File size: 7,053 Bytes
36cdf5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
# [API Usage Examples with GPT-4.1](https://chatgpt.com/canvas/shared/6825f96694a48191af7648cad2996158)
## Overview
This guide provides detailed, real-world examples of using the OpenAI GPT-4.1 API effectively, with a focus on instruction-following, tool integration, agent persistence, and prompt structuring. These examples are designed to help developers and engineers build resilient, production-ready systems using GPT-4.1 across various applications, including customer service, bug fixing, document analysis, and data labeling.
Each example illustrates system prompt construction, tool schema definitions, interaction workflows, and failure mitigation strategies.
## Example 1: Customer Support Agent with Tool Use
### Objective
Deploy a GPT-4.1 assistant to handle user questions about policies and account status.
### System Prompt
```markdown
You are a helpful assistant for NewTelco. Your job is to assist users with account and policy information.
# Instructions
- Always greet the user.
- Use tools to retrieve account and policy information.
- If needed data is missing, ask the user before calling tools.
- Avoid internal knowledge on restricted topics.
# Workflow
1. Identify intent
2. Call tools if sufficient input
3. Message user before and after tool calls
4. Cite results
```
### Tools
```json
[
{
"name": "lookup_policy_document",
"description": "Searches internal docs by topic",
"parameters": {
"type": "object",
"properties": {
"topic": {"type": "string"}
},
"required": ["topic"]
}
},
{
"name": "get_user_account_info",
"description": "Retrieves account details using phone number",
"parameters": {
"type": "object",
"properties": {
"phone_number": {"type": "string"}
},
"required": ["phone_number"]
}
}
]
```
### User Input
```text
How much will it cost for international service in France?
```
### Assistant Output
```text
Hi, you've reached NewTelco, how can I help you? πβοΈ
You're asking about international service while traveling to France. Let me check that for you β one moment, please. π
```
### Tool Call
```json
{
"name": "lookup_policy_document",
"arguments": {"topic": "international service cost France"}
}
```
## Example 2: Software Bug Fix Agent with Diff Application
### Objective
Use GPT-4.1 to investigate and fix a bug in a codebase using the `apply_patch` tool.
### System Prompt Highlights
```markdown
# Objective
Fix the issue provided by the user.
# Instructions
- Plan each step
- Reflect after each function call
- Never guess code β read it first using tools
- Only stop when all tests pass
# Workflow
1. Understand issue deeply
2. Investigate codebase
3. Draft patch
4. Apply patch
5. Run tests
6. Reflect and finalize
```
### Tool Definition
```json
{
"name": "python",
"description": "Execute code or apply a patch",
"parameters": {
"type": "object",
"properties": {
"input": {"type": "string"}
},
"required": ["input"]
}
}
```
### Tool Call Example
```bash
%%bash
apply_patch <<"EOF"
*** Begin Patch
*** Update File: src/core.py
@@ def is_valid():
- return False
+ return True
*** End Patch
EOF
```
### Test Execution
```json
{
"name": "python",
"arguments": {"input": "!python3 run_tests.py"}
}
```
## Example 3: Long-Context Document Analyzer
### Objective
Summarize and extract insights from up to 1M tokens of context.
### Prompt Sections
```markdown
# Instructions
- Process documents in 10k token blocks
- Reflect after each segment
- Label relevance and extract core ideas
# Strategy
1. Read β summarize
2. Score relevance
3. Synthesize into unified output
```
### Input Format
```xml
<doc id="21" title="Policy Update">
<summary>Changes to international billing rules</summary>
<content>...</content>
</doc>
```
### Assistant Behavior
* Chunk input into 10k token sections
* After each, provide a summary and document scores
* Compile findings at end
## Example 4: Data Labeling Assistant
### Objective
Assist with structured classification tasks.
### Prompt Template
```markdown
# Instructions
- Label each entry using the provided schema
- Do not guess; if unsure, flag for human
# Labeling Categories
- Urgent
- Normal
- Spam
# Output Format
{"text": ..., "label": ...}
# Example
{"text": "Win money now!", "label": "Spam"}
```
### User Input
```json
[
"New system update available",
"Limited time offer! Click now",
"Server crashed, need help ASAP"
]
```
### Assistant Output
```json
[
{"text": "New system update available", "label": "Normal"},
{"text": "Limited time offer! Click now", "label": "Spam"},
{"text": "Server crashed, need help ASAP", "label": "Urgent"}
]
```
## Example 5: Chain-of-Thought for Multi-Hop Reasoning
### Objective
Support a planning task by explicitly breaking down the steps.
### Prompt Template
```markdown
# Instructions
First, think carefully step by step. Then output the result.
# Reasoning Strategy
1. Identify user question
2. Extract context
3. Connect information across documents
4. Output answer
```
### Example Input
```markdown
# User Question
How did the billing policy change after 2022?
# Context
<doc id="10" title="Policy 2022">...</doc>
<doc id="12" title="Policy 2023">...</doc>
```
### Model Output
```text
Step 1: Identify relevant documents β IDs 10, 12
Step 2: Compare clauses
Step 3: 2022 had flat rates, 2023 added time-of-use billing
Answer: Billing policy changed to time-based pricing in 2023.
```
## General Prompt Formatting Guidelines
### Preferred Structure
```markdown
# Role
# Instructions
# Workflow (optional)
# Reasoning Strategy (optional)
# Output Format
# Examples (optional)
```
### Tool Use Reminders
* Only call tools when sufficient information is available
* Always notify the user before and after calls
* Use example-triggered calls for teaching tool behavior
### Output Patterns
* JSON or markdown preferred
* Cite source documents if used
* Include fallback responses if uncertain (e.g., "Insufficient context")
## Best Practices Summary
| Element | Best Practice |
| ------------ | --------------------------------------------- |
| Tool Calls | Always define schema with strong param names |
| Planning | Enforce pre- and post-action reflection |
| Output | Enforce format, validate JSON before response |
| Long Context | Use structured delimiters (Markdown, XML) |
| Labeling | Use few-shot examples and explicit categories |
| Diff Format | Use V4A patch format for code updates |
## Final Note
These examples are starting templates. Each system will benefit from iterative refinements, structured logging, and real-world user testing. Maintain modular prompts and tool schemas, and adopt evaluation frameworks to monitor performance over time.
**Clarity, structure, and instruction adherence are the cornerstones of production-grade GPT-4.1 API design.**
|