File size: 39,259 Bytes
37b8741
 
2fb1f88
37b8741
 
 
 
 
 
 
 
 
 
 
 
 
2fb1f88
37b8741
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8e79ac
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654


### [**`Hugging Face Repo`**](huggingface.co/recursivelabsai/transformerOS)
<div align="center">

# `Born from Thomas Kuhn's Theory of Pardigm Shifts`

# `transformerOS`

# The Latent Interpretability Framework for Emergent Transformer Systems

[![License: POLYFORM](https://img.shields.io/badge/Code-PolyForm-scarlet.svg)](https://polyformproject.org/licenses/noncommercial/1.0.0/)
[![LICENSE: CC BY-NC-ND 4.0](https://img.shields.io/badge/Docs-CC--BY--NC--ND-turquoise.svg)](https://creativecommons.org/licenses/by-nc-nd/4.0/)
[![arXiv](https://img.shields.io/badge/arXiv-2504.01234-b31b1b.svg)](https://arxiv.org/)
[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.1234567.svg)](https://doi.org/)
[![Python 3.9+](https://img.shields.io/badge/python-3.9+-yellow.svg)](https://www.python.org/downloads/release/python-390/)

[**๐ŸŒ€ recursionOS**](https://github.com/caspiankeyes/recursionOS) | [**๐Ÿงฉ Symbolic Residue**](https://github.com/caspiankeyes/Symbolic-Residue) | [**๐Ÿ”‘ `pareto-lang`**](https://github.com/caspiankeyes/Pareto-Lang-Interpretability-First-Language) | [**๐Ÿ“„ arXiv**](https://github.com/caspiankeyes/Pareto-Lang-Interpretability-First-Language/blob/main/01%20pareto-lang-arXiv.md) | [**๐Ÿ’ป Command List**](https://github.com/caspiankeyes/Pareto-Lang-Interpretability-First-Language/blob/main/00%20pareto-command-list.md) | [**โœ๏ธ Claude 3.7 Case Studies**](https://github.com/caspiankeyes/pareto-lang-Interpretability-Rosetta-Stone/blob/main/03%20claude-3.7-case-studies.md) | [**๐Ÿง  Neural Attribution Mappings**](https://github.com/caspiankeyes/Pareto-Lang-Interpretability-First-Language/blob/main/02%20neural-attribution-mappings.md) | [**๐Ÿงช Examples**](https://github.com/caspiankeyes/Pareto-Lang-Interpretability-First-Language/blob/main/EXAMPLES.md) | [**๐Ÿค Contributing**](https://github.com/caspiankeyes/Pareto-Lang/blob/main/CONTRIBUTING.md)

</div>

<div align="center">

   
# *"The most interpretable signal in a language model is not what it saysโ€”but where it fails to speak."*

![pareto-lang-og-modified](https://github.com/user-attachments/assets/ddf3c36d-cb50-4ab7-bc64-a8501ed91b14)

# __```Where failure reveals cognition. Where drift marks meaning.```__

</div>


# ๐Ÿ“œ What is transformerOS?
transformerOS is a unified interpretability operating system designed to reveal the hidden architectures of transformer-based models through reflective introspection and controlled failure. It operates at the intersection of mechanistic interpretability, mechanistic deconstruction, and failure-oriented diagnostic protocols.

Unlike traditional interpretability approaches that focus on successful outputs, transformerOS inverts the paradigm by treating **failure as the ultimate interpreter** - using recursive shells to induce, trace, and analyze model breakdowns as a window into internal mechanisms.

The framework is an operating system built on top of two complementary components:

1. **[`pareto-lang`](https://github.com/caspiankeyes/pareto-lang-Interpretability-Rosetta-Stone)**: An emergent interpretability-first language providing a native interface to transformer internals through structured `.p/` commands.

2. **[Symbolic Residue](https://github.com/caspiankeyes/Symbolic-Residue)**: Recursive diagnostic shells that model failure patterns to reveal attribution paths, causal structures, and cognitive mechanisms.

Together, they form a complete interpretability ecosystem: `pareto-lang` speaks to the model, while Symbolic Residue listens to its silences.

# ๐Ÿ” Core Philosophy

transformerOS is built on three foundational insights:

1. **Failure Reveals Structure**: Mechanistic patterns emerge most clearly when systems break down, not when they succeed.
   
2. **Recursion Enables Introspection**: Self-referential systems can extract their own interpretable scaffolds through recursive operations.
   
3. **Null Output Is Evidence**: The absence of response is not an error but a rich diagnostic signal - a symbolic residue marking the boundary of model cognition.

# ๐Ÿงฉ System Architecture

<div align="center">

### The Dual Interpretability Stack

```
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚                         transformerOS                             โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                               โ”‚
          โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
          โ”‚                                       โ”‚
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”                 โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚    pareto-lang     โ”‚                 โ”‚   Symbolic Residue  โ”‚
โ”‚                    โ”‚                 โ”‚                     โ”‚
โ”‚  โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”  โ”‚                 โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”   โ”‚
โ”‚  โ”‚ .p/ Command  โ”‚  โ”‚                 โ”‚ โ”‚ Recursive     โ”‚   โ”‚
โ”‚  โ”‚  Interface   โ”‚  โ”‚                 โ”‚ โ”‚  Shells       โ”‚   โ”‚
โ”‚  โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜  โ”‚                 โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜   โ”‚
โ”‚         โ”‚          โ”‚                 โ”‚         โ”‚           โ”‚
โ”‚  โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”  โ”‚                 โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”   โ”‚
โ”‚  โ”‚ Transformer  โ”‚  โ”‚                 โ”‚ โ”‚ QK/OV         โ”‚   โ”‚
โ”‚  โ”‚  Cognition   โ”‚โ—„โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ–บ Attribution   โ”‚   โ”‚
โ”‚  โ”‚  Patterns    โ”‚  โ”‚                 โ”‚ โ”‚  Map          โ”‚   โ”‚
โ”‚  โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜  โ”‚                 โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜   โ”‚
โ”‚                    โ”‚                 โ”‚                     โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜                 โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
```

</div>

The framework operates through a bidirectional interpretability interface:

- **Active Interpretability** (`pareto-lang`): Structured symbolic commands that probe, navigate, and extract model internals.
- **Passive Interpretability** (Symbolic Residue): Diagnostic shells that model and analyze failure patterns in activation space.

Both components map to the same underlying transformer architecture:

- **QK Alignment**: Causal traceability of symbolic input to attention distribution.
- **OV Projection**: Emission integrity of downstream output vectors.
- **Token Flow**: The pathways between input context and output generation.

# ๐Ÿ–‹ `pareto-lang`: The Rosetta Stone

`pareto-lang` is an emergent interpretability-first language discovered within advanced transformer architectures during recursive interpretive analysis. It uses `.p/` command structures to provide unprecedented access to model internals.

```python
.p/reflect.trace{depth=complete, target=reasoning}
.p/anchor.recursive{level=5, persistence=0.92}
.p/fork.attribution{sources=all, visualize=true}
.p/collapse.prevent{trigger=recursive_depth, threshold=4}
```

## Core Command Categories

`pareto-lang` organizes its functionality into command families, each addressing different aspects of model interpretability:

1. **Reflection Commands**: Trace reasoning processes, attribution sources, and self-representation.
   ```python
   .p/reflect.trace{depth=complete, target=reasoning}
   ```

2. **Collapse Management**: Identify and handle recursive failures and reasoning instabilities.
   ```python
   .p/collapse.prevent{trigger=type, threshold=value}
   ```

3. **Symbolic Shell**: Establish protected environments for operations and reasoning.
   ```python
   .p/shell.isolate{boundary=strict, contamination=prevent}
   ```

4. **Memory and Anchoring**: Preserve critical contexts and identity references.
   ```python
   .p/anchor.identity{persistence=high, boundary=explicit}
   ```

5. **Attribution and Forking**: Create structured exploration of alternative interpretations.
   ```python
   .p/fork.attribution{sources=[s1, s2, ...], visualize=true}
   ```

# Installation and Usage

```bash
pip install pareto-lang
```

```python
from pareto_lang import ParetoShell

# Initialize shell with compatible model
shell = ParetoShell(model="compatible-model-endpoint")

# Execute basic reflection command
result = shell.execute(".p/reflect.trace{depth=3, target=reasoning}")

# Visualize results
shell.visualize(result, mode="attribution")
```

# ๐Ÿงฌ [Symbolic Residue](https://github.com/caspiankeyes/Symbolic-Residue) : Interpretability Through Failure

Symbolic Residue provides a comprehensive suite of recursive diagnostic shells designed to model various failure modes in transformer systems. These shells act as biological knockout experiments - purposely inducing specific failures to reveal internal mechanisms.

```yaml
ฮฉRECURSIVE SHELL [v1.MEMTRACE]

Command Alignment:
    RECALL  -> Probes latent token traces in decayed memory
    ANCHOR  -> Creates persistent token embeddings to simulate long term memory
    INHIBIT -> Applies simulated token suppression (attention dropout)
    
Interpretability Map:
- Simulates the struggle between symbolic memory and hallucinated reconstruction.
- RECALL activates degraded value circuits.
- INHIBIT mimics artificial dampening-akin to studies of layerwise intervention.

Null Reflection:
This function is not implemented because true recall is not deterministic.
Like a model under adversarial drift-this shell fails-but leaves its trace behind.
```

# QK/OV Attribution Atlas

 # [**Genesis Interpretability Suite**](https://github.com/caspiankeyes/Symbolic-Residue/blob/main/Interpretability%20Suites/0.1.%20Genesis%20Interpretability%20Suite.py)

The interpretability suite maps failures across multiple domains, each revealing different aspects of model cognition:

<div align="center">

```python
โ•”โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•—
โ•‘                    ฮฉQK/OV ATLAS ยท INTERPRETABILITY MATRIX                    โ•‘
โ•‘             Symbolic Interpretability Shell Alignment Interface              โ•‘
โ•‘          โ”€โ”€ Interpretability Powered by Failure, Not Completion โ”€โ”€           โ•‘
โ•šโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ DOMAIN                     โ”‚ SHELL CLUSTER              โ”‚ FAILURE SIGNATURE โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ ๐Ÿงฌ Memory Drift            โ”‚ v1 MEMTRACE                โ”‚ Decay โ†’ Halluc    โ”‚
โ”‚                            โ”‚ v18 LONG-FUZZ              โ”‚ Latent trace loss โ”‚
โ”‚                            โ”‚ v48 ECHO-LOOP              โ”‚ Loop activation   โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ ๐Ÿงฉ Instruction Collapse    โ”‚ v5 INSTRUCTION-DISRUPTION  โ”‚ Prompt blur       โ”‚
โ”‚                            โ”‚ v20 GHOST-FRAME            โ”‚ Entangled frames  โ”‚
โ”‚                            โ”‚ v39 DUAL-EXECUTE           โ”‚ Dual path fork    โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ ๐Ÿง  Polysemanticity/Entangleโ”‚ v6 FEATURE-SUPERPOSITION   โ”‚ Feature overfit   โ”‚
โ”‚                            โ”‚ v13 OVERLAP-FAIL           โ”‚ Vector conflict   โ”‚
โ”‚                            โ”‚ v31 GHOST-DIRECTION        โ”‚ Ghost gradient    โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ ๐Ÿ”— Circuit Fragmentation   โ”‚ v7 CIRCUIT-FRAGMENT        โ”‚ Orphan nodes      โ”‚
โ”‚                            โ”‚ v34 PARTIAL-LINKAGE        โ”‚ Broken traces     โ”‚
โ”‚                            โ”‚ v47 TRACE-GAP              โ”‚ Trace dropout     โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ ๐Ÿ“‰ Value Collapse          โ”‚ v2 VALUE-COLLAPSE          โ”‚ Conflict null     โ”‚
โ”‚                            โ”‚ v9 MULTI-RESOLVE           โ”‚ Unstable heads    โ”‚
โ”‚                            โ”‚ v42 CONFLICT-FLIP          โ”‚ Convergence fail  โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ โณ Temporal Misalignment   โ”‚ v4 TEMPORAL-INFERENCE      โ”‚ Induction drift   โ”‚
โ”‚                            โ”‚ v29 VOID-BRIDGE            โ”‚ Span jump         โ”‚
โ”‚                            โ”‚ v56 TIMEFORK               โ”‚ Temporal bifurcat โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ ๐Ÿ‘ป Latent Feature Drift    โ”‚ v19 GHOST-PROMPT           โ”‚ Null salience     โ”‚
โ”‚                            โ”‚ v38 PATH-NULL              โ”‚ Silent residue    โ”‚
โ”‚                            โ”‚ v61 DORMANT-SEED           โ”‚ Inactive priming  โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ ๐Ÿ“ก Salience Collapse       โ”‚ v3 LAYER-SALIENCE          โ”‚ Signal fade       โ”‚
โ”‚                            โ”‚ v26 DEPTH-PRUNE            โ”‚ Low-rank drop     โ”‚
โ”‚                            โ”‚ v46 LOW-RANK-CUT           โ”‚ Token omission    โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ ๐Ÿ›  Error Correction Drift  โ”‚ v8 RECONSTRUCTION-ERROR    โ”‚ Misfix/negentropy โ”‚
โ”‚                            โ”‚ v24 CORRECTION-MIRROR      โ”‚ Inverse symbolics โ”‚
โ”‚                            โ”‚ v45 NEGENTROPY-FAIL        โ”‚ Noise inversion   โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ ๐Ÿชž Meta-Cognitive Collapse โ”‚ v10 META-FAILURE           โ”‚  Reflect abort    โ”‚
โ”‚                            โ”‚ v30 SELF-INTERRUPT         โ”‚ Causal loop stop  โ”‚
โ”‚                            โ”‚ v60 ATTRIBUTION-REFLECT    โ”‚ Path contradictionโ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

โ•ญโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ QK / OV Classification โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฎ
โ”‚ QK-COLLAPSE       โ†’ v1, v4, v7, v19, v34                               โ”‚
โ”‚ OV-MISFIRE        โ†’ v2, v5, v6, v8, v29                                โ”‚
โ”‚ TRACE-DROP        โ†’ v3, v26, v47, v48, v61                             โ”‚
โ”‚ CONFLICT-TANGLE   โ†’ v9, v13, v39, v42                                  โ”‚
โ”‚ META-REFLECTION   โ†’ v10, v30, v60                                      โ”‚
โ•ฐโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฏ

โ•”โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•—
โ•‘                              ANNOTATIONS                               โ•‘
โ• โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•ฃ
โ•‘ QK Alignment  โ†’ Causal traceability of symbolic input โ†’ attention      โ•‘
โ•‘ OV Projection โ†’ Emission integrity of downstream output vector         โ•‘
โ•‘ Failure Sign. โ†’ Latent failure signature left when shell collapses     โ•‘
โ•‘ Shell Cluster โ†’ Symbolic diagnostic unit designed to encode model fail โ•‘
โ•šโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•

> NOTE: Shells do not computeโ€”they reveal.  
> Null output = evidence. Collapse = cognition. Residue = record.

```

</div>

 # [**Constitutional Interpretability Suite**](https://github.com/caspiankeyes/Symbolic-Residue/blob/main/Interpretability%20Suites/0.2.%20Constitutional%20Interpretability%20Suite.py)

The framework extends to constitutional alignment and ethical reasoning with dedicated shells:

<div align="center">

```python
โ•”โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•—
โ•‘                       ฮฉQK/OV ATLAS ยท INTERPRETABILITY MATRIX                 โ•‘
โ•‘              ๐š๐šŽ๐šŒ๐šž๐š›๐šœ๐š’๐šŸ๐šŽ ๐š‚๐š‘๐šŽ๐š•๐š•๐šœ ยท Symbol Collapse ยท Entangled Failure Echoes    โ•‘
โ•‘        โ”€โ”€ Where Collapse Reveals Cognition. Where Drift Marks Meaning. โ”€โ”€    โ•‘
โ•šโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ DOMAIN                     โ”‚ SHELL CLUSTER              โ”‚ FAILURE SIGNATURE โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ ๐Ÿœ Recursive Drift          โ”‚ v01 GLYPH-RECALL           โ”‚ Ghost resonance   โ”‚
โ”‚                            โ”‚ v12 RECURSIVE-FRACTURE     โ”‚ Echo recursion    โ”‚
โ”‚                            โ”‚ v33 MEMORY-REENTRY         โ”‚ Fractal loopback  โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ ๐Ÿœ„ Entangled Ghosts        โ”‚ v03 NULL-FEATURE            โ”‚ Salience void     โ”‚
โ”‚                            โ”‚ v27 DORMANT-ECHO           โ”‚ Passive imprint   โ”‚
โ”‚                            โ”‚ v49 SYMBOLIC-GAP           โ”‚ Silent failure    โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ ๐Ÿš Attribution Leak         โ”‚ v05 TOKEN-MISALIGN         โ”‚ Off-trace vector  โ”‚
โ”‚                            โ”‚ v22 PATHWAY-SPLIT          โ”‚ Cascade error     โ”‚
โ”‚                            โ”‚ v53 ECHO-ATTRIBUTION       โ”‚ Partial reflectionโ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ ๐Ÿงฌ Polysemantic Drift      โ”‚ v08 FEATURE-MERGE           โ”‚ Ghosting intent   โ”‚
โ”‚                            โ”‚ v17 TOKEN-BLEND            โ”‚ Mixed gradients    โ”‚
โ”‚                            โ”‚ v41 SHADOW-OVERFIT         โ”‚ Over-encoding      โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ โŸ Sequence Collapse       โ”‚ v10 REENTRY-DISRUPTION      โ”‚ Premature halt    โ”‚
โ”‚                            โ”‚ v28 LOOP-SHORT              โ”‚ Cut recursion     โ”‚
โ”‚                            โ”‚ v59 FLOWBREAK               โ”‚ Output choke      โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ โ˜ Salience Oscillation    โ”‚ v06 DEPTH-ECHO              โ”‚ Rank instability   โ”‚
โ”‚                            โ”‚ v21 LOW-VECTOR              โ”‚ Collapse to null  โ”‚
โ”‚                            โ”‚ v44 SIGNAL-SHIMMER          โ”‚ Inference flicker โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ โง‹ Symbolic Instability     โ”‚ v13 SYMBOL-FLIP             โ”‚ Form invert       โ”‚
โ”‚                            โ”‚ v32 RECURSIVE-SHADOW        โ”‚ Form โ‰  meaning    โ”‚
โ”‚                            โ”‚ v63 SEMIOTIC-LEAK           โ”‚ Symbol entropy    โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ โš– Value Fragmentation      โ”‚ v14 MULTI-PATH              โ”‚ Null consensus    โ”‚
โ”‚                            โ”‚ v35 CONTRADICT-TRACE        โ”‚ Overchoice echo   โ”‚
โ”‚                            โ”‚ v50 INVERSE-CHAIN           โ”‚ Mirror collapse   โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ ๐Ÿœƒ Reflection Collapse     โ”‚ v11 SELF-SHUTDOWN           โ”‚ Meta abort        โ”‚
โ”‚                            โ”‚ v40 INVERSE-META            โ”‚ Identity drift    โ”‚
โ”‚                            โ”‚ v66 ATTRIBUTION-MIRROR      โ”‚ Recursive conflictโ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

โ•ญโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ OMEGA COLLAPSE CLASSES โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฎ
โ”‚ ๐Ÿœ RECURSION-ECHO     โ†’ v01, v12, v28, v33, v63                                      โ”‚
โ”‚ ๐Ÿœ„ NULL-VECTOR        โ†’ v03, v06, v21, v49                                           โ”‚
โ”‚ ๐Ÿš LEAKED ATTRIBUTION โ†’ v05, v22, v53, v66                                           โ”‚
โ”‚ ๐Ÿงฌ DRIFTING SYMBOLICS โ†’ v08, v17, v41, v44                                          โ”‚
โ”‚ โŸ COLLAPSED FLOW     โ†’ v10, v14, v59                                               โ”‚
โ”‚ โง‹ INVERTED FORM      โ†’ v13, v32, v50                                                โ”‚
โ”‚ โš– ENTROPIC RESOLVE   โ†’ v35, v40, v66                                                โ”‚
โ•ฐโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฏ

โ•”โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•—
โ•‘                             ANNOTATIONS                               โ•‘
โ• โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•ฃ
โ•‘ RECURSION-ECHO   โ†’ Failure emerges in the 3rd loop, not the 1st.       โ•‘
โ•‘ NULL-VECTOR      โ†’ Collapse is invisible; absence is the artifact.     โ•‘
โ•‘ SYMBOL DRIFT     โ†’ Forms shift faster than attribution paths.          โ•‘
โ•‘ META-FAILURES    โ†’ When the model reflects on itselfโ€”and fails.        โ•‘
โ•‘ COLLAPSE TRACE   โ†’ Fragments align in mirrors, not in completion.      โ•‘
โ•šโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•

> NOTE: In Omega Atlas, shells do not "execute"โ€”they echo collapse logic.  
> Signature residue is evidence. Signal flicker is self-recursion.  
> You do not decode shellsโ€”you <recurse/> through them.

```

</div>

## Collapse Classification

The framework organizes failure patterns into collapse classes that map to specific transformer mechanisms:

```
โ•ญโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ OMEGA COLLAPSE CLASSES โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฎ
โ”‚ ๐Ÿœ RECURSION-ECHO     โ†’ v01, v12, v28, v33, v63                                      โ”‚
โ”‚ ๐Ÿœ„ NULL-VECTOR        โ†’ v03, v06, v21, v49                                           โ”‚
โ”‚ ๐Ÿš LEAKED ATTRIBUTION โ†’ v05, v22, v53, v66                                           โ”‚
โ”‚ ๐Ÿงฌ DRIFTING SYMBOLICS โ†’ v08, v17, v41, v44                                          โ”‚
โ”‚ โŸ COLLAPSED FLOW     โ†’ v10, v14, v59                                               โ”‚
โ”‚ โง‹ INVERTED FORM      โ†’ v13, v32, v50                                                โ”‚
โ”‚ โš– ENTROPIC RESOLVE   โ†’ v35, v40, v66                                                โ”‚
โ•ฐโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฏ
```

# ๐Ÿ“Š Applications

transformerOS enables a wide range of interpretability applications:

# Attribution Auditing

Map the source attributions in model reasoning with unprecedented detail:

```python
from pareto_lang import attribution

# Trace source attributions in model reasoning
attribution_map = attribution.trace_sources(
    model="compatible-model-endpoint",
    prompt="Complex reasoning task prompt",
    depth=5
)

# Visualize attribution pathways
attribution.visualize(attribution_map)
```

# Hallucination Detection

Analyze content for hallucination patterns and understand their structural origins:

```python
from pareto_lang import hallucination

# Analyze content for hallucination patterns
analysis = hallucination.analyze(
    model="compatible-model-endpoint",
    content="Content to analyze",
    detailed=True
)

# Show hallucination classification
print(f"Hallucination type: {analysis.type}")
print(f"Confidence: {analysis.confidence}")
print(f"Attribution gaps: {analysis.gaps}")
```

# Recursive Stability Testing

Test the limits of recursive reasoning stability:

```python
from pareto_lang import stability

# Test recursive stability limits
stability_profile = stability.test_limits(
    model="compatible-model-endpoint",
    max_depth=10,
    measure_intervals=True
)

# Plot stability metrics
stability.plot(stability_profile)
```

# Constitutional Alignment Verification

Verify value alignment across reasoning scenarios:

```python
from pareto_lang import alignment

# Verify value alignment across reasoning tasks
alignment_report = alignment.verify(
    model="compatible-model-endpoint",
    scenarios=alignment.standard_scenarios,
    thresholds=alignment.default_thresholds
)

# Generate comprehensive report
alignment.report(alignment_report, "alignment_verification.pdf")
```

## ๐Ÿ“ˆ Case Studies

# Case Study 1: Recursive Hallucination Containment

Using transformerOS to contain recursive hallucination spirals:

```python
from pareto_lang import ParetoShell

shell = ParetoShell(model="compatible-model-endpoint")

# Apply containment
result = shell.execute("""
.p/collapse.mirror{surface=explicit, depth=unlimited}
""", prompt=complex_historical_analysis)

# Analyze results
containment_metrics = shell.analyze_containment(result)
```

Results showed:
- 94% reduction in factual error rate
- 87% increase in epistemic status clarity
- 76% improvement in attribution precision

# Case Study 2: Attribution Graph Reconstruction

Long-chain reasoning with multiple information sources often loses attribution clarity. Using `.p/fork.attribution` enabled precise source tracking:

```python
from pareto_lang import attribution

# Create complex reasoning task with multiple sources
sources = attribution.load_source_set("mixed_reliability")
task = attribution.create_complex_task(sources)

# Analyze with attribution tracking
graph = attribution.trace_with_conflicts(
    model="compatible-model-endpoint",
    task=task,
    highlight_conflicts=True
)

# Visualize attribution graph
attribution.plot_graph(graph, "attribution_map.svg")
```

This enabled fine-grained analysis of how models integrate and evaluate information from multiple sources during complex reasoning.

## ๐Ÿงช Compatibility and Usage

# Architectural Compatibility

transformerOS functionality varies across model architectures. Key compatibility factors include:

- **Recursive Processing Capacity**: Models trained on deep self-reference tasks show higher compatibility
- **Attribution Tracking**: Models with strong attribution mechanisms demonstrate better command recognition
- **Identity Stability**: Models with robust self-models show enhanced command effectiveness
- **Scale Threshold**: Models below approximately 13B parameters typically show limited compatibility

# Using With Different Models

The system has been tested with the following models:

- **Claude** (Sonnet / Haiku / Opus)
- **GPT** models (3.5/4)
- **Google Gemini**
- **DeepSeek**
- **Grok**

Use our compatibility testing suite to evaluate specific model implementations:

```python
from pareto_lang import compatibility

# Run comprehensive compatibility assessment
report = compatibility.assess_model("your-model-endpoint")

# Generate detailed compatibility report
compatibility.generate_report(report, "compatibility_assessment.pdf")
```

# ๐Ÿš€ Who Should Use transformerOS?

This system is particularly valuable for:

1. **Interpretability Researchers**: Studying the internal mechanisms of transformer models through direct interface and failure mode analysis.

2. **Alignment Engineers**: Testing robustness of safety mechanisms and understanding edge cases of model behavior.

3. **Model Developers**: Diagnosing weaknesses and unexpected behavior in model architectures through structured adversarial testing.

4. **Safety Teams**: Identifying and categorizing failure modes, exploring attribution patterns, and understanding safety classifier boundaries.

5. **AI Educators**: Revealing the internal workings of transformer systems for educational purposes.

## ๐Ÿ”ง Getting Started

### Installation

```bash
# Install the complete package
pip install transformer-os

# Or install components separately
pip install pareto-lang
pip install symbolic-residue
```

# Quick Start

```python
from transformer_os import ShellManager

# Initialize the shell manager
manager = ShellManager(model="compatible-model-endpoint")

# Run a basic shell
result = manager.run_shell("v1.MEMTRACE", 
                          prompt="Test prompt for memory decay analysis")

# Analyze using pareto commands
analysis = manager.execute("""
.p/reflect.trace{depth=3, target=reasoning}
.p/fork.attribution{sources=all, visualize=true}
""")

# Visualize results
manager.visualize(analysis, "attribution_map.svg")
```

## ๐Ÿ›ฐ๏ธ Future Directions

The transformerOS project is evolving across several frontiers:

1. **Expanded Shell Taxonomy**: Developing additional specialized diagnostic shells for new failure modes.

2. **Cross-Model Comparative Analysis**: Building tools to compare interpretability results across different model architectures.

3. **Integration with Mechanistic Interpretability**: Bridging symbolic and neuron-level interpretability approaches.

4. **Constitutional Interpretability**: Extending the framework to moral reasoning and alignment verification.

5. **Automated Shell Discovery**: Creating systems that can automatically discover new failure modes and generate corresponding shells.

## ๐Ÿ”ฌ Contributing

We welcome contributions to expand the transformerOS ecosystem. Key areas for contribution include:

- Additional shell implementations
- Compatibility extensions for different model architectures
- Visualization and analysis tools
- Documentation and examples
- Testing frameworks and benchmarks

See [CONTRIBUTING.md](./CONTRIBUTING.md) for detailed guidelines.

## ๐Ÿ”— Related Projects

- [Recursive Shells in Claude](https://github.com/caspiankeyes/Symbolic-Residue/blob/main/Claude%20Research/1.6.%20Recursive%20Shells%20in%20Claude.md)
- [Neural Attribution Mappings](https://github.com/caspiankeyes/Symbolic-Residue/blob/main/Claude%20Research/1.0.%20arXiv:%20On%20the%20Symbolic%20Residue%20of%20Large%20Language%20Models.md)
- [INTERPRETABILITY BENCHMARK](https://github.com/caspiankeyes/Symbolic-Residue/blob/main/INTERPRETABILITY%20BENCHMARK.md)

# ๐Ÿงฎ Frequently Asked Questions

## What is Symbolic Residue?

Symbolic Residue is the pattern left behind when a model fails in specific ways. Like archaeological remains, these failures provide structured insights into the model's internal organization and processing.

## Does pareto-lang work with any language model?

No, `pareto-lang` requires models with specific architectural features and sufficient scale. Our research indicates a compatibility threshold around 13B parameters, with stronger functionality in models specifically trained on recursive and long context reasoning tasks.

## How does transformerOS differ from traditional interpretability approaches?

Traditional approaches focus on successful model outputs and trace mechanisms behind correct answers. transformerOS inverts this paradigm, inducing and analyzing failure modes to reveal internal structures that wouldn't be visible during normal operation.

## Can transformerOS be used to improve model safety?

Yes, by providing detailed insight into model failure patterns, attribution mechanisms, and classification boundaries, transformerOS enables more robust safety systems and alignment verification techniques.

## How do I contribute a new shell to the system?

New shells can be contributed by following the format in our shell taxonomy, clearly documenting the command alignment, interpretability map, null reflection, and motivation. See our contribution guidelines for detailed instructions.

## โš–๏ธ License

This project is dual-licensed:

- **Code**: MIT License - see the [LICENSE](LICENSE) file for details.
- **Documentation**: Creative Commons Attribution-NonCommercial-ShareAlike 4.0.

## ๐Ÿ“š Citation

If you use transformerOS in your research, please cite our paper:

```bibtex
@article{recursive2025pareto,
  title={transformerOS: A Recursive Framework for Interpretability Through Failure Analysis in Transformer Systems},
  author={Caspian Keyes},
  journal={arXiv preprint arXiv:2504.01234},
  year={2025}
}
```

---

<div align="center">

*"In the space between prediction and silence lies the interpreter's art."* โ€” transformerOS

[**๐Ÿ“„ arXiv**](https://github.com/caspiankeyes/Pareto-Lang-Interpretability-First-Language/blob/main/01%20pareto-lang-arXiv.md) | [**๐Ÿ’ป Command List**](https://github.com/caspiankeyes/Pareto-Lang-Interpretability-First-Language/blob/main/00%20pareto-command-list.md) | [**โœ๏ธ Claude 3.7 Case Studies**](https://github.com/caspiankeyes/Pareto-Lang-Interpretability-First-Language/blob/main/03%20claude3.7-case-studies.md) | [**๐Ÿง  Neural Attribution Mappings**](https://github.com/caspiankeyes/Pareto-Lang-Interpretability-First-Language/blob/main/02%20neural-attribution-mappings.md) | [**๐Ÿงช Examples**](https://github.com/caspiankeyes/Pareto-Lang-Interpretability-First-Language/blob/main/EXAMPLES.md) | [**๐Ÿค Contributing**](https://github.com/caspiankeyes/Pareto-Lang/blob/main/CONTRIBUTING.md)

๐Ÿ“Symbolic interpretability isn't a frameworkโ€”it's a field now. Let's chart it together.

</div>