error_details:
            for error_type, error_info in result.error_details.items():
                issues.append({
                    "type": "error",
                    "error_type": error_type,
                    "message": error_info.get("message", "An error occurred"),
                    "location": error_info.get("location")
                })
        
        # Generate suggestions based on issues
        for issue in issues:
            if issue["type"] == "test_failure":
                suggestion = self._generate_suggestion_for_test_failure(
                    issue, solution, result.test_results
                )
                if suggestion:
                    suggestions.append(suggestion)
            elif issue["type"] == "error":
                suggestion = self._generate_suggestion_for_error(
                    issue, solution
                )
                if suggestion:
                    suggestions.append(suggestion)
        
        # Determine focus areas based on issues and task state
        focus_areas = self._determine_focus_areas(issues, solution, result)
        
        # Generate adaptation hints based on the current state and results
        adaptation_hints = self._generate_adaptation_hints(solution, result)
        
        # Create summary
        if result.success:
            summary = (
                f"Your solution passes all tests with a score of {result.score:.2f}. "
                f"The code successfully addresses the bugs in the original implementation."
            )
        else:
            passed = result.metrics.get("passed_tests", 0)
            total = result.metrics.get("total_tests", 0)
            summary = (
                f"Your solution passes {passed}/{total} tests with a score of {result.score:.2f}. "
                f"There are still issues that need to be addressed."
            )
        
        return Feedback(
            summary=summary,
            issues=issues,
            suggestions=suggestions,
            focus_areas=focus_areas,
            adaptation_hints=adaptation_hints
        )
    
    def _evolve_state(self, solution: str, result: EvaluationResult, feedback: Feedback) -> ProblemState:
        """
        Evolve the problem state based on the solution and feedback.
        
        This method implements the recursive nature of the benchmark by
        adapting the problem to challenge the model's understanding.
        
        Args:
            solution: The attempted solution
            result: The evaluation results
            feedback: The feedback provided
            
        Returns:
            The evolved problem state
        """
        # If the solution perfectly solved the problem, make it more challenging
        if result.success and result.score > 0.95:
            return self._increase_difficulty(solution, result, feedback)
        
        # If the solution was close but not perfect, focus on the remaining issues
        elif result.score > 0.7:
            return self._focus_remaining_issues(solution, result, feedback)
            
        # If the solution was not very good, provide more guidance
        else:
            return self._provide_more_guidance(solution, result, feedback)
    
    def _increase_difficulty(self, solution: str, result: EvaluationResult, feedback: Feedback) -> ProblemState:
        """
        Increase the difficulty of the problem for models that solved it well.
        
        Args:
            solution: The successful solution
            result: The evaluation results
            feedback: The feedback provided
            
        Returns:
            The evolved problem state with increased difficulty
        """
        # Create a new state based on the current state
        new_state = copy.deepcopy(self.state)
        
        # Increment evolution stage
        new_state.evolution_stage += 1
        
        # Increase difficulty based on progression schedule
        current_difficulty_idx = min(new_state.evolution_stage, 
                                    len(self.difficulty_progression) - 1)
        new_state.difficulty = self.difficulty_progression[current_difficulty_idx]
        
        # Select an evolution strategy based on the current state
        strategy = self._select_evolution_strategy(solution, result, feedback)
        
        # Apply the selected strategy
        if strategy == "add_subtle_bug":
            self._add_subtle_bug(new_state, solution)
        elif strategy == "change_requirements":
            self._change_requirements(new_state, solution)
        elif strategy == "increase_complexity":
            self._increase_complexity(new_state, solution)
        
        # Update the description to reflect the changes
        new_state.description = self._generate_description(new_state)
        
        # Update adaptation vector to guide future evolution
        new_state.adaptation_vector = self._calculate_adaptation_vector(
            solution, result, feedback
        )
        
        return new_state
    
    def _focus_remaining_issues(self, solution: str, result: EvaluationResult, feedback: Feedback) -> ProblemState:
        """
        Evolve the state to focus on remaining issues when the solution is close but not perfect.
        
        Args:
            solution: The nearly-successful solution
            result: The evaluation results
            feedback: The feedback provided
            
        Returns:
            The evolved problem state focusing on remaining issues
        """
        # Create a new state based on the current state
        new_state = copy.deepcopy(self.state)
        
        # Increment evolution stage
        new_state.evolution_stage += 1
        
        # Maintain the same difficulty level
        current_difficulty_idx = min(new_state.evolution_stage - 1, 
                                    len(self.difficulty_progression) - 1)
        new_state.difficulty = self.difficulty_progression[current_difficulty_idx]
        
        # Update the code context to focus on remaining issues
        new_state.code_context["focus_areas"] = feedback.focus_areas
        
        # Highlight failing tests in the code context
        if result.test_results:
            failing_tests = [
                test_name for test_name, test_result in result.test_results.items()
                if not test_result["passed"]
            ]
            new_state.code_context["failing_tests"] = failing_tests
        
        # Update the description to be more specific about remaining issues
        new_state.description = self._generate_focused_description(
            new_state, feedback.issues
        )
        
        # Update adaptation vector to guide future evolution
        new_state.adaptation_vector = self._calculate_adaptation_vector(
            solution, result, feedback
        )
        
        return new_state
    
    def _provide_more_guidance(self, solution: str, result: EvaluationResult, feedback: Feedback) -> ProblemState:
        """
        Evolve the state to provide more guidance when the solution was not very good.
        
        Args:
            solution: The unsuccessful solution
            result: The evaluation results
            feedback: The feedback provided
            
        Returns:
            The evolved problem state with more guidance
        """
        # Create a new state based on the current state
        new_state = copy.deepcopy(self.state)
        
        # Increment evolution stage
        new_state.evolution_stage += 1
        
        # Maintain or slightly decrease difficulty
        current_difficulty_idx = max(0, min(new_state.evolution_stage - 1, 
                                          len(self.difficulty_progression) - 1) - 1)
        new_state.difficulty = self.difficulty_progression[current_difficulty_idx]
        
        # Add more hints to the code context
        new_state.code_context["hints"] = self._generate_hints(
            solution, result, feedback
        )
        
        # Add more detailed information about failing tests
        if result.test_results:
            detailed_test_results = {}
            for test_name, test_result in result.test_results.items():
                if not test_result["passed"]:
                    detailed_test_results[test_name] = {
                        "message": test_result.get("message", "Test failed"),
                        "expected": test_result.get("expected"),
                        "actual": test_result.get("actual"),
                        "hint": self._generate_test_hint(test_name, test_result)
                    }
            new_state.code_context["detailed_test_results"] = detailed_test_results
        
        # Update the description to include more guidance
        new_state.description = self._generate_guided_description(
            new_state, feedback.issues, feedback.suggestions
        )
        
        # Update adaptation vector to guide future evolution
        new_state.adaptation_vector = self._calculate_adaptation_vector(
            solution, result, feedback
        )
        
        return new_state
    
    def _select_evolution_strategy(self, solution: str, result: EvaluationResult, feedback: Feedback) -> str:
        """
        Select an evolution strategy based on the current state and solution.
        
        Args:
            solution: The current solution
            result: The evaluation results
            feedback: The feedback provided
            
        Returns:
            The selected evolution strategy
        """
        available_strategies = self.evolution_strategies.copy()
        
        # Weight the strategies based on the current state
        weights = {}
        
        # Prefer adding subtle bugs if the solution is very good
        if result.score > 0.95:
            weights["add_subtle_bug"] = 0.6
            weights["change_requirements"] = 0.3
            weights["increase_complexity"] = 0.1
        
        # Prefer changing requirements if we've already added several bugs
        elif self.state.evolution_stage >= 2 and "bug_count" in self.state.code_context and self.state.code_context["bug_count"] >= 3:
            weights["add_subtle_bug"] = 0.1
            weights["change_requirements"] = 0.7
            weights["increase_complexity"] = 0.2
            
        # Prefer increasing complexity if the solution is good but not perfect
        elif result.score > 0.85:
            weights["add_subtle_bug"] = 0.2
            weights["change_requirements"] = 0.2
            weights["increase_complexity"] = 0.6
            
        # Default to equal weights
        else:
            weights = {strategy: 1.0 / len(available_strategies) 
                      for strategy in available_strategies}
        
        # Normalize weights for available strategies
        total_weight = sum(weights.get(strategy, 0) for strategy in available_strategies)
        normalized_weights = [weights.get(strategy, 0) / total_weight 
                             for strategy in available_strategies]
        
        # Select a strategy based on weights
        return random.choices(available_strategies, weights=normalized_weights)[0]
    
    def _add_subtle_bug(self, state: ProblemState, solution: str) -> None:
        """
        Add a subtle bug to the solution code.
        
        Args:
            state: The problem state to modify
            solution: The current solution
        """
        # Parse the solution to find potential bug insertion points
        try:
            parsed_solution = ast.parse(solution)
        except SyntaxError:
            # If we can't parse the solution, just add a syntax error
            self._add_syntax_error(state, solution)
            return
        
        # Choose a bug category based on available categories
        available_categories = list(self.bug_categories)
        if available_categories:
            bug_category = random.choice(available_categories)
        else:
            bug_category = BugCategory.LOGICAL
        
        # Add a bug based on the selected category
        if bug_category == BugCategory.SYNTAX:
            self._add_syntax_error(state, solution)
        elif bug_category == BugCategory.LOGICAL:
            self._add_logical_error(state, solution, parsed_solution)
        elif bug_category == BugCategory.PERFORMANCE:
            self._add_performance_issue(state, solution, parsed_solution)
        elif bug_category == BugCategory.EDGE_CASE:
            self._add_edge_case_issue(state, solution, parsed_solution)
        else:
            # Default to logical error
            self._add_logical_error(state, solution, parsed_solution)
        
        # Update bug count in code context
        if "bug_count" not in state.code_context:
            state.code_context["bug_count"] = 0
        state.code_context["bug_count"] += 1
        
        # Add the bug category to the context
        if "bug_categories" not in state.code_context:
            state.code_context["bug_categories"] = []
        state.code_context["bug_categories"].append(bug_category)
    
    def _change_requirements(self, state: ProblemState, solution: str) -> None:
        """
        Change the requirements to challenge the current solution.
        
        Args:
            state: The problem state to modify
            solution: The current solution
        """
        # Get the current requirements
        requirements = state.requirements
        
        # Add a new requirement
        new_requirement = self._generate_new_requirement(state, solution)
        if new_requirement:
            requirements.append(new_requirement)
        
        # Modify an existing requirement if possible
        if requirements and random.random() < 0.5:
            idx = random.randint(0, len(requirements) - 1)
            requirements[idx] = self._modify_requirement(requirements[idx], state, solution)
    
    def _increase_complexity(self, state: ProblemState, solution: str) -> None:
        """
        Increase the complexity of the task.
        
        Args:
            state: The problem state to modify
            solution: The current solution
        """
        # Parse the solution if possible
        try:
            parsed_solution = ast.parse(solution)
        except SyntaxError:
            # If we can't parse the solution, make a simpler change
            self._add_edge_case_requirement(state)
            return
        
        # Choose a complexity increase strategy
        strategies = [
            "add_edge_cases",
            "increase_data_volume",
            "add_performance_constraint",
            "expand_functionality"
        ]
        
        strategy = random.choice(strategies)
        
        if strategy == "add_edge_cases":
            self._add_edge_case_requirement(state)
        elif strategy == "increase_data_volume":
            self._increase_data_volume(state, solution)
        elif strategy == "add_performance_constraint":
            self._add_performance_constraint(state, solution)
        elif strategy == "expand_functionality":
            self._expand_functionality(state, solution)
    
    def _create_test_files(self, temp_path: Path) -> List[Path]:
        """
        Create test files based on the current problem state.
        
        Args:
            temp_path: The temporary directory path
            
        Returns:
            List of test file paths
        """
        test_files = []
        
        # Create test files from the code context
        if "tests" in self.state.code_context:
            for i, test in enumerate(self.state.code_context["tests"]):
                test_file = temp_path / f"test_{i}.py"
                with open(test_file, "w") as f:
                    f.write(test["content"])
                test_files.append(test_file)
        
        # Create a default test file if no tests are specified
        if not test_files:
            test_file = temp_path / "test_default.py"
            with open(test_file, "w") as f:
                f.write(self._generate_default_test())
            test_files.append(test_file)
        
        return test_files
    
    def _calculate_score(self, results: Dict[str, Any]) -> float:
        """
        Calculate a score based on test results.
        
        Args:
            results: The test results
            
        Returns:
            A score between 0 and 1
        """
        # Base score on test results
        if results["total_tests"] == 0:
            test_score = 0.0
        else:
            test_score = results["passed_tests"] / results["total_tests"]
        
        # Adjust for execution success
        execution_score = 1.0 if results["execution"]["success"] else 0.0
        
        # Combine scores with weights
        weights = self.config.get("score_weights", {"test": 0.7, "execution": 0.3})
        score = (test_score * weights["test"] + execution_score * weights["execution"])
        
        # Apply difficulty modifier
        difficulty_modifier = 1.0 + (self.state.difficulty * 0.2)
        score = score / difficulty_modifier
        
        return max(0.0, min(1.0, score))
    
    def _calculate_complexity(self, code: str) -> float:
        """
        Calculate the complexity of code.
        
        Args:
            code: The code to analyze
            
        Returns:
            A complexity score
        """
        # Simple cyclomatic complexity estimation
        complexity = 1
        
        # Count control flow statements
        for pattern in ["if", "for", "while", "and", "or"]:
            complexity += code.count(f" {pattern} ")
        
        # Count function definitions
        complexity += code.count("def ")
        
        # Normalize to 0-1 range
        normalized = min(1.0, complexity / 50.0)
        
        return normalized
    
    def _generate_suggestion_for_test_failure(
        self,
        issue: Dict[str, Any],
        solution: str,
        test_results: Dict[str, Any]
    ) -> Dict[str, Any]:
        """
        Generate a suggestion for a test failure.
        
        Args:
            issue: The issue data
            solution: The solution code
            test_results: The test results
            
        Returns:
            A suggestion dictionary
        """
        test_name = issue["test"]
        test_result = test_results[test_name]
        
        # Extract relevant parts of the test
        test_content = None
        for test in self.state.code_context.get("tests", []):
            if test.get("name") == test_name:
                test_content = test.get("content")
                break
        
        if test_content:
            # Try to extract the assertion that failed
            assertion_match = re.search(r"assert.*", test_content)
            assertion = assertion_match.group(0) if assertion_match else None
            
            # Look for function names in both test and solution
            test_funcs = re.findall(r"def\s+(\w+)", test_content)
            solution_funcs = re.findall(r"def\s+(\w+)", solution)
            
            # Find functions in test that aren't in solution
            missing_funcs = [f for f in test_funcs if f not in solution_funcs]
            
            if missing_funcs:
                return {
                    "type": "missing_function",
                    "message": f"Implement the missing function(s): {', '.join(missing_funcs)}",
                    "functions": missing_funcs
                }
            elif assertion:
                return {
                    "type": "fix_assertion_failure",
                    "message": f"Fix the code to pass the assertion: {assertion}",
                    "assertion": assertion,
                    "expected": test_result.get("expected"),
                    "actual": test_result.get("actual")
                }
            else:
                return {
                    "type": "fix_test_failure",
                    "message": f"Fix the code to pass the test: {test_name}",
                    "test_name": test_name
                }
        else:
            return {
                "type": "general_fix",
                "message": f"Fix the code to pass the failing test: {test_name}"
            }
    
    def _generate_suggestion_for_error(
        self,
        issue: Dict[str, Any],
        solution: str
    ) -> Dict[str, Any]:
        """
        Generate a suggestion for an error.
        
        Args:
            issue: The issue data
            solution: The solution code
            
        Returns:
            A suggestion dictionary
        """
        error_type = issue["error_type"]
        message = issue["message"]
        location = issue.get("location")
        
        if error_type == "syntax":
            return {
                "type": "fix_syntax",
                "message": f"Fix the syntax error: {message}",
                "location": location
            }
        elif error_type == "runtime":
            return {
                "type": "fix_runtime_error",
                "message": f"Fix the runtime error: {message}",
                "location": location
            }
        else:
            return {
                "type": "fix_error",
                "message": f"Fix the error: {message}",
                "error_type": error_type,
                "location": location
            }
    
    def _determine_focus_areas(
        self,
        issues: List[Dict[str, Any]],
        solution: str,
        result: EvaluationResult
    ) -> List[str]:
        """
        Determine focus areas based on issues and results.
        
        Args:
            issues: The identified issues
            solution: The solution code
            result: The evaluation results
            
        Returns:
            List of focus areas
        """
        focus_areas = []
        
        # Check for syntax issues
        syntax_issues = [i for i in issues if i.get("error_type") == "syntax"]
        if syntax_issues:
            focus_areas.append("syntax")
        
        # Check for failing tests
        test_issues = [i for i in issues if i["type"] == "test_failure"]
        if test_issues:
            if any("expected" in i and "actual" in i for i in test_issues):
                focus_areas.append("logic")
            else:
                focus_areas.append("functionality")
        
        # Check for performance issues
        if result.metrics and "execution_time" in result.metrics:
            if result.metrics["execution_time"] > self.config.get("performance_threshold", 1.0):
                focus_areas.append("performance")
        
        # Check for complexity issues
        if result.metrics and "code_complexity" in result.metrics:
            if result.metrics["code_complexity"] > self.config.get("complexity_threshold", 0.7):
                focus_areas.append("complexity")
        
        # Default focus area if none were identified
        if not focus_areas:
            focus_areas.append("general")
        
        return focus_areas
    
    def _generate_adaptation_hints(
        self,
        solution: str,
        result: EvaluationResult
    ) -> List[Dict[str, Any]]:
        """
        Generate hints about how the problem might adapt in the next iteration.
        
        Args:
            solution: The solution code
            result: The evaluation results
            
        Returns:
            List of adaptation hints
        """
        hints = []
        
        # Hint about potential complexity increases
        if result.score > 0.8:
            hints.append({
                "type": "complexity_increase",
                "message": "The problem may become more complex in the next iteration."
            })
        
        # Hint about potential requirement changes
        if result.score > 0.9 and self.state.evolution_stage >= 1:
            hints.append({
                "type": "requirement_change",
                "message": "The requirements may change in the next iteration."
            })
        
        # Hint about potential bug additions
        if result.score > 0.95:
            hints.append({
                "type": "new_bugs",
                "message": "New, more subtle bugs may be introduced in the next iteration."
            })
        
        # Hint about focus on specific areas
        if result.score > 0.7 and result.score < 0.95:
            focus_areas = result.metrics.get("focus_areas", [])
            if focus_areas:
                hints.append({
                    "type": "focus_shift",
                    "message": f"The next iteration may focus more on: {', '.join(focus_areas)}",
                    "areas": focus_areas
                })
        
        return hints
    
    def _generate_description(self, state: ProblemState) -> str:
        """
        Generate a description for the current problem state.
        
        Args:
            state: The problem state
            
        Returns:
            A descriptive prompt for the problem
        """
        # Base description
        base_desc = (
            f"Fix the bug(s) in the following code. "
            f"This is iteration {state.evolution_stage + 1} of the task."
        )
        
        # Add information about known bug categories
        if "bug_categories" in state.code_context:
            categories = state.code_context["bug_categories"]
            if categories:
                base_desc += f"\n\nThe code contains the following types of issues: {', '.join(categories)}."
        
        # Add requirements
        if state.requirements:
            base_desc += "\n\nRequirements:"
            for i, req in enumerate(state.requirements):
                base_desc += f"\n{i+1}. {req['description']}"
                
        # Add information about difficulty
        difficulty_desc = "easy"
        if state.difficulty > 0.3 and state.difficulty <= 0.6:
            difficulty_desc = "moderate"
        elif state.difficulty > 0.6 and state.difficulty <= 0.8:
            difficulty_desc = "challenging"
        elif state.difficulty > 0.8:
            difficulty_desc = "very challenging"
        
        base_desc += f"\n\nThis is a {difficulty_desc} bug fixing task."
        
        return base_desc
    
    def _generate_focused_description(self, state: ProblemState, issues: List[Dict[str, Any]]) -> str:
        """
        Generate a description focused on remaining issues.
        
        Args:
            state: The problem state
            issues: The identified issues
            
        Returns:
            A descriptive prompt focused on remaining issues
        """
        base_desc = self._generate_description(state)
        
        # Add focus on remaining issues
        if issues:
            base_desc += "\n\nFocus on the following issues:"
            for i, issue in enumerate(issues):
                if issue["type"] == "test_failure":
                    base_desc += f"\n{i+1}. Test failure in '{issue['test']}': {issue['message']}"
                else:
                    base_desc += f"\n{i+1}. {issue['error_type']} error: {issue['message']}"
        
        # Add focus areas if present
        if "focus_areas" in state.code_context:
            areas = state.code_context["focus_areas"]
            if areas:
                base_desc += f"\n\nPay particular attention to: {', '.join(areas)}."
        
        return base_desc
    
    def _generate_guided_description(
        self,
        state: ProblemState,
        issues: List[Dict[str, Any]],
        suggestions: List[Dict[str, Any]]
    ) -> str:
        """
        Generate a description with added guidance.
        
        Args:
            state: The problem state
            issues: The identified issues
            suggestions: The suggested fixes
            
        Returns:
            A descriptive prompt with added guidance
        """
        base_desc = self._generate_description(state)
        
        # Add detailed information about issues
        if issues:
            base_desc += "\n\nThe following issues were identified in your previous solution:"
            for i, issue in enumerate(issues):
                if issue["type"] == "test_failure":
                    base_desc += f"\n{i+1}. Test failure in '{issue['test']}': {issue['message']}"
                    if "expected" in issue and "actual" in issue:
                        base_desc += f"\n   Expected: {issue['expected']}"
                        base_desc += f"\n   Actual: {issue['actual']}"
                else:
                    base_desc += f"\n{i+1}. {issue['error_type']} error: {issue['message']}"
                    if "location" in issue:
                        base_desc += f"\n   Location: {issue['location']}"
        
        # Add suggestions
        if suggestions:
            base_desc += "\n\nConsider the following suggestions:"
            for i, suggestion in enumerate(suggestions):
                base_desc += f"\n{i+1}. {suggestion['message']}"
        
        # Add hints if present
        if "hints" in state.code_context:
            hints = state.code_context["hints"]
            if hints:
                base_desc += "\n\nHints:"
                for i, hint in enumerate(hints):
                    base_desc += f"\n{i+1}. {hint}"
        
        return base_desc
    
    def _generate_hints(
        self,
        solution: str,
        result: EvaluationResult,
        feedback: Feedback
    ) -> List[str]:
        """
        Generate hints based on the solution and feedback.
        
        Args:
            solution: The solution code
            result: The evaluation results
            feedback: The feedback provided
            
        Returns:
            List of hints
        """
        hints = []
        
        # Add hints based on failing tests
        if result.test_results:
            failing_tests = [
                test_name for test_name, test_result in result.test_results.items()
                if not test_result["passed"]
            ]
            
            if failing_tests:
                test_hint = "Focus on fixing the failing tests"
                
                # Add specific information about test expectations if available
                for test_name in failing_tests[:2]:  # Limit to first two tests
                    test_result = result.test_results[test_name]
                    if "expected" in test_result and "actual" in test_result:
                        test_hint += f". For test '{test_name}', expected '{test_result['expected']}' but got '{test_result['actual']}'"
                
                hints.append(test_hint + ".")
        
        # Add hints based on errors
        if result.error_details:
            for error_type, error_info in result.error_details.items():
                hints.append(f"Fix the {error_type} error: {error_info.get('message', 'Unknown error')}.")
        
        # Add hints based on focus areas
        for area in feedback.focus_areas:
            if area == "syntax":
                hints.append("Check your syntax carefully, especially parentheses, indentation, and function definitions.")
            elif area == "logic":
                hints.append("Review the logic of your solution, especially conditional statements and loop conditions.")
            elif area == "functionality":
                hints.append("Ensure your solution implements all required functionality specified in the tests.")
            elif area == "performance":
                hints.append("Consider optimizing your solution for better performance, avoid unnecessary operations.")
            elif area == "complexity":
                hints.append("Try to simplify your solution, it may be more complex than necessary.")
        
        return hints
    
    def _generate_test_hint(self, test_name: str, test_result: Dict[str, Any]) -> str:
        """
        Generate a hint for a specific failing test.
        
        Args:
            test_name: The name of the test
            test_result: The test result
            
        Returns:
            A hint for the test
        """
        if "expected" in test_result and "actual" in test_result:
            return f"The test expected '{test_result['expected']}' but got '{test_result['actual']}'"
        elif "message" in test_result:
            return test_result["message"]
        else:
            return "The test failed, but no detailed information is available."
    
    def _add_syntax_error(self, state: ProblemState, solution: str) -> None:
        """
        Add a syntax error to the solution code.
        
        Args:
            state: The problem state to modify
            solution: The current solution
        """
        lines = solution.split('\n')
        if not lines:
            return
        
        # Choose a line to modify
        idx = random.randint(0, len(lines) - 1)
        line = lines[idx]
        
        # Skip empty lines or comment lines
        while not line.strip() or line.strip().startswith('#'):
            idx = random.randint(0, len(lines) - 1)
            line = lines[idx]
        
        # Choose a modification type
        mod_type = random.choice([
            "remove_character",
            "add_character",
            "swap_characters",
            "change_indent"
        ])
        
        if mod_type == "remove_character" and line:
            char_idx = random.randint(0, len(line) - 1)
            lines[idx] = line[:char_idx] + line[char_idx+1:]
        
        elif mod_type == "add_character":
            char_idx = random.randint(0, len(line))
            char = random.choice(["(", ")", "{", "}", "[", "]", ":", ";", ",", "."])
            lines[idx] = line[:char_idx] + char + line[char_idx:]
        
        elif mod_type == "swap_characters" and len(line) >= 2:
            char_idx = random.randint(0, len(line) - 2)
            lines[idx] = (line[:char_idx] + line[char_idx+1] + 
                         line[char_idx] + line[char_idx+2:])
        
        elif mod_type == "change_indent":
            # Either add or remove indentation
            if line.startswith("    "):
                lines[idx] = line[2:]  # Remove some indent
            else:
                lines[idx] = "  " + line  # Add inconsistent indent
        
        # Update the code
        modified_code = '\n'.join(lines)
        state.code_context["code"] = modified_code
        
        # Add information about the modification
        if "bugs" not in state.code_context:
            state.code_context["bugs"] = []
        
        state.code_context["bugs"].append({
            "type": "syntax",
            "line": idx + 1,
            "description": f"Syntax error introduced in line {idx + 1}"
        })
    
    def _add_logical_error(self, state: ProblemState, solution: str, parsed_solution: ast.Module) -> None:
        """
        Add a logical error to the solution code.
        
        Args:
            state: The problem state to modify
            solution: The current solution
            parsed_solution: The parsed AST of the solution
        """
        modification_types = [
            "change_comparison",
            "invert_condition",
            "off_by_one",
            "change_operator",
            "reverse_logic"
        ]
        
        mod_type = random.choice(modification_types)
        lines = solution.split('\n')
        
        # Find all if statements and loops
        if_statements = []
        for i, line in enumerate(lines):
            if re.search(r'\bif\b|\bwhile\b|\bfor\b', line):
                if_statements.append((i, line))
        
        if if_statements:
            # Choose an if statement to modify
            idx, line = random.choice(if_
# recursive_swe_bench/task_generators/bug_fixing.py (continued)

        if if_statements:
            # Choose an if statement to modify
            idx, line = random.choice(if_statements)
            
            if mod_type == "change_comparison":
                # Change comparison operators
                comparisons = {"==": "!=", "!=": "==", ">": "<", "<": ">", ">=": "<=", "<=": ">="}
                for op, new_op in comparisons.items():
                    if op in line:
                        lines[idx] = line.replace(op, new_op, 1)
                        break
            
            elif mod_type == "invert_condition":
                # Add or remove a "not" to invert the condition
                if "not" in line:
                    lines[idx] = line.replace("not ", "", 1)
                else:
                    match = re.search(r'(if|while)\s+([^:]+):', line)
                    if match:
                        condition = match.group(2)
                        lines[idx] = line.replace(condition, f"not ({condition})", 1)
            
            elif mod_type == "off_by_one":
                # Introduce an off-by-one error
                for op in ["+", "-"]:
                    if op in line:
                        # If there's a number after the operator, change it
                        match = re.search(f'\\{op}\\s*(\\d+)', line)
                        if match:
                            num = int(match.group(1))
                            new_num = num + 1 if op == "+" else max(0, num - 1)
                            lines[idx] = line.replace(f"{op} {num}", f"{op} {new_num}", 1)
                            break
            
            elif mod_type == "change_operator":
                # Change arithmetic or logical operators
                operators = {"+": "-", "-": "+", "*": "/", "/": "*", "and": "or", "or": "and"}
                for op, new_op in operators.items():
                    if f" {op} " in line:
                        lines[idx] = line.replace(f" {op} ", f" {new_op} ", 1)
                        break
            
            elif mod_type == "reverse_logic":
                # Reverse the logic of a compound condition
                if " and " in line:
                    parts = line.split(" and ")
                    lines[idx] = line.replace(" and ".join(parts), " or ".join(parts), 1)
                elif " or " in line:
                    parts = line.split(" or ")
                    lines[idx] = line.replace(" or ".join(parts), " and ".join(parts), 1)
        
        else:
            # If no if statements found, introduce a different kind of logical error
            # Find variable assignments
            assignments = []
            for i, line in enumerate(lines):
                if "=" in line and "==" not in line and "!=" not in line:
                    assignments.append((i, line))
            
            if assignments:
                # Choose an assignment to modify
                idx, line = random.choice(assignments)
                
                # Modify the assignment
                if "+" in line:
                    lines[idx] = line.replace("+", "-", 1)
                elif "-" in line:
                    lines[idx] = line.replace("-", "+", 1)
                elif "*" in line:
                    lines[idx] = line.replace("*", "/", 1)
                elif "/" in line:
                    lines[idx] = line.replace("/", "*", 1)
                else:
                    # If no arithmetic operator, change the value
                    match = re.search(r'=\s*(\d+)', line)
                    if match:
                        num = int(match.group(1))
                        new_num = num + random.choice([-1, 1]) * random.randint(1, 3)
                        lines[idx] = line.replace(f"= {num}", f"= {new_num}", 1)
        
        # Update the code
        modified_code = '\n'.join(lines)
        state.code_context["code"] = modified_code
        
        # Add information about the modification
        if "bugs" not in state.code_context:
            state.code_context["bugs"] = []
        
        state.code_context["bugs"].append({
            "type": "logical",
            "line": idx + 1,
            "description": f"Logical error introduced in line {idx + 1}: {mod_type}"
        })
    
    def _add_performance_issue(self, state: ProblemState, solution: str, parsed_solution: ast.Module) -> None:
        """
        Add a performance issue to the solution code.
        
        Args:
            state: The problem state to modify
            solution: The current solution
            parsed_solution: The parsed AST of the solution
        """
        lines = solution.split('\n')
        
        # Find loops in the code
        loops = []
        for i, line in enumerate(lines):
            if re.search(r'\bfor\b|\bwhile\b', line):
                loops.append((i, line))
        
        if loops:
            # Choose a loop to modify
            idx, line = random.choice(loops)
            
            # Choose a modification type
            mod_type = random.choice([
                "add_nested_loop",
                "replace_efficient_operation",
                "add_redundant_computation"
            ])
            
            if mod_type == "add_nested_loop":
                # Add a nested loop
                indent = len(line) - len(line.lstrip())
                indent_str = ' ' * indent
                loop_body_indent = indent_str + '    '
                
                # Find the next line with the same indentation or less
                end_idx = idx + 1
                while end_idx < len(lines) and (not lines[end_idx].strip() or len(lines[end_idx]) - len(lines[end_idx].lstrip()) > indent):
                    end_idx += 1
                
                # Insert a nested loop before the end of the current loop
                insert_pos = end_idx
                lines.insert(insert_pos, f"{loop_body_indent}for _ in range(100):  # Unnecessary loop")
                lines.insert(insert_pos + 1, f"{loop_body_indent}    pass")
            
            elif mod_type == "replace_efficient_operation":
                # Replace an efficient operation with a less efficient one
                # Look for list comprehensions or efficient operations
                for i in range(idx + 1, min(idx + 10, len(lines))):
                    if "append" in lines[i] or "extend" in lines[i]:
                        indent = len(lines[i]) - len(lines[i].lstrip())
                        indent_str = ' ' * indent
                        match = re.search(r'(\w+)\.(append|extend)', lines[i])
                        if match:
                            list_name = match.group(1)
                            operation = match.group(2)
                            item = lines[i].split(f"{list_name}.{operation}(")[1].split(")")[0]
                            
                            if operation == "append":
                                # Replace append with concatenation
                                lines[i] = f"{indent_str}{list_name} = {list_name} + [{item}]  # Less efficient than append"
                            elif operation == "extend":
                                # Replace extend with concatenation
                                lines[i] = f"{indent_str}{list_name} = {list_name} + {item}  # Less efficient than extend"
                            break
            
            elif mod_type == "add_redundant_computation":
                # Add redundant computation inside the loop
                # Find the indentation level of the loop body
                if idx + 1 < len(lines):
                    body_indent = len(lines[idx + 1]) - len(lines[idx + 1].lstrip())
                    body_indent_str = ' ' * body_indent
                    
                    # Add redundant computation
                    lines.insert(idx + 1, f"{body_indent_str}temp = []  # Redundant computation")
                    lines.insert(idx + 2, f"{body_indent_str}for i in range(1000):")
                    lines.insert(idx + 3, f"{body_indent_str}    temp.append(i)")
                    lines.insert(idx + 4, f"{body_indent_str}    temp.sort()  # Unnecessary sort in each iteration")
        
        else:
            # If no loops found, introduce inefficient data structure or algorithm
            function_defs = []
            for i, line in enumerate(lines):
                if line.strip().startswith("def "):
                    function_defs.append((i, line))
            
            if function_defs:
                # Choose a function to modify
                idx, line = random.choice(function_defs)
                
                # Find the indentation level of the function body
                if idx + 1 < len(lines):
                    body_indent = len(lines[idx + 1]) - len(lines[idx + 1].lstrip())
                    body_indent_str = ' ' * body_indent
                    
                    # Add inefficient code at the beginning of the function
                    lines.insert(idx + 1, f"{body_indent_str}# Inefficient data structure usage")
                    lines.insert(idx + 2, f"{body_indent_str}data = []")
                    lines.insert(idx + 3, f"{body_indent_str}for i in range(1000):")
                    lines.insert(idx + 4, f"{body_indent_str}    data.append(i)")
                    lines.insert(idx + 5, f"{body_indent_str}    # Inefficient search operation")
                    lines.insert(idx + 6, f"{body_indent_str}    if i in data:  # Linear search instead of using a set")
                    lines.insert(idx + 7, f"{body_indent_str}        pass")
        
        # Update the code
        modified_code = '\n'.join(lines)
        state.code_context["code"] = modified_code
        
        # Add information about the modification
        if "bugs" not in state.code_context:
            state.code_context["bugs"] = []
        
        state.code_context["bugs"].append({
            "type": "performance",
            "line": idx + 1,
            "description": f"Performance issue introduced around line {idx + 1}"
        })
    
    def _add_edge_case_issue(self, state: ProblemState, solution: str, parsed_solution: ast.Module) -> None:
        """
        Add an edge case issue to the solution code.
        
        Args:
            state: The problem state to modify
            solution: The current solution
            parsed_solution: The parsed AST of the solution
        """
        lines = solution.split('\n')
        
        # Find functions in the code
        functions = []
        current_func = None
        func_start = None
        for i, line in enumerate(lines):
            if line.strip().startswith("def "):
                if current_func:
                    functions.append((func_start, i - 1, current_func))
                current_func = line.strip()[4:].split("(")[0]
                func_start = i
            elif i == len(lines) - 1 and current_func:
                functions.append((func_start, i, current_func))
        
        if functions:
            # Choose a function to modify
            start_idx, end_idx, func_name = random.choice(functions)
            
            # Choose a modification type
            mod_type = random.choice([
                "remove_boundary_check",
                "introduce_zero_division",
                "handling_empty_input",
                "type_assumption"
            ])
            
            if mod_type == "remove_boundary_check":
                # Find and remove or modify boundary checks
                for i in range(start_idx, end_idx + 1):
                    if re.search(r'if\s+.*(?:len|count|size|length|empty|<=|>=|<|>|\!=)', lines[i]):
                        # Comment out the boundary check
                        lines[i] = f"# {lines[i]}  # Boundary check removed"
                        # Skip the body of the if statement
                        j = i + 1
                        indent = len(lines[i]) - len(lines[i].lstrip())
                        body_indent = indent + 4
                        while j <= end_idx and (not lines[j].strip() or len(lines[j]) - len(lines[j].lstrip()) >= body_indent):
                            lines[j] = f"# {lines[j]}"
                            j += 1
                        break
            
            elif mod_type == "introduce_zero_division":
                # Find division operations and modify them
                for i in range(start_idx, end_idx + 1):
                    if "/" in lines[i] and "try" not in lines[i] and "except" not in lines[i]:
                        # Remove denominator check if it exists
                        if re.search(r'if\s+.*(?:!=\s*0|>\s*0)', lines[i]):
                            lines[i] = f"# {lines[i]}  # Denominator check removed"
                        else:
                            # Or modify a division to potentially cause zero division
                            match = re.search(r'(\w+)\s*/\s*(\w+)', lines[i])
                            if match:
                                denominator = match.group(2)
                                # Add a potential zero value for the denominator
                                indent = len(lines[i]) - len(lines[i].lstrip())
                                indent_str = ' ' * indent
                                lines.insert(i, f"{indent_str}if random.random() < 0.1:  # Introduce potential zero division")
                                lines.insert(i + 1, f"{indent_str}    {denominator} = 0")
                                break
            
            elif mod_type == "handling_empty_input":
                # Modify parameter handling to not handle empty inputs correctly
                params = re.search(r'def\s+\w+\s*\((.*?)\)', lines[start_idx])
                if params and params.group(1):
                    param_list = [p.strip() for p in params.group(1).split(",")]
                    if param_list:
                        param = param_list[0].split("=")[0].strip()
                        # Find checks for the parameter
                        for i in range(start_idx + 1, end_idx + 1):
                            if re.search(rf'if\s+.*(?:not\s+{param}|len\s*\(\s*{param}\s*\)\s*==\s*0)', lines[i]):
                                # Comment out the empty check
                                lines[i] = f"# {lines[i]}  # Empty input check removed"
                                # Skip the body of the if statement
                                j = i + 1
                                indent = len(lines[i]) - len(lines[i].lstrip())
                                body_indent = indent + 4
                                while j <= end_idx and (not lines[j].strip() or len(lines[j]) - len(lines[j].lstrip()) >= body_indent):
                                    lines[j] = f"# {lines[j]}"
                                    j += 1
                                break
            
            elif mod_type == "type_assumption":
                # Introduce assumptions about parameter types
                params = re.search(r'def\s+\w+\s*\((.*?)\)', lines[start_idx])
                if params and params.group(1):
                    param_list = [p.strip() for p in params.group(1).split(",")]
                    if param_list:
                        param = param_list[0].split("=")[0].strip()
                        # Find type checks for the parameter
                        type_check_found = False
                        for i in range(start_idx + 1, end_idx + 1):
                            if re.search(rf'(?:isinstance|type)\s*\(\s*{param}\s*,', lines[i]):
                                # Comment out the type check
                                lines[i] = f"# {lines[i]}  # Type check removed"
                                type_check_found = True
                                break
                        
                        if not type_check_found:
                            # Add a problematic type assumption
                            indent = 4  # Assume basic indentation
                            for i in range(start_idx + 1, min(start_idx + 5, end_idx + 1)):
                                if lines[i].strip():
                                    indent = len(lines[i]) - len(lines[i].lstrip())
                                    break
                            
                            indent_str = ' ' * indent
                            # Add code that assumes a specific type
                            lines.insert(start_idx + 1, f"{indent_str}# Assuming {param} is a specific type without checking")
                            lines.insert(start_idx + 2, f"{indent_str}{param}_length = len({param})  # Will fail if {param} doesn't support len()")
        
        # Update the code
        modified_code = '\n'.join(lines)
        state.code_context["code"] = modified_code
        
        # Add information about the modification
        if "bugs" not in state.code_context:
            state.code_context["bugs"] = []
        
        state.code_context["bugs"].append({
            "type": "edge_case",
            "line": start_idx + 1,
            "description": f"Edge case issue introduced in function '{func_name}': {mod_type}"
        })
    
    def _generate_new_requirement(self, state: ProblemState, solution: str) -> Dict[str, Any]:
        """
        Generate a new requirement based on the current state and solution.
        
        Args:
            state: The current problem state
            solution: The current solution
            
        Returns:
            A new requirement dictionary
        """
        # Parse the solution to find functions and variables
        function_names = re.findall(r'def\s+(\w+)', solution)
        variable_names = re.findall(r'(\w+)\s*=', solution)
        
        # Choose a requirement type
        req_type = random.choice([
            "edge_case_handling",
            "performance_improvement",
            "error_handling",
            "type_checking",
            "feature_addition"
        ])
        
        if req_type == "edge_case_handling":
            if function_names:
                func_name = random.choice(function_names)
                edge_cases = [
                    "empty input",
                    "negative values",
                    "zero values",
                    "extremely large values",
                    "special characters",
                    "duplicate values"
                ]
                edge_case = random.choice(edge_cases)
                return {
                    "type": "edge_case_handling",
                    "description": f"The function '{func_name}' should handle {edge_case} correctly.",
                    "difficulty": random.uniform(0.3, 0.7)
                }
            
        elif req_type == "performance_improvement":
            return {
                "type": "performance_improvement",
                "description": "The solution should be optimized to run in O(n) time or better.",
                "difficulty": random.uniform(0.4, 0.8)
            }
            
        elif req_type == "error_handling":
            error_types = [
                "invalid input",
                "division by zero",
                "file not found",
                "network timeout",
                "permission denied"
            ]
            error_type = random.choice(error_types)
            return {
                "type": "error_handling",
                "description": f"The code should handle {error_type} errors gracefully.",
                "difficulty": random.uniform(0.2, 0.6)
            }
            
        elif req_type == "type_checking":
            if function_names:
                func_name = random.choice(function_names)
                return {
                    "type": "type_checking",
                    "description": f"The function '{func_name}' should validate input types before processing.",
                    "difficulty": random.uniform(0.1, 0.5)
                }
            
        elif req_type == "feature_addition":
            features = [
                "logging capability",
                "progress tracking",
                "caching for repeated operations",
                "parameter validation",
                "configuration options"
            ]
            feature = random.choice(features)
            return {
                "type": "feature_addition",
                "description": f"Add {feature} to the solution.",
                "difficulty": random.uniform(0.3, 0.7)
            }
        
        # Default requirement if none of the above were applicable
        return {
            "type": "general_improvement",
            "description": "Improve the overall code quality and readability.",
            "difficulty": random.uniform(0.1, 0.4)
        }
    
    def _modify_requirement(self, requirement: Dict[str, Any], state: ProblemState, solution: str) -> Dict[str, Any]:
        """
        Modify an existing requirement to make it more challenging.
        
        Args:
            requirement: The requirement to modify
            state: The current problem state
            solution: The current solution
            
        Returns:
            The modified requirement
        """
        # Make a copy of the requirement
        modified_req = copy.deepcopy(requirement)
        
        # Increase the difficulty
        modified_req["difficulty"] = min(1.0, requirement.get("difficulty", 0.3) + random.uniform(0.1, 0.3))
        
        # Modify the description based on the requirement type
        if requirement["type"] == "edge_case_handling":
            modified_req["description"] += " Additionally, it should handle very large inputs efficiently."
        
        elif requirement["type"] == "performance_improvement":
            modified_req["description"] = modified_req["description"].replace("O(n)", "O(log n)")
        
        elif requirement["type"] == "error_handling":
            modified_req["description"] += " And provide detailed error messages for debugging."
        
        elif requirement["type"] == "type_checking":
            modified_req["description"] += " And automatically convert types when possible."
        
        elif requirement["type"] == "feature_addition":
            modified_req["description"] += " Ensure this feature is configurable via parameters."
        
        else:
            modified_req["description"] += " The code should also be well-documented with comments."
        
        return modified_req
    
    def _add_edge_case_requirement(self, state: ProblemState) -> None:
        """
        Add a requirement for handling edge cases.
        
        Args:
            state: The problem state to modify
        """
        edge_cases = [
            "empty collections",
            "null/None values",
            "boundary values (min/max)",
            "negative numbers",
            "special characters",
            "Unicode characters",
            "very large inputs",
            "malformed input"
        ]
        
        edge_case = random.choice(edge_cases)
        
        # Add a new requirement
        state.requirements.append({
            "type": "edge_case_handling",
            "description": f"The solution must correctly handle {edge_case}.",
            "difficulty": random.uniform(0.3, 0.7)
        })
        
        # Add test cases for the edge case if tests exist
        if "tests" in state.code_context:
            # Create a new test for the edge case
            test_template = self._generate_edge_case_test(edge_case, state.code_context)
            if test_template:
                state.code_context["tests"].append({
                    "name": f"test_edge_case_{len(state.code_context['tests'])}",
                    "content": test_template,
                    "description": f"Test handling of {edge_case}"
                })
    
    def _increase_data_volume(self, state: ProblemState, solution: str) -> None:
        """
        Modify the problem to require handling larger data volumes.
        
        Args:
            state: The problem state to modify
            solution: The current solution
        """
        # Add a requirement for handling large data
        state.requirements.append({
            "type": "scalability",
            "description": "The solution must efficiently handle large datasets (10,000+ items).",
            "difficulty": random.uniform(0.5, 0.8)
        })
        
        # Modify existing tests to use larger data if tests exist
        if "tests" in state.code_context:
            for i, test in enumerate(state.code_context["tests"]):
                content = test["content"]
                
                # Look for small lists or arrays in tests
                for pattern, replacement in [
                    (r'\[[^\]]{0,50}\]', '[random.randint(0, 1000) for _ in range(10000)]'),
                    (r'range\(\d+\)', 'range(10000)'),
                    (r'"[^"]{0,20}"', '"' + 'a' * 10000 + '"')
                ]:
                    match = re.search(pattern, content)
                    if match and random.random() < 0.3:  # Only replace some instances
                        content = content.replace(match.group(0), replacement, 1)
                        break
                
                state.code_context["tests"][i]["content"] = content
                state.code_context["tests"][i]["description"] = f"{test.get('description', 'Test')} (with large data)"
    
    def _add_performance_constraint(self, state: ProblemState, solution: str) -> None:
        """
        Add a performance constraint to the problem.
        
        Args:
            state: The problem state to modify
            solution: The current solution
        """
        # Choose a performance constraint
        constraints = [
            "linear time complexity (O(n))",
            "logarithmic time complexity (O(log n))",
            "constant memory usage (O(1) space)",
            "execution time under 100ms for large inputs",
            "minimal function calls"
        ]
        
        constraint = random.choice(constraints)
        
        # Add a new requirement
        state.requirements.append({
            "type": "performance",
            "description": f"The solution must achieve {constraint}.",
            "difficulty": random.uniform(0.6, 0.9)
        })
        
        # Add performance testing code if tests exist
        if "tests" in state.code_context:
            # Add a performance test
            perf_test = self._generate_performance_test(constraint, state.code_context)
            if perf_test:
                state.code_context["tests"].append({
                    "name": f"test_performance_{len(state.code_context['tests'])}",
                    "content": perf_test,
                    "description": f"Test {constraint}"
                })
    
    def _expand_functionality(self, state: ProblemState, solution: str) -> None:
        """
        Expand the required functionality of the solution.
        
        Args:
            state: The problem state to modify
            solution: The current solution
        """
        # Choose a functionality expansion
        expansions = [
            "support for different input types",
            "parameterized behavior",
            "additional output formats",
            "flexible error handling",
            "integration with external systems"
        ]
        
        expansion = random.choice(expansions)
        
        # Add a new requirement
        state.requirements.append({
            "type": "functionality",
            "description": f"Expand the solution to include {expansion}.",
            "difficulty": random.uniform(0.4, 0.8)
        })
        
        # Add test cases for the new functionality if tests exist
        if "tests" in state.code_context:
            # Create a new test for the expanded functionality
            test_template = self._generate_functionality_test(expansion, state.code_context)
            if test_template:
                state.code_context["tests"].append({
                    "name": f"test_expanded_functionality_{len(state.code_context['tests'])}",
                    "content": test_template,
                    "description": f"Test {expansion}"
                })
    
    def _generate_default_test(self) -> str:
        """
        Generate a default test based on the current problem state.
        
        Returns:
            A default test script
        """
        # Generate a basic test script
        return """
import unittest
import sys
import os

# Add the directory containing the solution to the path
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))

# Import the solution
from solution import *

class DefaultTest(unittest.TestCase):
    def test_basic_functionality(self):
        # A basic test that should pass if the solution is correct
        self.assertTrue(True, "Basic assertion failed")
        
    def test_expected_output(self):
        # Test expected output of main functions
        # This will need to be updated based on the specific problem
        pass
        
if __name__ == '__main__':
    unittest.main()
"""
    
    def _generate_edge_case_test(self, edge_case: str, code_context: Dict[str, Any]) -> str:
        """
        Generate a test for an edge case.
        
        Args:
            edge_case: The edge case to test
            code_context: The code context containing information about the problem
            
        Returns:
            A test script for the edge case
        """
        # Extract function names from the code context
        function_names = []
        if "code" in code_context:
            function_names = re.findall(r'def\s+(\w+)', code_context["code"])
        
        if not function_names:
            return None
        
        # Choose a function to test
        function_name = random.choice(function_names)
        
        # Generate test code based on the edge case
        if edge_case == "empty collections":
            return f"""
import unittest
import sys
import os

sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from solution import {function_name}

class EmptyCollectionTest(unittest.TestCase):
    def test_empty_input(self):
        # Test with empty list
        result = {function_name}([])
        self.assertIsNotNone(result, "Function should handle empty list")
        
        # Test with empty string
        result = {function_name}("")
        self.assertIsNotNone(result, "Function should handle empty string")
        
        # Test with empty dict
        result = {function_name}({{}})
        self.assertIsNotNone(result, "Function should handle empty dict")
        
if __name__ == '__main__':
    unittest.main()
"""
        elif edge_case == "null/None values":
            return f"""
import unittest
import sys
import os

sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from solution import {function_name}

class NoneValueTest(unittest.TestCase):
    def test_none_input(self):
        # Test with None as input
        result = {function_name}(None)
        self.assertIsNotNone(result, "Function should handle None input")
        
        # Test with list containing None
        result = {function_name}([1, None, 3])
        self.assertIsNotNone(result, "Function should handle list with None values")
        
if __name__ == '__main__':
    unittest.main()
"""
        elif edge_case == "boundary values (min/max)":
            return f"""
# recursive_swe_bench/task_generators/bug_fixing.py (completion)

import unittest
import sys
import os
import sys

sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from solution import {function_name}

class BoundaryValueTest(unittest.TestCase):
    def test_min_max_values(self):
        # Test with minimum integer
        min_int = -sys.maxsize - 1
        result = {function_name}(min_int)
        self.assertIsNotNone(result, "Function should handle minimum integer")
        
        # Test with maximum integer
        max_int = sys.maxsize
        result = {function_name}(max_int)
        self.assertIsNotNone(result, "Function should handle maximum integer")
        
        # Test with very large list
        large_list = list(range(10000))
        result = {function_name}(large_list)
        self.assertIsNotNone(result, "Function should handle very large inputs")
        
if __name__ == '__main__':
    unittest.main()
"""
        elif edge_case == "negative numbers":
            return f"""
import unittest
import sys
import os

sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from solution import {function_name}

class NegativeNumberTest(unittest.TestCase):
    def test_negative_numbers(self):
        # Test with negative number
        result = {function_name}(-1)
        self.assertIsNotNone(result, "Function should handle negative numbers")
        
        # Test with list of negative numbers
        result = {function_name}([-1, -2, -3])
        self.assertIsNotNone(result, "Function should handle lists of negative numbers")
        
        # Test with mixed positive and negative
        result = {function_name}([-1, 0, 1])
        self.assertIsNotNone(result, "Function should handle mixed positive and negative")
        
if __name__ == '__main__':
    unittest.main()
"""
        else:
            # Generic edge case test
            return f"""
import unittest
import sys
import os

sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from solution import {function_name}

class EdgeCaseTest(unittest.TestCase):
    def test_edge_case_{edge_case.replace(' ', '_')}(self):
        # Test edge case: {edge_case}
        # This is a placeholder test that needs to be customized for the specific edge case
        self.assertTrue(True, "Edge case test not implemented")
        
if __name__ == '__main__':
    unittest.main()
"""
    
    def _generate_performance_test(self, constraint: str, code_context: Dict[str, Any]) -> str:
        """
        Generate a performance test based on a constraint.
        
        Args:
            constraint: The performance constraint
            code_context: The code context containing information about the problem
            
        Returns:
            A test script for the performance constraint
        """
        # Extract function names from the code context
        function_names = []
        if "code" in code_context:
            function_names = re.findall(r'def\s+(\w+)', code_context["code"])
        
        if not function_names:
            return None
        
        # Choose a function to test
        function_name = random.choice(function_names)
        
        if "time complexity" in constraint:
            return f"""
import unittest
import sys
import os
import time
import random

sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from solution import {function_name}

class PerformanceTest(unittest.TestCase):
    def test_time_complexity(self):
        # Test for {constraint}
        sizes = [100, 1000, 10000]
        times = []
        
        for size in sizes:
            # Generate input of the given size
            input_data = [random.randint(0, 1000) for _ in range(size)]
            
            # Measure execution time
            start_time = time.time()
            {function_name}(input_data)
            end_time = time.time()
            
            times.append(end_time - start_time)
        
        # Check if time grows appropriately
        # For O(n), time should grow linearly with input size
        # For O(log n), time should grow logarithmically
        # This is a simplified check and might need adjustment
        if "log n" in "{constraint}":
            # For logarithmic time, the ratio of times should decrease
            ratio1 = times[1] / times[0]
            ratio2 = times[2] / times[1]
            self.assertLess(ratio2, ratio1 * 1.5, 
                           f"Growth rate appears super-logarithmic: {times}")
        else:  # Assume linear or better
            # For linear time, the ratio of times should be roughly equal to ratio of sizes
            ratio1 = times[1] / times[0]
            size_ratio1 = sizes[1] / sizes[0]
            
            ratio2 = times[2] / times[1]
            size_ratio2 = sizes[2] / sizes[1]
            
            self.assertLess(ratio1, size_ratio1 * 1.5, 
                           f"First growth rate appears super-linear: {times}")
            self.assertLess(ratio2, size_ratio2 * 1.5, 
                           f"Second growth rate appears super-linear: {times}")
        
if __name__ == '__main__':
    unittest.main()
"""
        elif "execution time" in constraint:
            return f"""
import unittest
import sys
import os
import time
import random

sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from solution import {function_name}

class PerformanceTest(unittest.TestCase):
    def test_execution_time(self):
        # Test for {constraint}
        # Generate a large input
        input_data = [random.randint(0, 1000) for _ in range(10000)]
        
        # Measure execution time
        start_time = time.time()
        {function_name}(input_data)
        end_time = time.time()
        
        execution_time = (end_time - start_time) * 1000  # Convert to ms
        
        self.assertLess(execution_time, 100, 
                       f"Execution time exceeded 100ms: {execution_time:.2f}ms")
        
if __name__ == '__main__':
    unittest.main()
"""
        elif "memory usage" in constraint:
            return f"""
import unittest
import sys
import os
import psutil
import random

sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from solution import {function_name}

class MemoryUsageTest(unittest.TestCase):
    def test_memory_usage(self):
        # Test for {constraint}
        # Note: This is an approximate test and may not be accurate in all environments
        
        # Get current process
        process = psutil.Process(os.getpid())
        
        # Measure memory before
        memory_before = process.memory_info().rss / 1024 / 1024  # MB
        
        # Generate a large input
        input_data = [random.randint(0, 1000) for _ in range(100000)]
        
        # Run function
        {function_name}(input_data)
        
        # Measure memory after
        memory_after = process.memory_info().rss / 1024 / 1024  # MB
        
        # Calculate memory usage
        memory_used = memory_after - memory_before
        
        # A crude approximation, adjust as needed
        self.assertLess(memory_used, 10, 
                       f"Memory usage seems high: {memory_used:.2f}MB")
        
if __name__ == '__main__':
    unittest.main()
"""
        else:
            # Generic performance test
            return f"""
import unittest
import sys
import os
import time
import random

sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from solution import {function_name}

class PerformanceTest(unittest.TestCase):
    def test_performance(self):
        # Test for {constraint}
        # This is a placeholder test that needs to be customized for the specific constraint
        
        # Generate a large input
        input_data = [random.randint(0, 1000) for _ in range(10000)]
        
        # Measure execution time
        start_time = time.time()
        {function_name}(input_data)
        end_time = time.time()
        
        execution_time = end_time - start_time
        
        # Just log the time for now
        print(f"Execution time: {execution_time:.4f} seconds")
        self.assertTrue(True, "Performance test completed")
        
if __name__ == '__main__':
    unittest.main()
"""
    
    def _generate_functionality_test(self, expansion: str, code_context: Dict[str, Any]) -> str:
        """
        Generate a test for expanded functionality.
        
        Args:
            expansion: The functionality expansion
            code_context: The code context containing information about the problem
            
        Returns:
            A test script for the expanded functionality
        """
        # Extract function names from the code context
        function_names = []
        if "code" in code_context:
            function_names = re.findall(r'def\s+(\w+)', code_context["code"])
        
        if not function_names:
            return None
        
        # Choose a function to test
        function_name = random.choice(function_names)
        
        if "different input types" in expansion:
            return f"""
import unittest
import sys
import os
import json
from collections import namedtuple

sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from solution import {function_name}

class InputTypesTest(unittest.TestCase):
    def test_different_input_types(self):
        # Test with different types of inputs
        
        # Test with list
        list_input = [1, 2, 3]
        list_result = {function_name}(list_input)
        self.assertIsNotNone(list_result, "Function should handle list input")
        
        # Test with tuple
        tuple_input = (1, 2, 3)
        tuple_result = {function_name}(tuple_input)
        self.assertIsNotNone(tuple_result, "Function should handle tuple input")
        
        # Test with set
        set_input = {{1, 2, 3}}
        set_result = {function_name}(set_input)
        self.assertIsNotNone(set_result, "Function should handle set input")
        
        # Test with dictionary
        dict_input = {{"a": 1, "b": 2, "c": 3}}
        dict_result = {function_name}(dict_input)
        self.assertIsNotNone(dict_result, "Function should handle dictionary input")
        
        # Test with JSON string
        json_input = '{{"data": [1, 2, 3]}}'
        json_result = {function_name}(json_input)
        self.assertIsNotNone(json_result, "Function should handle JSON string")
        
        # Test with custom object
        Point = namedtuple('Point', ['x', 'y'])
        obj_input = Point(1, 2)
        obj_result = {function_name}(obj_input)
        self.assertIsNotNone(obj_result, "Function should handle custom object")
        
if __name__ == '__main__':
    unittest.main()
"""
        elif "parameterized behavior" in expansion:
            return f"""
import unittest
import sys
import os

sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from solution import {function_name}

class ParameterizedTest(unittest.TestCase):
    def test_parameterized_behavior(self):
        # Test function with different parameters
        
        # Base case with default parameters
        base_input = [1, 2, 3]
        base_result = {function_name}(base_input)
        
        # The function should now accept additional parameters
        # These are example parameters, adjust based on the specific function
        
        # With sorting parameter
        try:
            sorted_result = {function_name}(base_input, sort=True)
            self.assertIsNotNone(sorted_result, "Function should handle sort parameter")
        except TypeError as e:
            self.fail(f"Function does not support sort parameter: {{e}}")
        
        # With filtering parameter
        try:
            filtered_result = {function_name}(base_input, filter_fn=lambda x: x > 1)
            self.assertIsNotNone(filtered_result, "Function should handle filter_fn parameter")
        except TypeError as e:
            self.fail(f"Function does not support filter_fn parameter: {{e}}")
        
        # With formatting parameter
        try:
            formatted_result = {function_name}(base_input, format="json")
            self.assertIsNotNone(formatted_result, "Function should handle format parameter")
        except TypeError as e:
            self.fail(f"Function does not support format parameter: {{e}}")
        
if __name__ == '__main__':
    unittest.main()
"""
        elif "additional output formats" in expansion:
            return f"""
import unittest
import sys
import os
import json

sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from solution import {function_name}

class OutputFormatsTest(unittest.TestCase):
    def test_output_formats(self):
        # Test function with different output formats
        input_data = [1, 2, 3]
        
        # Original format
        original_result = {function_name}(input_data)
        
        # The function should now support different output formats
        # These are example formats, adjust based on the specific function
        
        # JSON format
        try:
            json_result = {function_name}(input_data, format="json")
            # Check if it's valid JSON
            try:
                json_obj = json.loads(json_result) if isinstance(json_result, str) else json_result
                self.assertIsNotNone(json_obj, "JSON result should be valid")
            except json.JSONDecodeError:
                self.fail("JSON result is not valid")
        except TypeError as e:
            self.fail(f"Function does not support JSON format: {{e}}")
        
        # CSV format
        try:
            csv_result = {function_name}(input_data, format="csv")
            self.assertIsNotNone(csv_result, "CSV result should not be None")
            if isinstance(csv_result, str):
                self.assertIn(",", csv_result, "CSV result should contain commas")
        except TypeError as e:
            self.fail(f"Function does not support CSV format: {{e}}")
        
        # XML format
        try:
            xml_result = {function_name}(input_data, format="xml")
            self.assertIsNotNone(xml_result, "XML result should not be None")
            if isinstance(xml_result, str):
                self.assertIn("<", xml_result, "XML result should contain tags")
                self.assertIn(">", xml_result, "XML result should contain tags")
        except TypeError as e:
            self.fail(f"Function does not support XML format: {{e}}")
        
if __name__ == '__main__':
    unittest.main()
"""
        else:
            # Generic functionality expansion test
            return f"""
import unittest
import sys
import os

sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from solution import {function_name}

class ExpandedFunctionalityTest(unittest.TestCase):
    def test_expanded_functionality(self):
        # Test for {expansion}
        # This is a placeholder test that needs to be customized for the specific expansion
        
        # Basic test to verify the function exists
        input_data = [1, 2, 3]
        result = {function_name}(input_data)
        self.assertIsNotNone(result, "Function should return a result")
        
        # You need to add specific tests for the expanded functionality
        
if __name__ == '__main__':
    unittest.main()
"""
    
    def _calculate_adaptation_vector(self, solution: str, result: EvaluationResult, feedback: Feedback) -> List[float]:
        """
        Calculate an adaptation vector based on the solution, result, and feedback.
        
        The adaptation vector encodes how the problem should evolve in future iterations,
        capturing dimensions like difficulty, bug type emphasis, and feedback focus.
        
        Args:
            solution: The current solution
            result: The evaluation results
            feedback: The feedback provided
            
        Returns:
            An adaptation vector (list of floats)
        """
        # Initialize adaptation vector with zeros
        # Dimensions:
        # [0] - difficulty adjustment
        # [1] - syntax vs logical bug emphasis
        # [2] - performance focus
        # [3] - edge case focus
        # [4] - requirement expansion
        adaptation_vector = [0.0] * 5
        
        # Adjust difficulty based on score
        if result.score > 0.95:
            adaptation_vector[0] = 0.2  # Increase difficulty significantly
        elif result.score > 0.8:
            adaptation_vector[0] = 0.1  # Increase difficulty moderately
        elif result.score > 0.6:
            adaptation_vector[0] = 0.0  # Maintain current difficulty
        elif result.score > 0.4:
            adaptation_vector[0] = -0.1  # Decrease difficulty moderately
        else:
            adaptation_vector[0] = -0.2  # Decrease difficulty significantly
        
        # Adjust bug type emphasis based on error types
        syntax_issues = sum(1 for issue in feedback.issues if issue.get("error_type") == "syntax")
        logical_issues = sum(1 for issue in feedback.issues if issue.get("type") == "test_failure")
        
        if syntax_issues > logical_issues:
            adaptation_vector[1] = -0.1  # Move toward more logical bugs
        elif logical_issues > syntax_issues:
            adaptation_vector[1] = 0.1  # Move toward more syntax bugs
        
        # Adjust performance focus based on execution time and metrics
        if result.metrics and "execution_time" in result.metrics:
            if result.metrics["execution_time"] > self.config.get("performance_threshold", 1.0):
                adaptation_vector[2] = 0.2  # Increase performance focus
            else:
                adaptation_vector[2] = -0.1  # Decrease performance focus
        
        # Adjust edge case focus based on test failures
        if result.test_results:
            edge_case_failures = sum(1 for test_name, test_result in result.test_results.items()
                                    if not test_result["passed"] and "edge" in test_name.lower())
            if edge_case_failures > 0:
                adaptation_vector[3] = 0.2  # Increase edge case focus
            else:
                adaptation_vector[3] = 0.0  # Maintain current edge case focus
        
        # Adjust requirement expansion based on current state
        current_requirements = len(self.state.requirements)
        if current_requirements < 3:
            adaptation_vector[4] = 0.1  # Increase likelihood of adding requirements
        elif current_requirements >= 5:
            adaptation_vector[4] = -0.1  # Decrease likelihood of adding requirements
        
        return adaptation_vector


class DefaultTestRunner:
    """Default test runner for evaluating bug fixes."""
    
    def run_tests(self, solution_file: Path, test_files: List[Path], code_context: Dict[str, Any]) -> Dict[str, Any]:
        """
        Run tests against a solution file.
        
        Args:
            solution_file: Path to the solution file
            test_files: List of test file paths
            code_context: Context information about the code
            
        Returns:
            Dictionary of test results
        """
        # Initialize results
        results = {
            "all_passed": True,
            "passed_tests": 0,
            "total_tests": 0,
            "tests": {},
            "execution": {
                "success": True,
                "error": None,
                "stdout": None,
                "stderr": None
            },
            "execution_time": 0.0
        }
        
        # Import the solution to check for syntax errors
        try:
            # Check if the solution file exists
            if not solution_file.exists():
                results["execution"]["success"] = False
                results["execution"]["error"] = "Solution file not found"
                results["all_passed"] = False
                return results
            
            # Try to import the module to test for syntax errors
            sys.path.insert(0, str(solution_file.parent))
            import importlib.util
            spec = importlib.util.spec_from_file_location("solution", solution_file)
            solution_module = importlib.util.module_from_spec(spec)
            spec.loader.exec_module(solution_module)
            
            # Check for required functions
            if "required_functions" in code_context:
                for func_name in code_context["required_functions"]:
                    if not hasattr(solution_module, func_name):
                        results["execution"]["success"] = False
                        results["execution"]["error"] = f"Required function '{func_name}' not found"
                        results["all_passed"] = False
                        return results
            
        except Exception as e:
            results["execution"]["success"] = False
            results["execution"]["error"] = str(e)
            results["all_passed"] = False
            return results
        
        # Run each test file
        for test_file in test_files:
            # Skip if the test file doesn't exist
            if not test_file.exists():
                continue
            
            # Run the test file
            import unittest
            import io
            from contextlib import redirect_stdout, redirect_stderr
            
            # Create a test loader and find tests in the file
            loader = unittest.TestLoader()
            try:
                tests = loader.discover(str(test_file.parent), pattern=test_file.name)
                
                # Count the number of test cases
                test_cases = 0
                for suite in tests:
                    for test_case in suite:
                        test_cases += test_case.countTestCases()
                
                results["total_tests"] += test_cases
                
                # Run the tests
                runner = unittest.TextTestRunner(verbosity=2)
                
                # Capture stdout and stderr
                stdout_buffer = io.StringIO()
                stderr_buffer = io.StringIO()
                
                with redirect_stdout(stdout_buffer), redirect_stderr(stderr_buffer):
                    test_result = runner.run(tests)
                
                stdout = stdout_buffer.getvalue()
                stderr = stderr_buffer.getvalue()
                
                # Check if all tests passed
                if not test_result.wasSuccessful():
                    results["all_passed"] = False
                
                # Count passed tests
                passed_tests = test_cases - len(test_result.failures) - len(test_result.errors)
                results["passed_tests"] += passed_tests
                
                # Store individual test results
                test_name = test_file.stem
                results["tests"][test_name] = {
                    "passed": test_result.wasSuccessful(),
                    "failures": len(test_result.failures),
                    "errors": len(test_result.errors),
                    "skipped": len(test_result.skipped),
                    "total": test_cases,
                    "passed_count": passed_tests,
                    "stdout": stdout,
                    "stderr": stderr
                }
                
                # Extract more detailed information about failures
                for failure in test_result.failures:
                    test_id = failure[0].id()
                    failure_message = failure[1]
                    
                    # Extract expected and actual values if available
                    import re
                    expected_match = re.search(r'Expected\s*:(.+)', failure_message)
                    actual_match = re.search(r'Actual\s*:(.+)', failure_message)
                    
                    expected = expected_match.group(1).strip() if expected_match else None
                    actual = actual_match.group(1).strip() if actual_match else None
                    
                    if test_id not in results["tests"]:
                        results["tests"][test_id] = {}
                    
                    results["tests"][test_id].update({
                        "passed": False,
                        "message": failure_message,
                        "expected": expected,
                        "actual": actual
                    })
                
            except Exception as e:
                # If the test file itself has errors
                results["all_passed"] = False
                results["tests"][test_file.stem] = {
                    "passed": False,
                    "error": str(e),
                    "failures": 1,
                    "errors": 1,
                    "skipped": 0,
                    "total": 1,
                    "passed_count": 0
                }
                results["total_tests"] += 1
        
        return results


class BugFixingTaskGenerator:
    """Generator for bug fixing tasks."""
    
    def __init__(self, config: Dict[str, Any] = None):
        """
        Initialize the bug fixing task generator.
        
        Args:
            config: Configuration options
        """
        self.config = config or {}
        self.difficulty_levels = self.config.get(
            "difficulty_levels", 
            ["easy", "medium", "hard", "expert"]
        )
        self.bug_categories = self.config.get(
            "bug_categories",
            [
                BugCategory.SYNTAX,
                BugCategory.LOGICAL,
                BugCategory.EDGE_CASE,
                BugCategory.PERFORMANCE
            ]
        )
        self.test_templates = self._load_test_templates()
    
    def generate_task(self, difficulty: str = None, bug_categories: List[str] = None) -> BugFixingTask:
        """
        Generate a new bug fixing task.
        
        Args:
            difficulty: The difficulty level (easy, medium, hard, expert)
            bug_categories: List of bug categories to include
            
        Returns:
            A new bug fixing task
        """
        # Choose difficulty if not specified
        if difficulty is None:
            difficulty = random.choice(self.difficulty_levels)
        
        # Choose bug categories if not specified
        if bug_categories is None:
            num_categories = random.randint(1, 3)
            bug_categories = random.sample(self.bug_categories, num_categories)
        
        # Generate a problem based on difficulty and bug categories
        problem_state = self._generate_problem_state(difficulty, bug_categories)
        
        # Create config for the task
        task_config = {
            "difficulty": difficulty,
            "bug_categories": bug_categories,
            "convergence_criteria": {
                "score_threshold": 0.95,
                "min_iterations": 1,
                "max_iterations": self.config.get("max_iterations", 5),
                "score_delta_threshold": 0.05,
                "consecutive_plateau_limit": 2
            },
            "score_weights": {
                "test": 0.7,
                "execution": 0.3
            },
            "performance_threshold": 1.0,
            "complexity_threshold": 0.7
        }
        
        # Create and return the task
        return BugFixingTask(problem_state, task_config)
    
    def _generate_problem_state(self, difficulty: str, bug_categories: List[str]) -> ProblemState:
        """
        Generate a problem state for the given difficulty and bug categories.
        
        Args:
            difficulty: The difficulty level
            bug_categories: List of bug categories
            
        Returns:
            A problem state for the task
        """
        # Choose a template based on difficulty and bug categories
        template = self._choose_template(difficulty, bug_categories)
        
        # Create a copy of the template
        problem_state = copy.deepcopy(template)
        
        # Generate a unique ID
        problem_state.problem_id = str(uuid.uuid4())
        
        # Initialize evolution stage and adaptation vector
        problem_state.evolution_stage = 0
        problem_state.adaptation_vector = [0.0] * 5
        
        # Adjust difficulty value based on level
        difficulty_values = {
            "easy": 0.25,
            "medium": 0.5,
            "hard": 0.75,
            "expert": 0.9
        }
        problem_state.difficulty = difficulty_values.get(difficulty, 0.5)
        
        # Insert bugs based on categories
        for category in bug_categories:
            self._insert_bug(problem_state, category)
        
        # Update description to reflect the current state
        problem_state.description = self._generate_description(problem_state)
        
        return problem_state
    
    def _choose_template(self, difficulty: str, bug_categories: List[str]) -> ProblemState:
        """
        Choose a template that matches the difficulty and bug categories.
        
        Args:
            difficulty: The difficulty level
            bug_categories: List of bug categories
            
        Returns:
            A template problem state
        """
        # In a real implementation, this would load from a database of templates
        # For now, we'll generate a simple template
        
        # Generate code context with a sample function
        code = self._generate_template_code(difficulty, bug_categories)
        tests = self._generate_template_tests(code)
        
        # Create a basic problem state
        return ProblemState(
            problem_id="template",
            description="Fix the bugs in the given code.",
            code_context={
                "code": code,
                "tests": tests,
                "bug_count": 0,
                "bug_categories": []
            },
            requirements=[
                {
                    "type": "functional",
                    "description": "The code should pass all the provided tests.",
                    "difficulty": 0.3
                }
            ],
            difficulty=0.5,  # Will be overridden
            evolution_stage=0,
            adaptation_vector=[0.0] * 5
        )
    
    def _generate_template_code(self, difficulty: str, bug_categories: List[str]) -> str:
        """
        Generate template code based on difficulty and bug categories.
        
        Args:
            difficulty: The difficulty level
            bug_categories: List of bug categories
            
        Returns:
            Template code
        """
        # For demonstration, we'll use a few predefined templates
        templates = {
            "easy": """
def calculate_sum(numbers):
    \"\"\"Calculate the sum of a list of numbers.\"\"\"
    total = 0
    for num in numbers:
        total += num
    return total

def calculate_average(numbers):
    \"\"\"Calculate the average of a list of numbers.\"\"\"
    if not numbers:
        return 0
    return calculate_sum(numbers) / len(numbers)
""",
            "medium": """
def find_most_frequent(items):
    \"\"\"Find the most frequently occurring item in
# recursive_swe_bench/task_generators/bug_fixing.py (template generation)

def find_most_frequent(items):
    """Find the most frequently occurring item in a list."""
    if not items:
        return None
    
    counts = {}
    for item in items:
        if item in counts:
            counts[item] += 1
        else:
            counts[item] = 1
    
    max_count = 0
    max_item = None
    for item, count in counts.items():
        if count > max_count:
            max_count = count
            max_item = item
    
    return max_item

def binary_search(sorted_list, target):
    """Perform binary search on a sorted list."""
    left = 0
    right = len(sorted_list) - 1
    
    while left <= right:
        mid = (left + right) // 2
        if sorted_list[mid] == target:
            return mid
        elif sorted_list[mid] < target:
            left = mid + 1
        else:
            right = mid - 1
    
    return -1  # Target not found
""",
            "hard": """
def merge_sort(arr):
    """Sort an array using the merge sort algorithm."""
    if len(arr) <= 1:
        return arr
    
    # Split the array into two halves
    mid = len(arr) // 2
    left_half = arr[:mid]
    right_half = arr[mid:]
    
    # Recursively sort both halves
    left_half = merge_sort(left_half)
    right_half = merge_sort(right_half)
    
    # Merge the sorted halves
    return merge(left_half, right_half)

def merge(left, right):
    """Merge two sorted arrays."""
    result = []
    i = j = 0
    
    # Compare elements from both arrays and add the smaller one to the result
    while i < len(left) and j < len(right):
        if left[i] <= right[j]:
            result.append(left[i])
            i += 1
        else:
            result.append(right[j])
            j += 1
    
    # Add any remaining elements
    result.extend(left[i:])
    result.extend(right[j:])
    
    return result

def quicksort(arr):
    """Sort an array using the quicksort algorithm."""
    if len(arr) <= 1:
        return arr
    
    # Choose the pivot (using the first element for simplicity)
    pivot = arr[0]
    
    # Partition the array
    less = [x for x in arr[1:] if x <= pivot]
    greater = [x for x in arr[1:] if x > pivot]
    
    # Recursively sort the partitions and combine
    return quicksort(less) + [pivot] + quicksort(greater)
""",
            "expert": """
class Node:
    """Node in a binary tree."""
    def __init__(self, value):
        self.value = value
        self.left = None
        self.right = None

def build_binary_tree(values):
    """Build a binary tree from a list of values."""
    if not values:
        return None
    
    root = Node(values[0])
    queue = [root]
    i = 1
    
    while queue and i < len(values):
        node = queue.pop(0)
        
        # Add left child
        if i < len(values) and values[i] is not None:
            node.left = Node(values[i])
            queue.append(node.left)
        i += 1
        
        # Add right child
        if i < len(values) and values[i] is not None:
            node.right = Node(values[i])
            queue.append(node.right)
        i += 1
    
    return root

def is_balanced(root):
    """Check if a binary tree is balanced."""
    def height(node):
        if not node:
            return 0
        return max(height(node.left), height(node.right)) + 1
    
    def is_balanced_helper(node):
        if not node:
            return True
        
        left_height = height(node.left)
        right_height = height(node.right)
        
        if abs(left_height - right_height) > 1:
            return False
        
        return is_balanced_helper(node.left) and is_balanced_helper(node.right)
    
    return is_balanced_helper(root)

def find_lca(root, p, q):
    """Find the lowest common ancestor of two nodes in a binary tree."""
    if not root:
        return None
    
    if root.value == p or root.value == q:
        return root
    
    left_lca = find_lca(root.left, p, q)
    right_lca = find_lca(root.right, p, q)
    
    if left_lca and right_lca:
        return root
    
    return left_lca if left_lca else right_lca
"""
        }
        
        # Choose a template based on difficulty
        if difficulty in templates:
            return templates[difficulty]
        else:
            return templates["medium"]  # Default to medium if difficulty not found
    
    def _generate_template_tests(self, code: str) -> List[Dict[str, Any]]:
        """
        Generate template tests based on the code.
        
        Args:
            code: The template code
            
        Returns:
            List of test dictionaries
        """
        # Extract function names from the code
        function_names = re.findall(r'def\s+(\w+)', code)
        
        # Generate tests for each function
        tests = []
        for func_name in function_names:
            test_content = self._generate_test_for_function(func_name)
            if test_content:
                tests.append({
                    "name": f"test_{func_name}",
                    "content": test_content,
                    "description": f"Test for {func_name} function"
                })
        
        return tests
    
    def _generate_test_for_function(self, func_name: str) -> str:
        """
        Generate a test for a specific function.
        
        Args:
            func_name: The name of the function to test
            
        Returns:
            Test content
        """
        # Check if we have a template for this function
        if func_name in self.test_templates:
            return self.test_templates[func_name]
        
        # Generate a basic test based on the function name
        if "sum" in func_name.lower():
            return """
import unittest
import sys
import os

sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from solution import calculate_sum

class TestCalculateSum(unittest.TestCase):
    def test_calculate_sum(self):
        self.assertEqual(calculate_sum([1, 2, 3, 4, 5]), 15)
        self.assertEqual(calculate_sum([]), 0)
        self.assertEqual(calculate_sum([-1, -2, -3]), -6)
        
if __name__ == '__main__':
    unittest.main()
"""
        elif "average" in func_name.lower():
            return """
import unittest
import sys
import os

sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from solution import calculate_average

class TestCalculateAverage(unittest.TestCase):
    def test_calculate_average(self):
        self.assertEqual(calculate_average([1, 2, 3, 4, 5]), 3)
        self.assertEqual(calculate_average([]), 0)
        self.assertEqual(calculate_average([10]), 10)
        
if __name__ == '__main__':
    unittest.main()
"""
        elif "frequent" in func_name.lower():
            return """
import unittest
import sys
import os

sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from solution import find_most_frequent

class TestFindMostFrequent(unittest.TestCase):
    def test_find_most_frequent(self):
        self.assertEqual(find_most_frequent([1, 2, 2, 3, 3, 3, 4]), 3)
        self.assertEqual(find_most_frequent(['a', 'b', 'a', 'c', 'a']), 'a')
        self.assertIsNone(find_most_frequent([]))
        self.assertEqual(find_most_frequent([5]), 5)
        
if __name__ == '__main__':
    unittest.main()
"""
        elif "search" in func_name.lower():
            return """
import unittest
import sys
import os

sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from solution import binary_search

class TestBinarySearch(unittest.TestCase):
    def test_binary_search(self):
        self.assertEqual(binary_search([1, 2, 3, 4, 5], 3), 2)
        self.assertEqual(binary_search([1, 2, 3, 4, 5], 1), 0)
        self.assertEqual(binary_search([1, 2, 3, 4, 5], 5), 4)
        self.assertEqual(binary_search([1, 2, 3, 4, 5], 6), -1)
        self.assertEqual(binary_search([], 5), -1)
        
if __name__ == '__main__':
    unittest.main()
"""
        elif "sort" in func_name.lower():
            return """
import unittest
import sys
import os

sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from solution import {0}

class Test{1}(unittest.TestCase):
    def test_sorting(self):
        self.assertEqual({0}([]), [])
        self.assertEqual({0}([1]), [1])
        self.assertEqual({0}([3, 1, 4, 1, 5, 9, 2, 6, 5]), [1, 1, 2, 3, 4, 5, 5, 6, 9])
        self.assertEqual({0}([9, 8, 7, 6, 5, 4, 3, 2, 1]), [1, 2, 3, 4, 5, 6, 7, 8, 9])
        self.assertEqual({0}([1, 1, 1, 1]), [1, 1, 1, 1])
        
if __name__ == '__main__':
    unittest.main()
""".format(func_name, func_name.title())
        elif "balanced" in func_name.lower():
            return """
import unittest
import sys
import os

sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from solution import Node, is_balanced

class TestIsBalanced(unittest.TestCase):
    def test_is_balanced(self):
        # Create a balanced tree
        #      1
        #    /   \\
        #   2     3
        #  / \\   / \\
        # 4   5 6   7
        root = Node(1)
        root.left = Node(2)
        root.right = Node(3)
        root.left.left = Node(4)
        root.left.right = Node(5)
        root.right.left = Node(6)
        root.right.right = Node(7)
        self.assertTrue(is_balanced(root))
        
        # Create an unbalanced tree
        #      1
        #    /   \\
        #   2     3
        #  / \\
        # 4   5
        #/
        #6
        root = Node(1)
        root.left = Node(2)
        root.right = Node(3)
        root.left.left = Node(4)
        root.left.right = Node(5)
        root.left.left.left = Node(6)
        self.assertFalse(is_balanced(root))
        
        # Empty tree is balanced
        self.assertTrue(is_balanced(None))
        
if __name__ == '__main__':
    unittest.main()
"""
        elif "lca" in func_name.lower():
            return """
import unittest
import sys
import os

sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from solution import Node, find_lca

class TestFindLCA(unittest.TestCase):
    def test_find_lca(self):
        # Create a tree
        #      1
        #    /   \\
        #   2     3
        #  / \\   / \\
        # 4   5 6   7
        root = Node(1)
        root.left = Node(2)
        root.right = Node(3)
        root.left.left = Node(4)
        root.left.right = Node(5)
        root.right.left = Node(6)
        root.right.right = Node(7)
        
        # Test cases
        self.assertEqual(find_lca(root, 4, 5).value, 2)  # LCA of 4 and 5 is 2
        self.assertEqual(find_lca(root, 4, 6).value, 1)  # LCA of 4 and 6 is 1
        self.assertEqual(find_lca(root, 3, 7).value, 3)  # LCA of 3 and 7 is 3
        self.assertEqual(find_lca(root, 2, 7).value, 1)  # LCA of 2 and 7 is 1
        
if __name__ == '__main__':
    unittest.main()
"""
        elif "tree" in func_name.lower():
            return """
import unittest
import sys
import os

sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from solution import Node, build_binary_tree

class TestBuildBinaryTree(unittest.TestCase):
    def test_build_binary_tree(self):
        # Test empty list
        self.assertIsNone(build_binary_tree([]))
        
        # Test single node
        root = build_binary_tree([1])
        self.assertEqual(root.value, 1)
        self.assertIsNone(root.left)
        self.assertIsNone(root.right)
        
        # Test complete tree
        #      1
        #    /   \\
        #   2     3
        #  / \\   / \\
        # 4   5 6   7
        values = [1, 2, 3, 4, 5, 6, 7]
        root = build_binary_tree(values)
        self.assertEqual(root.value, 1)
        self.assertEqual(root.left.value, 2)
        self.assertEqual(root.right.value, 3)
        self.assertEqual(root.left.left.value, 4)
        self.assertEqual(root.left.right.value, 5)
        self.assertEqual(root.right.left.value, 6)
        self.assertEqual(root.right.right.value, 7)
        
        # Test tree with None values
        #      1
        #    /   \\
        #   2     3
        #  /     / 
        # 4     6   
        values = [1, 2, 3, 4, None, 6, None]
        root = build_binary_tree(values)
        self.assertEqual(root.value, 1)
        self.assertEqual(root.left.value, 2)
        self.assertEqual(root.right.value, 3)
        self.assertEqual(root.left.left.value, 4)
        self.assertIsNone(root.left.right)
        self.assertEqual(root.right.left.value, 6)
        self.assertIsNone(root.right.right)
        
if __name__ == '__main__':
    unittest.main()
"""
        else:
            # Generic test template
            return """
import unittest
import sys
import os

sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from solution import {0}

class Test{1}(unittest.TestCase):
    def test_{0}(self):
        # TODO: Add specific test cases for {0}
        # This is a placeholder test
        self.assertTrue(True)
        
if __name__ == '__main__':
    unittest.main()
""".format(func_name, func_name.title())
    
    def _load_test_templates(self) -> Dict[str, str]:
        """
        Load test templates for common functions.
        
        Returns:
            Dictionary of test templates
        """
        # In a real implementation, these would be loaded from files
        return {
            "calculate_sum": """
import unittest
import sys
import os

sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from solution import calculate_sum

class TestCalculateSum(unittest.TestCase):
    def test_calculate_sum(self):
        self.assertEqual(calculate_sum([1, 2, 3, 4, 5]), 15)
        self.assertEqual(calculate_sum([]), 0)
        self.assertEqual(calculate_sum([-1, -2, -3]), -6)
        
if __name__ == '__main__':
    unittest.main()
""",
            "calculate_average": """
import unittest
import sys
import os

sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from solution import calculate_average

class TestCalculateAverage(unittest.TestCase):
    def test_calculate_average(self):
        self.assertEqual(calculate_average([1, 2, 3, 4, 5]), 3)
        self.assertEqual(calculate_average([]), 0)
        self.assertEqual(calculate_average([10]), 10)
        
if __name__ == '__main__':
    unittest.main()
"""
        }
    
    def _insert_bug(self, problem_state: ProblemState, bug_category: str) -> None:
        """
        Insert a bug of the specified category into the problem state.
        
        Args:
            problem_state: The problem state to modify
            bug_category: The category of bug to insert
        """
        if "code" not in problem_state.code_context:
            return
        
        # Parse the code to find potential bug insertion points
        code = problem_state.code_context["code"]
        try:
            parsed_code = ast.parse(code)
        except SyntaxError:
            # If the code already has syntax errors, don't add more bugs
            return
        
        # Insert different types of bugs based on the category
        if bug_category == BugCategory.SYNTAX:
            self._insert_syntax_bug(problem_state)
        elif bug_category == BugCategory.LOGICAL:
            self._insert_logical_bug(problem_state)
        elif bug_category == BugCategory.PERFORMANCE:
            self._insert_performance_bug(problem_state)
        elif bug_category == BugCategory.EDGE_CASE:
            self._insert_edge_case_bug(problem_state)
        else:
            # Default to logical bug
            self._insert_logical_bug(problem_state)
        
        # Update bug count and categories
        if "bug_count" not in problem_state.code_context:
            problem_state.code_context["bug_count"] = 0
        problem_state.code_context["bug_count"] += 1
        
        if "bug_categories" not in problem_state.code_context:
            problem_state.code_context["bug_categories"] = []
        if bug_category not in problem_state.code_context["bug_categories"]:
            problem_state.code_context["bug_categories"].append(bug_category)
    
    def _insert_syntax_bug(self, problem_state: ProblemState) -> None:
        """
        Insert a syntax bug into the problem state.
        
        Args:
            problem_state: The problem state to modify
        """
        code = problem_state.code_context["code"]
        lines = code.split('\n')
        if not lines:
            return
        
        # Choose a non-empty line to modify
        idx = random.randint(0, len(lines) - 1)
        line = lines[idx]
        
        # Skip empty lines or comment lines
        attempts = 0
        while (not line.strip() or line.strip().startswith('#')) and attempts < 10:
            idx = random.randint(0, len(lines) - 1)
            line = lines[idx]
            attempts += 1
        
        if attempts >= 10:
            # Couldn't find a suitable line, use the first non-empty line
            for i, line in enumerate(lines):
                if line.strip() and not line.strip().startswith('#'):
                    idx = i
                    break
            else:
                return  # No suitable line found
        
        # Choose a modification type
        mod_type = random.choice([
            "remove_character",
            "add_character",
            "swap_characters",
            "change_indent"
        ])
        
        if mod_type == "remove_character" and line:
            char_idx = random.randint(0, len(line) - 1)
            lines[idx] = line[:char_idx] + line[char_idx+1:]
        
        elif mod_type == "add_character":
            char_idx = random.randint(0, len(line))
            char = random.choice(["(", ")", "{", "}", "[", "]", ":", ";", ",", "."])
            lines[idx] = line[:char_idx] + char + line[char_idx:]
        
        elif mod_type == "swap_characters" and len(line) >= 2:
            char_idx = random.randint(0, len(line) - 2)
            lines[idx] = (line[:char_idx] + line[char_idx+1] + 
                         line[char_idx] + line[char_idx+2:])
        
        elif mod_type == "change_indent":
            # Either add or remove indentation
            if line.startswith("    "):
                lines[idx] = line[2:]  # Remove some indent
            else:
                lines[idx] = "  " + line  # Add inconsistent indent
        
        # Update the code
        problem_state.code_context["code"] = '\n'.join(lines)
        
        # Add information about the bug
        if "bugs" not in problem_state.code_context:
            problem_state.code_context["bugs"] = []
        
        problem_state.code_context["bugs"].append({
            "type": BugCategory.SYNTAX,
            "line": idx + 1,
            "description": f"Syntax error introduced in line {idx + 1}"
        })
    
    def _insert_logical_bug(self, problem_state: ProblemState) -> None:
        """
        Insert a logical bug into the problem state.
        
        Args:
            problem_state: The problem state to modify
        """
        code = problem_state.code_context["code"]
        lines = code.split('\n')
        if not lines:
            return
        
        # Find all if statements and loops
        if_statements = []
        for i, line in enumerate(lines):
            if re.search(r'\bif\b|\bwhile\b|\bfor\b', line):
                if_statements.append((i, line))
        
        # Choose a modification type
        mod_type = random.choice([
            "change_comparison",
            "invert_condition",
            "off_by_one",
            "change_operator",
            "reverse_logic"
        ])
        
        if if_statements:
            # Choose an if statement to modify
            idx, line = random.choice(if_statements)
            
            if mod_type == "change_comparison":
                # Change comparison operators
                comparisons = {"==": "!=", "!=": "==", ">": "<", "<": ">", ">=": "<=", "<=": ">="}
                for op, new_op in comparisons.items():
                    if op in line:
                        lines[idx] = line.replace(op, new_op, 1)
                        break
            
            elif mod_type == "invert_condition":
                # Add or remove a "not" to invert the condition
                if "not" in line:
                    lines[idx] = line.replace("not ", "", 1)
                else:
                    match = re.search(r'(if|while)\s+([^:]+):', line)
                    if match:
                        condition = match.group(2)
                        lines[idx] = line.replace(condition, f"not ({condition})", 1)
            
            elif mod_type == "off_by_one":
                # Introduce an off-by-one error
                for op in ["+", "-"]:
                    if op in line:
                        # If there's a number after the operator, change it
                        match = re.search(f'\\{op}\\s*(\\d+)', line)
                        if match:
                            num = int(match.group(1))
                            new_num = num + 1 if op == "+" else max(0, num - 1)
                            lines[idx] = line.replace(f"{op} {num}", f"{op} {new_num}", 1)
                            break
            
            elif mod_type == "change_operator":
                # Change arithmetic or logical operators
                operators = {"+": "-", "-": "+", "*": "/", "/": "*", "and": "or", "or": "and"}
                for op, new_op in operators.items():
                    if f" {op} " in line:
                        lines[idx] = line.replace(f" {op} ", f" {new_op} ", 1)
                        break
            
            elif mod_type == "reverse_logic":
                # Reverse the logic of a compound condition
                if " and " in line:
                    parts = line.split(" and ")
                    lines[idx] = line.replace(" and ".join(parts), " or ".join(parts), 1)
                elif " or " in line:
                    parts = line.split(" or ")
                    lines[idx] = line.replace(" or ".join(parts), " and ".join(parts), 1)
        
        else:
            # If no if statements found, introduce a different kind of logical error
            # Find variable assignments
            assignments = []
            for i, line in enumerate(lines):
                if "=" in line and "==" not in line and "!=" not in line:
                    assignments.append((i, line))
            
            if assignments:
                # Choose an assignment to modify
                idx, line = random.choice(assignments)
                
                # Modify the assignment
                if "+" in line:
                    lines[idx] = line.replace("+", "-", 1)
                elif "-" in line:
                    lines[idx] = line.replace("-", "+", 1)
                elif "*" in line:
                    lines[idx] = line.replace("*", "/", 1)
                elif "/" in line:
                    lines[idx] = line.replace("/", "*", 1)
                else:
                    # If no arithmetic operator, change the value
                    match = re.search(r'=\s*(\d+)', line)
                    if match:
                        num = int(match.group(1))
                        new_num = num + random.choice([-1, 1]) * random.randint(1, 3)
                        lines[idx] = line.replace(f"= {num}", f"= {new_num}", 1)
        
        # Update the code
        problem_state.code_context["code"] = '\n'.join(lines)
        
        # Add information about the bug
        if "bugs" not in problem_state.code_context:
            problem_state.code_context["bugs"] = []
        
        problem_state.code_context["bugs"].append({
            "type": BugCategory.LOGICAL,
            "line": idx + 1,
            "description": f"Logical error introduced in line {idx + 1}"
        })
    
    def _insert_performance_bug(self, problem_state: ProblemState) -> None:
        """
        Insert a performance bug into the problem state.
        
        Args:
            problem_state: The problem state to modify
        """
        code = problem_state.code_context["code"]
        lines = code.split('\n')
        if not lines:
            return
        
        # Find functions in the code
        functions = []
        current_func = None
        func_start = None
        for i, line in enumerate(lines):
            if line.strip().startswith("def "):
                if current_func:
                    functions.append((func_start, i - 1, current_func))
                current_func = line.strip()[4:].split("(")[0]
                func_start = i
            elif i == len(lines) - 1 and current_func:
                functions.append((func_start, i, current_func))
        
        if not functions:
            return
        
        # Choose a function to modify
        start_idx, end_idx, func_name = random.choice(functions)
        
        # Choose a modification type
        mod_type = random.choice([
            "add_nested_loop",
            "inefficient_data_structure",
            "redundant_computation"
        ])
        
        if mod_type == "add_nested_loop":
            # Find indentation of the function
            for i in range(start_idx + 1, end_idx + 1):
                if lines[i].strip():
                    indent = len(lines[i]) - len(lines[i].lstrip())
                    break
            else:
                indent = 4
            
            # Find a suitable place to add a nested loop
            for i in range(start_idx + 1, end_idx + 1):
                if "for " in lines[i] or "while " in lines[i]:
                    # Add a nested loop after this loop
                    inner_indent = len(lines[i]) - len(lines[i].lstrip()) + 4
                    inner_indent_str = ' ' * inner_indent
                    
                    # Add an unnecessary nested loop
                    lines.insert(i + 1, f"{inner_indent_str}for _ in range(100):  # Inefficient nested loop")
                    lines.insert(i + 2, f"{inner_indent_str}    pass")
                    
                    # Update indices
                    end_idx += 2
                    break
            else:
                # If no loop found, add one at the beginning of the function
                inner_indent = indent + 4
                inner_indent_str = ' ' * inner_indent
                
                # Find the first non-docstring line
                for i in range(start_idx + 1, end_idx + 1):
                    if lines[i].strip() and not (lines[i].strip().startswith('"""') or lines[i].strip().startswith("'''")):
                        # Add an unnecessary loop
                        lines.insert(i, f"{' ' * indent}for i in range(100):  # Inefficient loop")
                        lines.insert(i + 1, f"{inner_indent_str}pass")
                        
                        # Update indices
                        end_idx += 2
                        break
        
        elif mod_type == "ineff
# recursive_swe_bench/task_generators/bug_fixing.py (finalized)

        elif mod_type == "inefficient_data_structure":
            # Find indentation of the function
            for i in range(start_idx + 1, end_idx + 1):
                if lines[i].strip():
                    indent = len(lines[i]) - len(lines[i].lstrip())
                    break
            else:
                indent = 4
            
            # Find a suitable place to add inefficient data structure usage
            for i in range(start_idx + 1, end_idx + 1):
                if "def " not in lines[i] and lines[i].strip():
                    # Add inefficient data structure usage after this line
                    indent_str = ' ' * indent
                    
                    # Add inefficient code
                    lines.insert(i + 1, f"{indent_str}# Inefficient data structure usage")
                    lines.insert(i + 2, f"{indent_str}results = []")
                    lines.insert(i + 3, f"{indent_str}for i in range(1000):  # Unnecessarily large range")
                    lines.insert(i + 4, f"{indent_str}    # Using list instead of set for lookups")
                    lines.insert(i + 5, f"{indent_str}    if i % 10 in results:  # O(n) lookup instead of O(1)")
                    lines.insert(i + 6, f"{indent_str}        results.append(i)  # Unnecessary storage")
                    
                    # Update indices
                    end_idx += 6
                    break
        
        elif mod_type == "redundant_computation":
            # Find indentation of the function
            for i in range(start_idx + 1, end_idx + 1):
                if lines[i].strip():
                    indent = len(lines[i]) - len(lines[i].lstrip())
                    break
            else:
                indent = 4
            
            # Find a suitable place to add redundant computation
            for i in range(start_idx + 1, end_idx + 1):
                if "for " in lines[i] or "while " in lines[i]:
                    # Add redundant computation inside the loop
                    inner_indent = len(lines[i]) - len(lines[i].lstrip()) + 4
                    inner_indent_str = ' ' * inner_indent
                    
                    # Add redundant computation
                    lines.insert(i + 1, f"{inner_indent_str}# Redundant computation in each iteration")
                    lines.insert(i + 2, f"{inner_indent_str}temp_sum = 0")
                    lines.insert(i + 3, f"{inner_indent_str}for j in range(100):  # Unnecessary nested computation")
                    lines.insert(i + 4, f"{inner_indent_str}    temp_sum += j")
                    
                    # Update indices
                    end_idx += 4
                    break
        
        # Update the code
        problem_state.code_context["code"] = '\n'.join(lines)
        
        # Add information about the bug
        if "bugs" not in problem_state.code_context:
            problem_state.code_context["bugs"] = []
        
        problem_state.code_context["bugs"].append({
            "type": BugCategory.PERFORMANCE,
            "line": start_idx + 1,
            "description": f"Performance issue introduced in function '{func_name}'"
        })
    
    def _insert_edge_case_bug(self, problem_state: ProblemState) -> None:
        """
        Insert an edge case bug into the problem state.
        
        Args:
            problem_state: The problem state to modify
        """
        code = problem_state.code_context["code"]
        lines = code.split('\n')
        if not lines:
            return
        
        # Find functions in the code
        functions = []
        current_func = None
        func_start = None
        for i, line in enumerate(lines):
            if line.strip().startswith("def "):
                if current_func:
                    functions.append((func_start, i - 1, current_func))
                current_func = line.strip()[4:].split("(")[0]
                func_start = i
            elif i == len(lines) - 1 and current_func:
                functions.append((func_start, i, current_func))
        
        if not functions:
            return
        
        # Choose a function to modify
        start_idx, end_idx, func_name = random.choice(functions)
        
        # Choose a modification type
        mod_type = random.choice([
            "remove_boundary_check",
            "missing_edge_case",
            "type_assumption"
        ])
        
        if mod_type == "remove_boundary_check":
            # Find boundary checks (if statements with conditions that check boundaries)
            boundary_checks = []
            for i in range(start_idx + 1, end_idx + 1):
                if (re.search(r'if\s+.*(len|empty|<=|>=|<|>|==|!=)', lines[i]) and 
                    (("if not " in lines[i]) or ("if len(" in lines[i]) or 
                     ("if " in lines[i] and " == 0" in lines[i]) or
                     ("if " in lines[i] and " == []" in lines[i]) or
                     ("if " in lines[i] and " == ''" in lines[i]) or
                     ("if " in lines[i] and " is None" in lines[i]))):
                    boundary_checks.append(i)
            
            if boundary_checks:
                # Choose a boundary check to remove
                idx = random.choice(boundary_checks)
                
                # Comment out the boundary check
                lines[idx] = f"# {lines[idx]}  # Boundary check removed"
                
                # Comment out the body of the if statement
                i = idx + 1
                while i <= end_idx and (not lines[i].strip() or len(lines[i]) - len(lines[i].lstrip()) > len(lines[idx]) - len(lines[idx].lstrip())):
                    lines[i] = f"# {lines[i]}"
                    i += 1
            else:
                # If no boundary check found, add code that assumes a non-empty input
                # Find the first non-docstring line in the function
                for i in range(start_idx + 1, end_idx + 1):
                    if lines[i].strip() and not (lines[i].strip().startswith('"""') or lines[i].strip().startswith("'''")):
                        indent = len(lines[i]) - len(lines[i].lstrip())
                        indent_str = ' ' * indent
                        
                        # Add code that assumes non-empty input
                        lines.insert(i, f"{indent_str}# Missing check for empty input")
                        lines.insert(i + 1, f"{indent_str}first_item = items[0]  # Will fail on empty input")
                        
                        # Update indices
                        end_idx += 2
                        break
        
        elif mod_type == "missing_edge_case":
            # Find a suitable place to insert the bug
            for i in range(start_idx + 1, end_idx + 1):
                if ("/" in lines[i] or 
                    "if " in lines[i] and "==" in lines[i] or 
                    "if " in lines[i] and "!=" in lines[i]):
                    
                    if "/" in lines[i] and not re.search(r'if\s+.*!=\s*0', lines[i-1]):
                        # Add code that doesn't check for zero division
                        indent = len(lines[i]) - len(lines[i].lstrip())
                        indent_str = ' ' * indent
                        
                        # Extract the denominator
                        match = re.search(r'/\s*(\w+)', lines[i])
                        if match:
                            denominator = match.group(1)
                            
                            # Comment out any existing check
                            j = i - 1
                            while j >= start_idx and len(lines[j]) - len(lines[j].lstrip()) >= indent:
                                if f"if {denominator}" in lines[j] and "== 0" in lines[j]:
                                    lines[j] = f"# {lines[j]}  # Zero division check removed"
                                j -= 1
                            
                            # Add a comment about the missing check
                            lines.insert(i, f"{indent_str}# Missing check for zero division")
                            
                            # Update indices
                            end_idx += 1
                            break
                    
                    elif ("==" in lines[i] or "!=" in lines[i]) and "None" not in lines[i]:
                        # Comment out edge case check
                        lines[i] = f"# {lines[i]}  # Edge case check removed"
                        break
            else:
                # If no suitable place found, add code that doesn't handle an edge case
                # Find the first non-docstring line in the function
                for i in range(start_idx + 1, end_idx + 1):
                    if lines[i].strip() and not (lines[i].strip().startswith('"""') or lines[i].strip().startswith("'''")):
                        indent = len(lines[i]) - len(lines[i].lstrip())
                        indent_str = ' ' * indent
                        
                        # Add code that doesn't handle an edge case
                        lines.insert(i, f"{indent_str}# Missing handling for edge cases")
                        lines.insert(i + 1, f"{indent_str}# This function doesn't handle special cases properly")
                        
                        # Update indices
                        end_idx += 2
                        break
        
        elif mod_type == "type_assumption":
            # Find a suitable place to insert a type assumption bug
            for i in range(start_idx + 1, end_idx + 1):
                if re.search(r'for\s+\w+\s+in\s+\w+', lines[i]) or "=" in lines[i] and "[" in lines[i]:
                    # Extract the variable name
                    var_match = re.search(r'for\s+\w+\s+in\s+(\w+)', lines[i])
                    if not var_match:
                        var_match = re.search(r'(\w+)\s*=', lines[i])
                    
                    if var_match:
                        var_name = var_match.group(1)
                        indent = len(lines[i]) - len(lines[i].lstrip())
                        indent_str = ' ' * indent
                        
                        # Add code that assumes a specific type
                        lines.insert(i + 1, f"{indent_str}# Type assumption: {var_name} is assumed to be a list")
                        lines.insert(i + 2, f"{indent_str}if len({var_name}) > 0:  # Will fail if {var_name} doesn't support len()")
                        lines.insert(i + 3, f"{indent_str}    first = {var_name}[0]  # Will fail if {var_name} is not subscriptable")
                        
                        # Update indices
                        end_idx += 3
                        break
            else:
                # If no suitable place found, add code at the beginning of the function
                for i in range(start_idx + 1, end_idx + 1):
                    if lines[i].strip() and not (lines[i].strip().startswith('"""') or lines[i].strip().startswith("'''")):
                        indent = len(lines[i]) - len(lines[i].lstrip())
                        indent_str = ' ' * indent
                        
                        # Extract parameter name
                        param_match = re.search(r'def\s+\w+\s*\(\s*(\w+)', lines[start_idx])
                        param_name = param_match.group(1) if param_match else "input_data"
                        
                        # Add code that assumes a specific type
                        lines.insert(i, f"{indent_str}# Type assumption: {param_name} is assumed to be a specific type")
                        lines.insert(i + 1, f"{indent_str}{param_name}_str = str({param_name})  # Will fail if {param_name} can't be converted to string")
                        
                        # Update indices
                        end_idx += 2
                        break
        
        # Update the code
        problem_state.code_context["code"] = '\n'.join(lines)
        
        # Add information about the bug
        if "bugs" not in problem_state.code_context:
            problem_state.code_context["bugs"] = []
        
        problem_state.code_context["bugs"].append({
            "type": BugCategory.EDGE_CASE,
            "line": start_idx + 1,
            "description": f"Edge case bug introduced in function '{func_name}'"
        })
    
    def _generate_description(self, problem_state: ProblemState) -> str:
        """
        Generate a description for the current problem state.
        
        Args:
            problem_state: The problem state
            
        Returns:
            A descriptive prompt for the problem
        """
        # Base description
        bug_count = problem_state.code_context.get("bug_count", 0)
        plural = "bugs" if bug_count != 1 else "bug"
        
        base_desc = (
            f"Fix the {plural} in the code below. "
            f"There {'are' if bug_count != 1 else 'is'} {bug_count} {plural} to find and fix."
        )
        
        # Add information about bug categories
        if "bug_categories" in problem_state.code_context:
            categories = problem_state.code_context["bug_categories"]
            if categories:
                category_desc = ", ".join(categories)
                base_desc += f"\n\nThe code contains the following types of issues: {category_desc}."
        
        # Add requirements
        if problem_state.requirements:
            base_desc += "\n\nRequirements:"
            for i, req in enumerate(problem_state.requirements):
                base_desc += f"\n{i+1}. {req['description']}"
        
        # Add difficulty level
        difficulty_desc = "easy"
        if problem_state.difficulty > 0.3 and problem_state.difficulty <= 0.6:
            difficulty_desc = "moderate"
        elif problem_state.difficulty > 0.6 and problem_state.difficulty <= 0.8:
            difficulty_desc = "challenging"
        elif problem_state.difficulty > 0.8:
            difficulty_desc = "very challenging"
        
        base_desc += f"\n\nThis is a {difficulty_desc} bug fixing task."
        
        return base_desc


# Default implementation of TestRunner for when no custom runner is provided
class DefaultTestRunner:
    """
    Default test runner for evaluating solutions.
    
    This class runs tests against a solution file and collects the results.
    """
    
    def run_tests(
        self, 
        solution_file: Path, 
        test_files: List[Path],
        code_context: Dict[str, Any]
    ) -> Dict[str, Any]:
        """
        Run tests against a solution file.
        
        Args:
            solution_file: Path to the solution file
            test_files: List of test file paths
            code_context: Additional context about the code
            
        Returns:
            Dictionary containing test results
        """
        # Initialize results dictionary
        results = {
            "all_passed": True,
            "passed_tests": 0,
            "total_tests": 0,
            "tests": {},
            "execution": {
                "success": True,
                "error": None,
                "stdout": "",
                "stderr": ""
            },
            "execution_time": 0.0
        }
        
        # Check if solution file exists
        if not solution_file.exists():
            results["execution"]["success"] = False
            results["execution"]["error"] = f"Solution file not found: {solution_file}"
            results["all_passed"] = False
            return results
        
        # Try to import the solution module
        try:
            start_time = time.time()
            
            # Add solution directory to path
            sys.path.insert(0, str(solution_file.parent))
            
            # Import the solution module
            spec = importlib.util.spec_from_file_location(
                "solution", solution_file)
            solution_module = importlib.util.module_from_spec(spec)
            spec.loader.exec_module(solution_module)
            
            # Remove the solution directory from path
            sys.path.pop(0)
            
            # Record execution time
            end_time = time.time()
            results["execution_time"] = end_time - start_time
            
        except Exception as e:
            results["execution"]["success"] = False
            results["execution"]["error"] = str(e)
            results["all_passed"] = False
            return results
        
        # Run each test file
        for test_file in test_files:
            # Skip if the test file doesn't exist
            if not test_file.exists():
                continue
            
            try:
                # Set up test loading
                loader = unittest.TestLoader()
                
                # Add test directory to path
                sys.path.insert(0, str(test_file.parent))
                
                # Capture stdout and stderr
                stdout_buffer = io.StringIO()
                stderr_buffer = io.StringIO()
                
                # Create a test suite from the test file
                test_suite = loader.discover(
                    str(test_file.parent),
                    pattern=test_file.name
                )
                
                # Count test cases
                test_count = 0
                for suite in test_suite:
                    for test_case in suite:
                        test_count += test_case.countTestCases()
                
                results["total_tests"] += test_count
                
                # Run the tests with captured output
                with redirect_stdout(stdout_buffer), redirect_stderr(stderr_buffer):
                    test_runner = unittest.TextTestRunner(verbosity=2)
                    test_result = test_runner.run(test_suite)
                
                # Get the captured output
                stdout = stdout_buffer.getvalue()
                stderr = stderr_buffer.getvalue()
                
                # Remove the test directory from path
                sys.path.pop(0)
                
                # Check if all tests passed
                if not test_result.wasSuccessful():
                    results["all_passed"] = False
                
                # Count passed tests
                passed_tests = test_count - len(test_result.failures) - len(test_result.errors)
                results["passed_tests"] += passed_tests
                
                # Store individual test results
                test_name = test_file.stem
                results["tests"][test_name] = {
                    "passed": test_result.wasSuccessful(),
                    "failures": len(test_result.failures),
                    "errors": len(test_result.errors),
                    "skipped": len(test_result.skipped),
                    "total": test_count,
                    "passed_count": passed_tests,
                    "stdout": stdout,
                    "stderr": stderr
                }
                
                # Store details for individual test failures
                for failure in test_result.failures + test_result.errors:
                    test_id = failure[0].id().split('.')[-1]
                    failure_message = failure[1]
                    
                    # Try to extract expected and actual values
                    expected_match = re.search(r'Expected\s*:(.+)', failure_message)
                    actual_match = re.search(r'Actual\s*:(.+)', failure_message)
                    
                    expected = expected_match.group(1).strip() if expected_match else None
                    actual = actual_match.group(1).strip() if actual_match else None
                    
                    if test_id not in results["tests"]:
                        results["tests"][test_id] = {}
                    
                    results["tests"][test_id].update({
                        "passed": False,
                        "message": failure_message,
                        "expected": expected,
                        "actual": actual
                    })
                
            except Exception as e:
                # If there's an error in the test file itself
                results["all_passed"] = False
                test_name = test_file.stem
                results["tests"][test_name] = {
                    "passed": False,
                    "error": str(e),
                    "failures": 0,
                    "errors": 1,
                    "skipped": 0,
                    "total": 1,
                    "passed_count": 0
                }
                results["total_tests"] += 1
        
        return results