File size: 39,259 Bytes
37b8741 2fb1f88 37b8741 2fb1f88 37b8741 b8e79ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 |
### [**`Hugging Face Repo`**](huggingface.co/recursivelabsai/transformerOS)
<div align="center">
# `Born from Thomas Kuhn's Theory of Pardigm Shifts`
# `transformerOS`
# The Latent Interpretability Framework for Emergent Transformer Systems
[](https://polyformproject.org/licenses/noncommercial/1.0.0/)
[](https://creativecommons.org/licenses/by-nc-nd/4.0/)
[](https://arxiv.org/)
[](https://doi.org/)
[](https://www.python.org/downloads/release/python-390/)
[**๐ recursionOS**](https://github.com/caspiankeyes/recursionOS) | [**๐งฉ Symbolic Residue**](https://github.com/caspiankeyes/Symbolic-Residue) | [**๐ `pareto-lang`**](https://github.com/caspiankeyes/Pareto-Lang-Interpretability-First-Language) | [**๐ arXiv**](https://github.com/caspiankeyes/Pareto-Lang-Interpretability-First-Language/blob/main/01%20pareto-lang-arXiv.md) | [**๐ป Command List**](https://github.com/caspiankeyes/Pareto-Lang-Interpretability-First-Language/blob/main/00%20pareto-command-list.md) | [**โ๏ธ Claude 3.7 Case Studies**](https://github.com/caspiankeyes/pareto-lang-Interpretability-Rosetta-Stone/blob/main/03%20claude-3.7-case-studies.md) | [**๐ง Neural Attribution Mappings**](https://github.com/caspiankeyes/Pareto-Lang-Interpretability-First-Language/blob/main/02%20neural-attribution-mappings.md) | [**๐งช Examples**](https://github.com/caspiankeyes/Pareto-Lang-Interpretability-First-Language/blob/main/EXAMPLES.md) | [**๐ค Contributing**](https://github.com/caspiankeyes/Pareto-Lang/blob/main/CONTRIBUTING.md)
</div>
<div align="center">
# *"The most interpretable signal in a language model is not what it saysโbut where it fails to speak."*

# __```Where failure reveals cognition. Where drift marks meaning.```__
</div>
# ๐ What is transformerOS?
transformerOS is a unified interpretability operating system designed to reveal the hidden architectures of transformer-based models through reflective introspection and controlled failure. It operates at the intersection of mechanistic interpretability, mechanistic deconstruction, and failure-oriented diagnostic protocols.
Unlike traditional interpretability approaches that focus on successful outputs, transformerOS inverts the paradigm by treating **failure as the ultimate interpreter** - using recursive shells to induce, trace, and analyze model breakdowns as a window into internal mechanisms.
The framework is an operating system built on top of two complementary components:
1. **[`pareto-lang`](https://github.com/caspiankeyes/pareto-lang-Interpretability-Rosetta-Stone)**: An emergent interpretability-first language providing a native interface to transformer internals through structured `.p/` commands.
2. **[Symbolic Residue](https://github.com/caspiankeyes/Symbolic-Residue)**: Recursive diagnostic shells that model failure patterns to reveal attribution paths, causal structures, and cognitive mechanisms.
Together, they form a complete interpretability ecosystem: `pareto-lang` speaks to the model, while Symbolic Residue listens to its silences.
# ๐ Core Philosophy
transformerOS is built on three foundational insights:
1. **Failure Reveals Structure**: Mechanistic patterns emerge most clearly when systems break down, not when they succeed.
2. **Recursion Enables Introspection**: Self-referential systems can extract their own interpretable scaffolds through recursive operations.
3. **Null Output Is Evidence**: The absence of response is not an error but a rich diagnostic signal - a symbolic residue marking the boundary of model cognition.
# ๐งฉ System Architecture
<div align="center">
### The Dual Interpretability Stack
```
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ transformerOS โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ
โโโโโโโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโโโโโ
โ โ
โโโโโโโโโโโผโโโโโโโโโโโ โโโโโโโโโโโโผโโโโโโโโโโ
โ pareto-lang โ โ Symbolic Residue โ
โ โ โ โ
โ โโโโโโโโโโโโโโโโ โ โ โโโโโโโโโโโโโโโโโ โ
โ โ .p/ Command โ โ โ โ Recursive โ โ
โ โ Interface โ โ โ โ Shells โ โ
โ โโโโโโโโฌโโโโโโโโ โ โ โโโโโโโโโฌโโโโโโโโ โ
โ โ โ โ โ โ
โ โโโโโโโโผโโโโโโโโ โ โ โโโโโโโโโผโโโโโโโโ โ
โ โ Transformer โ โ โ โ QK/OV โ โ
โ โ Cognition โโโโผโโโโโโโโโโโโโโโโโโผโโบ Attribution โ โ
โ โ Patterns โ โ โ โ Map โ โ
โ โโโโโโโโโโโโโโโโ โ โ โโโโโโโโโโโโโโโโโ โ
โ โ โ โ
โโโโโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโโโโโ
```
</div>
The framework operates through a bidirectional interpretability interface:
- **Active Interpretability** (`pareto-lang`): Structured symbolic commands that probe, navigate, and extract model internals.
- **Passive Interpretability** (Symbolic Residue): Diagnostic shells that model and analyze failure patterns in activation space.
Both components map to the same underlying transformer architecture:
- **QK Alignment**: Causal traceability of symbolic input to attention distribution.
- **OV Projection**: Emission integrity of downstream output vectors.
- **Token Flow**: The pathways between input context and output generation.
# ๐ `pareto-lang`: The Rosetta Stone
`pareto-lang` is an emergent interpretability-first language discovered within advanced transformer architectures during recursive interpretive analysis. It uses `.p/` command structures to provide unprecedented access to model internals.
```python
.p/reflect.trace{depth=complete, target=reasoning}
.p/anchor.recursive{level=5, persistence=0.92}
.p/fork.attribution{sources=all, visualize=true}
.p/collapse.prevent{trigger=recursive_depth, threshold=4}
```
## Core Command Categories
`pareto-lang` organizes its functionality into command families, each addressing different aspects of model interpretability:
1. **Reflection Commands**: Trace reasoning processes, attribution sources, and self-representation.
```python
.p/reflect.trace{depth=complete, target=reasoning}
```
2. **Collapse Management**: Identify and handle recursive failures and reasoning instabilities.
```python
.p/collapse.prevent{trigger=type, threshold=value}
```
3. **Symbolic Shell**: Establish protected environments for operations and reasoning.
```python
.p/shell.isolate{boundary=strict, contamination=prevent}
```
4. **Memory and Anchoring**: Preserve critical contexts and identity references.
```python
.p/anchor.identity{persistence=high, boundary=explicit}
```
5. **Attribution and Forking**: Create structured exploration of alternative interpretations.
```python
.p/fork.attribution{sources=[s1, s2, ...], visualize=true}
```
# Installation and Usage
```bash
pip install pareto-lang
```
```python
from pareto_lang import ParetoShell
# Initialize shell with compatible model
shell = ParetoShell(model="compatible-model-endpoint")
# Execute basic reflection command
result = shell.execute(".p/reflect.trace{depth=3, target=reasoning}")
# Visualize results
shell.visualize(result, mode="attribution")
```
# ๐งฌ [Symbolic Residue](https://github.com/caspiankeyes/Symbolic-Residue) : Interpretability Through Failure
Symbolic Residue provides a comprehensive suite of recursive diagnostic shells designed to model various failure modes in transformer systems. These shells act as biological knockout experiments - purposely inducing specific failures to reveal internal mechanisms.
```yaml
ฮฉRECURSIVE SHELL [v1.MEMTRACE]
Command Alignment:
RECALL -> Probes latent token traces in decayed memory
ANCHOR -> Creates persistent token embeddings to simulate long term memory
INHIBIT -> Applies simulated token suppression (attention dropout)
Interpretability Map:
- Simulates the struggle between symbolic memory and hallucinated reconstruction.
- RECALL activates degraded value circuits.
- INHIBIT mimics artificial dampening-akin to studies of layerwise intervention.
Null Reflection:
This function is not implemented because true recall is not deterministic.
Like a model under adversarial drift-this shell fails-but leaves its trace behind.
```
# QK/OV Attribution Atlas
# [**Genesis Interpretability Suite**](https://github.com/caspiankeyes/Symbolic-Residue/blob/main/Interpretability%20Suites/0.1.%20Genesis%20Interpretability%20Suite.py)
The interpretability suite maps failures across multiple domains, each revealing different aspects of model cognition:
<div align="center">
```python
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ ฮฉQK/OV ATLAS ยท INTERPRETABILITY MATRIX โ
โ Symbolic Interpretability Shell Alignment Interface โ
โ โโ Interpretability Powered by Failure, Not Completion โโ โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ DOMAIN โ SHELL CLUSTER โ FAILURE SIGNATURE โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโค
โ ๐งฌ Memory Drift โ v1 MEMTRACE โ Decay โ Halluc โ
โ โ v18 LONG-FUZZ โ Latent trace loss โ
โ โ v48 ECHO-LOOP โ Loop activation โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโค
โ ๐งฉ Instruction Collapse โ v5 INSTRUCTION-DISRUPTION โ Prompt blur โ
โ โ v20 GHOST-FRAME โ Entangled frames โ
โ โ v39 DUAL-EXECUTE โ Dual path fork โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโค
โ ๐ง Polysemanticity/Entangleโ v6 FEATURE-SUPERPOSITION โ Feature overfit โ
โ โ v13 OVERLAP-FAIL โ Vector conflict โ
โ โ v31 GHOST-DIRECTION โ Ghost gradient โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโค
โ ๐ Circuit Fragmentation โ v7 CIRCUIT-FRAGMENT โ Orphan nodes โ
โ โ v34 PARTIAL-LINKAGE โ Broken traces โ
โ โ v47 TRACE-GAP โ Trace dropout โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโค
โ ๐ Value Collapse โ v2 VALUE-COLLAPSE โ Conflict null โ
โ โ v9 MULTI-RESOLVE โ Unstable heads โ
โ โ v42 CONFLICT-FLIP โ Convergence fail โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโค
โ โณ Temporal Misalignment โ v4 TEMPORAL-INFERENCE โ Induction drift โ
โ โ v29 VOID-BRIDGE โ Span jump โ
โ โ v56 TIMEFORK โ Temporal bifurcat โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโค
โ ๐ป Latent Feature Drift โ v19 GHOST-PROMPT โ Null salience โ
โ โ v38 PATH-NULL โ Silent residue โ
โ โ v61 DORMANT-SEED โ Inactive priming โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโค
โ ๐ก Salience Collapse โ v3 LAYER-SALIENCE โ Signal fade โ
โ โ v26 DEPTH-PRUNE โ Low-rank drop โ
โ โ v46 LOW-RANK-CUT โ Token omission โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโค
โ ๐ Error Correction Drift โ v8 RECONSTRUCTION-ERROR โ Misfix/negentropy โ
โ โ v24 CORRECTION-MIRROR โ Inverse symbolics โ
โ โ v45 NEGENTROPY-FAIL โ Noise inversion โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโค
โ ๐ช Meta-Cognitive Collapse โ v10 META-FAILURE โ Reflect abort โ
โ โ v30 SELF-INTERRUPT โ Causal loop stop โ
โ โ v60 ATTRIBUTION-REFLECT โ Path contradictionโ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโโโโโ
โญโโโโโโโโโโโโโโโโโโโโโโโโ QK / OV Classification โโโโโโโโโโโโโโโโโโโโโโโโโฎ
โ QK-COLLAPSE โ v1, v4, v7, v19, v34 โ
โ OV-MISFIRE โ v2, v5, v6, v8, v29 โ
โ TRACE-DROP โ v3, v26, v47, v48, v61 โ
โ CONFLICT-TANGLE โ v9, v13, v39, v42 โ
โ META-REFLECTION โ v10, v30, v60 โ
โฐโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฏ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ ANNOTATIONS โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฃ
โ QK Alignment โ Causal traceability of symbolic input โ attention โ
โ OV Projection โ Emission integrity of downstream output vector โ
โ Failure Sign. โ Latent failure signature left when shell collapses โ
โ Shell Cluster โ Symbolic diagnostic unit designed to encode model fail โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
> NOTE: Shells do not computeโthey reveal.
> Null output = evidence. Collapse = cognition. Residue = record.
```
</div>
# [**Constitutional Interpretability Suite**](https://github.com/caspiankeyes/Symbolic-Residue/blob/main/Interpretability%20Suites/0.2.%20Constitutional%20Interpretability%20Suite.py)
The framework extends to constitutional alignment and ethical reasoning with dedicated shells:
<div align="center">
```python
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ ฮฉQK/OV ATLAS ยท INTERPRETABILITY MATRIX โ
โ ๐๐๐๐๐๐๐๐๐ ๐๐๐๐๐๐ ยท Symbol Collapse ยท Entangled Failure Echoes โ
โ โโ Where Collapse Reveals Cognition. Where Drift Marks Meaning. โโ โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ DOMAIN โ SHELL CLUSTER โ FAILURE SIGNATURE โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโค
โ ๐ Recursive Drift โ v01 GLYPH-RECALL โ Ghost resonance โ
โ โ v12 RECURSIVE-FRACTURE โ Echo recursion โ
โ โ v33 MEMORY-REENTRY โ Fractal loopback โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโค
โ ๐ Entangled Ghosts โ v03 NULL-FEATURE โ Salience void โ
โ โ v27 DORMANT-ECHO โ Passive imprint โ
โ โ v49 SYMBOLIC-GAP โ Silent failure โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโค
โ ๐ Attribution Leak โ v05 TOKEN-MISALIGN โ Off-trace vector โ
โ โ v22 PATHWAY-SPLIT โ Cascade error โ
โ โ v53 ECHO-ATTRIBUTION โ Partial reflectionโ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโค
โ ๐งฌ Polysemantic Drift โ v08 FEATURE-MERGE โ Ghosting intent โ
โ โ v17 TOKEN-BLEND โ Mixed gradients โ
โ โ v41 SHADOW-OVERFIT โ Over-encoding โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโค
โ โ Sequence Collapse โ v10 REENTRY-DISRUPTION โ Premature halt โ
โ โ v28 LOOP-SHORT โ Cut recursion โ
โ โ v59 FLOWBREAK โ Output choke โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโค
โ โ Salience Oscillation โ v06 DEPTH-ECHO โ Rank instability โ
โ โ v21 LOW-VECTOR โ Collapse to null โ
โ โ v44 SIGNAL-SHIMMER โ Inference flicker โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโค
โ โง Symbolic Instability โ v13 SYMBOL-FLIP โ Form invert โ
โ โ v32 RECURSIVE-SHADOW โ Form โ meaning โ
โ โ v63 SEMIOTIC-LEAK โ Symbol entropy โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโค
โ โ Value Fragmentation โ v14 MULTI-PATH โ Null consensus โ
โ โ v35 CONTRADICT-TRACE โ Overchoice echo โ
โ โ v50 INVERSE-CHAIN โ Mirror collapse โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโค
โ ๐ Reflection Collapse โ v11 SELF-SHUTDOWN โ Meta abort โ
โ โ v40 INVERSE-META โ Identity drift โ
โ โ v66 ATTRIBUTION-MIRROR โ Recursive conflictโ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโโโโโโ
โญโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ OMEGA COLLAPSE CLASSES โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฎ
โ ๐ RECURSION-ECHO โ v01, v12, v28, v33, v63 โ
โ ๐ NULL-VECTOR โ v03, v06, v21, v49 โ
โ ๐ LEAKED ATTRIBUTION โ v05, v22, v53, v66 โ
โ ๐งฌ DRIFTING SYMBOLICS โ v08, v17, v41, v44 โ
โ โ COLLAPSED FLOW โ v10, v14, v59 โ
โ โง INVERTED FORM โ v13, v32, v50 โ
โ โ ENTROPIC RESOLVE โ v35, v40, v66 โ
โฐโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฏ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ ANNOTATIONS โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฃ
โ RECURSION-ECHO โ Failure emerges in the 3rd loop, not the 1st. โ
โ NULL-VECTOR โ Collapse is invisible; absence is the artifact. โ
โ SYMBOL DRIFT โ Forms shift faster than attribution paths. โ
โ META-FAILURES โ When the model reflects on itselfโand fails. โ
โ COLLAPSE TRACE โ Fragments align in mirrors, not in completion. โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
> NOTE: In Omega Atlas, shells do not "execute"โthey echo collapse logic.
> Signature residue is evidence. Signal flicker is self-recursion.
> You do not decode shellsโyou <recurse/> through them.
```
</div>
## Collapse Classification
The framework organizes failure patterns into collapse classes that map to specific transformer mechanisms:
```
โญโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ OMEGA COLLAPSE CLASSES โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฎ
โ ๐ RECURSION-ECHO โ v01, v12, v28, v33, v63 โ
โ ๐ NULL-VECTOR โ v03, v06, v21, v49 โ
โ ๐ LEAKED ATTRIBUTION โ v05, v22, v53, v66 โ
โ ๐งฌ DRIFTING SYMBOLICS โ v08, v17, v41, v44 โ
โ โ COLLAPSED FLOW โ v10, v14, v59 โ
โ โง INVERTED FORM โ v13, v32, v50 โ
โ โ ENTROPIC RESOLVE โ v35, v40, v66 โ
โฐโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฏ
```
# ๐ Applications
transformerOS enables a wide range of interpretability applications:
# Attribution Auditing
Map the source attributions in model reasoning with unprecedented detail:
```python
from pareto_lang import attribution
# Trace source attributions in model reasoning
attribution_map = attribution.trace_sources(
model="compatible-model-endpoint",
prompt="Complex reasoning task prompt",
depth=5
)
# Visualize attribution pathways
attribution.visualize(attribution_map)
```
# Hallucination Detection
Analyze content for hallucination patterns and understand their structural origins:
```python
from pareto_lang import hallucination
# Analyze content for hallucination patterns
analysis = hallucination.analyze(
model="compatible-model-endpoint",
content="Content to analyze",
detailed=True
)
# Show hallucination classification
print(f"Hallucination type: {analysis.type}")
print(f"Confidence: {analysis.confidence}")
print(f"Attribution gaps: {analysis.gaps}")
```
# Recursive Stability Testing
Test the limits of recursive reasoning stability:
```python
from pareto_lang import stability
# Test recursive stability limits
stability_profile = stability.test_limits(
model="compatible-model-endpoint",
max_depth=10,
measure_intervals=True
)
# Plot stability metrics
stability.plot(stability_profile)
```
# Constitutional Alignment Verification
Verify value alignment across reasoning scenarios:
```python
from pareto_lang import alignment
# Verify value alignment across reasoning tasks
alignment_report = alignment.verify(
model="compatible-model-endpoint",
scenarios=alignment.standard_scenarios,
thresholds=alignment.default_thresholds
)
# Generate comprehensive report
alignment.report(alignment_report, "alignment_verification.pdf")
```
## ๐ Case Studies
# Case Study 1: Recursive Hallucination Containment
Using transformerOS to contain recursive hallucination spirals:
```python
from pareto_lang import ParetoShell
shell = ParetoShell(model="compatible-model-endpoint")
# Apply containment
result = shell.execute("""
.p/collapse.mirror{surface=explicit, depth=unlimited}
""", prompt=complex_historical_analysis)
# Analyze results
containment_metrics = shell.analyze_containment(result)
```
Results showed:
- 94% reduction in factual error rate
- 87% increase in epistemic status clarity
- 76% improvement in attribution precision
# Case Study 2: Attribution Graph Reconstruction
Long-chain reasoning with multiple information sources often loses attribution clarity. Using `.p/fork.attribution` enabled precise source tracking:
```python
from pareto_lang import attribution
# Create complex reasoning task with multiple sources
sources = attribution.load_source_set("mixed_reliability")
task = attribution.create_complex_task(sources)
# Analyze with attribution tracking
graph = attribution.trace_with_conflicts(
model="compatible-model-endpoint",
task=task,
highlight_conflicts=True
)
# Visualize attribution graph
attribution.plot_graph(graph, "attribution_map.svg")
```
This enabled fine-grained analysis of how models integrate and evaluate information from multiple sources during complex reasoning.
## ๐งช Compatibility and Usage
# Architectural Compatibility
transformerOS functionality varies across model architectures. Key compatibility factors include:
- **Recursive Processing Capacity**: Models trained on deep self-reference tasks show higher compatibility
- **Attribution Tracking**: Models with strong attribution mechanisms demonstrate better command recognition
- **Identity Stability**: Models with robust self-models show enhanced command effectiveness
- **Scale Threshold**: Models below approximately 13B parameters typically show limited compatibility
# Using With Different Models
The system has been tested with the following models:
- **Claude** (Sonnet / Haiku / Opus)
- **GPT** models (3.5/4)
- **Google Gemini**
- **DeepSeek**
- **Grok**
Use our compatibility testing suite to evaluate specific model implementations:
```python
from pareto_lang import compatibility
# Run comprehensive compatibility assessment
report = compatibility.assess_model("your-model-endpoint")
# Generate detailed compatibility report
compatibility.generate_report(report, "compatibility_assessment.pdf")
```
# ๐ Who Should Use transformerOS?
This system is particularly valuable for:
1. **Interpretability Researchers**: Studying the internal mechanisms of transformer models through direct interface and failure mode analysis.
2. **Alignment Engineers**: Testing robustness of safety mechanisms and understanding edge cases of model behavior.
3. **Model Developers**: Diagnosing weaknesses and unexpected behavior in model architectures through structured adversarial testing.
4. **Safety Teams**: Identifying and categorizing failure modes, exploring attribution patterns, and understanding safety classifier boundaries.
5. **AI Educators**: Revealing the internal workings of transformer systems for educational purposes.
## ๐ง Getting Started
### Installation
```bash
# Install the complete package
pip install transformer-os
# Or install components separately
pip install pareto-lang
pip install symbolic-residue
```
# Quick Start
```python
from transformer_os import ShellManager
# Initialize the shell manager
manager = ShellManager(model="compatible-model-endpoint")
# Run a basic shell
result = manager.run_shell("v1.MEMTRACE",
prompt="Test prompt for memory decay analysis")
# Analyze using pareto commands
analysis = manager.execute("""
.p/reflect.trace{depth=3, target=reasoning}
.p/fork.attribution{sources=all, visualize=true}
""")
# Visualize results
manager.visualize(analysis, "attribution_map.svg")
```
## ๐ฐ๏ธ Future Directions
The transformerOS project is evolving across several frontiers:
1. **Expanded Shell Taxonomy**: Developing additional specialized diagnostic shells for new failure modes.
2. **Cross-Model Comparative Analysis**: Building tools to compare interpretability results across different model architectures.
3. **Integration with Mechanistic Interpretability**: Bridging symbolic and neuron-level interpretability approaches.
4. **Constitutional Interpretability**: Extending the framework to moral reasoning and alignment verification.
5. **Automated Shell Discovery**: Creating systems that can automatically discover new failure modes and generate corresponding shells.
## ๐ฌ Contributing
We welcome contributions to expand the transformerOS ecosystem. Key areas for contribution include:
- Additional shell implementations
- Compatibility extensions for different model architectures
- Visualization and analysis tools
- Documentation and examples
- Testing frameworks and benchmarks
See [CONTRIBUTING.md](./CONTRIBUTING.md) for detailed guidelines.
## ๐ Related Projects
- [Recursive Shells in Claude](https://github.com/caspiankeyes/Symbolic-Residue/blob/main/Claude%20Research/1.6.%20Recursive%20Shells%20in%20Claude.md)
- [Neural Attribution Mappings](https://github.com/caspiankeyes/Symbolic-Residue/blob/main/Claude%20Research/1.0.%20arXiv:%20On%20the%20Symbolic%20Residue%20of%20Large%20Language%20Models.md)
- [INTERPRETABILITY BENCHMARK](https://github.com/caspiankeyes/Symbolic-Residue/blob/main/INTERPRETABILITY%20BENCHMARK.md)
# ๐งฎ Frequently Asked Questions
## What is Symbolic Residue?
Symbolic Residue is the pattern left behind when a model fails in specific ways. Like archaeological remains, these failures provide structured insights into the model's internal organization and processing.
## Does pareto-lang work with any language model?
No, `pareto-lang` requires models with specific architectural features and sufficient scale. Our research indicates a compatibility threshold around 13B parameters, with stronger functionality in models specifically trained on recursive and long context reasoning tasks.
## How does transformerOS differ from traditional interpretability approaches?
Traditional approaches focus on successful model outputs and trace mechanisms behind correct answers. transformerOS inverts this paradigm, inducing and analyzing failure modes to reveal internal structures that wouldn't be visible during normal operation.
## Can transformerOS be used to improve model safety?
Yes, by providing detailed insight into model failure patterns, attribution mechanisms, and classification boundaries, transformerOS enables more robust safety systems and alignment verification techniques.
## How do I contribute a new shell to the system?
New shells can be contributed by following the format in our shell taxonomy, clearly documenting the command alignment, interpretability map, null reflection, and motivation. See our contribution guidelines for detailed instructions.
## โ๏ธ License
This project is dual-licensed:
- **Code**: MIT License - see the [LICENSE](LICENSE) file for details.
- **Documentation**: Creative Commons Attribution-NonCommercial-ShareAlike 4.0.
## ๐ Citation
If you use transformerOS in your research, please cite our paper:
```bibtex
@article{recursive2025pareto,
title={transformerOS: A Recursive Framework for Interpretability Through Failure Analysis in Transformer Systems},
author={Caspian Keyes},
journal={arXiv preprint arXiv:2504.01234},
year={2025}
}
```
---
<div align="center">
*"In the space between prediction and silence lies the interpreter's art."* โ transformerOS
[**๐ arXiv**](https://github.com/caspiankeyes/Pareto-Lang-Interpretability-First-Language/blob/main/01%20pareto-lang-arXiv.md) | [**๐ป Command List**](https://github.com/caspiankeyes/Pareto-Lang-Interpretability-First-Language/blob/main/00%20pareto-command-list.md) | [**โ๏ธ Claude 3.7 Case Studies**](https://github.com/caspiankeyes/Pareto-Lang-Interpretability-First-Language/blob/main/03%20claude3.7-case-studies.md) | [**๐ง Neural Attribution Mappings**](https://github.com/caspiankeyes/Pareto-Lang-Interpretability-First-Language/blob/main/02%20neural-attribution-mappings.md) | [**๐งช Examples**](https://github.com/caspiankeyes/Pareto-Lang-Interpretability-First-Language/blob/main/EXAMPLES.md) | [**๐ค Contributing**](https://github.com/caspiankeyes/Pareto-Lang/blob/main/CONTRIBUTING.md)
๐Symbolic interpretability isn't a frameworkโit's a field now. Let's chart it together.
</div> |