File size: 7,397 Bytes
36cdf5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
# [OpenAI Cookbook Pro: Comprehensive GPT-4.1 Application Framework](https://chatgpt.com/canvas/shared/6825fb38b0e0819184bb3153a3eb1a52)

## Introduction

This document represents a fully evolved, professional-grade implementation of the OpenAI 4.1 Cookbook. It serves as a unified, production-ready guide for applied large language model deployment using GPT-4.1. Each section draws from OpenAI's internal best practices and external application patterns to provide a durable blueprint for advanced AI developers, architects, and researchers.

This Cookbook Pro version encapsulates:

* High-performance agentic prompting workflows
* Instruction literalism and planning strategies
* Long-context structuring methods
* Tool-calling schemas and evaluation principles
* Diff management and debugging strategies

---

## Part I — Agentic Workflows

### 1.1 Prompt Harness Configuration

#### Three Essential Prompt Reminders:

```markdown
# Persistence
You are an agent—keep working until the task is fully resolved. Do not yield control prematurely.

# Tool-Calling
If unsure about file or codebase content, use tools to gather accurate information. Do not guess.

# Planning
Before and after every function call, explicitly plan and reflect. Avoid tool-chaining without synthesis.
```

These instructions significantly increase performance and enable stateful execution in multi-message tasks.

### 1.2 Example: SWE-Bench Verified Prompt

```markdown
# Objective
Fully resolve a software bug from an open-source issue.

# Workflow
1. Understand the problem.
2. Explore relevant files.
3. Plan incremental fix steps.
4. Apply code patches.
5. Test thoroughly.
6. Reflect and iterate until all tests pass.

# Constraint
Only end the session when the problem is fully fixed and verified.
```

---

## Part II — Instruction Following & Output Control

### 2.1 Instruction Clarity Protocol

Use:

* `# Instructions`: General rules
* `## Subsections`: Detailed formatting and behavioral constraints
* Explicit instruction/response pairings

### 2.2 Sample Format

```markdown
# Instructions
- Always greet the user.
- Avoid internal knowledge for company-specific questions.
- Cite retrieved content.

# Workflow
1. Acknowledge the user.
2. Call tools before answering.
3. Reflect and respond.

# Output Format
Use: JSON with `title`, `answer`, `source` fields.
```

---

## Part III — Tool Integration and Execution

### 3.1 Schema Guidelines

Define tools via the `tools` API parameter, not inline prompt injection.

#### Tool Schema Template

```json
{
  "name": "lookup_policy_document",
  "description": "Retrieve company policy details by topic.",
  "parameters": {
    "type": "object",
    "properties": {
      "topic": {"type": "string"}
    },
    "required": ["topic"]
  }
}
```

### 3.2 Tool Usage Best Practices

* Define sample tool calls in `# Examples` sections
* Never overload the `description` field
* Validate inputs with required keys
* Prompt model to message user before and after calls

---

## Part IV — Planning and Chain-of-Thought Induction

### 4.1 Step-by-Step Prompting Pattern

```markdown
# Reasoning Strategy
1. Query breakdown
2. Context extraction
3. Document relevance ranking
4. Answer synthesis

# Instruction
Think step by step. Summarize relevant documents before answering.
```

### 4.2 Failure Mitigation Strategies

| Problem           | Fix                                         |
| ----------------- | ------------------------------------------- |
| Early response    | Add: “Don’t conclude until fully resolved.” |
| Tool guess        | Add: “Use tool or ask for missing data.”    |
| CoT inconsistency | Prompt: “Summarize findings at each step.”  |

---

## Part V — Long Context Optimization

### 5.1 Instruction Anchoring

* Repeat instructions at both top and bottom of long input
* Use structured section headers (Markdown/XML)

### 5.2 Effective Delimiters

| Type     | Example                 | Use Case           |                        |
| -------- | ----------------------- | ------------------ | ---------------------- |
| Markdown | `## Section Title`      | General purpose    |                        |
| XML      | `<doc id='1'>...</doc>` | Document ingestion |                        |
| ID/Title | \`ID: 3                 | TITLE: ...\`       | Knowledge base parsing |

### 5.3 Example Prompt

```markdown
# Instructions
Use only documents provided. Reflect every 10K tokens.

# Long Context Input
<doc id="14" title="Security Policy">...</doc>
<doc id="15" title="Update Note">...</doc>

# Final Instruction
List all relevant IDs, then synthesize a summary.
```

---

## Part VI — Diff Generation and Patch Application

### 6.1 Recommended Format: V4A Diff

```bash
*** Begin Patch
*** Update File: src/utils.py
@@ def sanitize()
-    return text
+    return text.strip()
*** End Patch
```

### 6.2 Diff Patch Execution Tool

```json
{
  "name": "apply_patch",
  "description": "Apply structured code patches to files",
  "parameters": {
    "type": "object",
    "properties": {
      "input": {"type": "string"}
    },
    "required": ["input"]
  }
}
```

### 6.3 Workflow

1. Investigate issue
2. Draft V4A patch
3. Call `apply_patch`
4. Run tests
5. Reflect

### 6.4 Edge Case Handling

| Symptom             | Action                              |
| ------------------- | ----------------------------------- |
| Incorrect placement | Add `@@ def` or class scope headers |
| Test failures       | Revise patch + rerun                |
| Silent error        | Check for malformed format          |

---

## Part VII — Output Evaluation Framework

### 7.1 Metrics to Track

| Metric                     | Description                                          |
| -------------------------- | ---------------------------------------------------- |
| Tool Call Accuracy         | Valid input usage and correct function selection     |
| Response Format Compliance | Matches expected schema (e.g., JSON)                 |
| Instruction Adherence      | Follows rules and workflow order                     |
| Plan Reflection Rate       | Frequency and quality of plan → act → reflect cycles |

### 7.2 Eval Tags for Audit

```markdown
# Eval: TOOL_USE_FAIL
# Eval: INSTRUCTION_MISINTERPRET
# Eval: OUTPUT_FORMAT_OK
```

---

## Part VIII — Unified Prompt Template

Use this as a base structure for all GPT-4.1 projects:

```markdown
# Role
You are a [role] tasked with [objective].

# Instructions
[List core rules here.]

## Response Rules
- Always use structured formatting
- Never repeat phrases verbatim

## Workflow
[Include ordered plan.]

## Reasoning Strategy
[Optional — for advanced reasoning tasks.]

# Output Format
[Specify format, e.g., JSON or Markdown.]

# Examples
## Example 1
Input: "..."
Output: {...}
```

---

## Final Notes

GPT-4.1 represents a leap forward in real-world agentic performance, tool adherence, long-context reliability, and instruction precision. However, performance hinges on prompt clarity, structured reasoning scaffolds, and modular tool integration.

To deploy GPT-4.1 at professional scale:

* Treat every prompt as a program
* Document assumptions
* Version control your system messages
* Build continuous evals for regression prevention

**Structure drives performance. Precision enables autonomy.**

Welcome to Cookbook Pro.

—End of Guide—